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Abstract We consider the family of rough sets in the present paper. In this
family we define, by means of a minimal upper sample, the operations of
rough addition, rough multiplication, and pseudocomplement. We prove that
the family of rough sets with the above operations is a complete atomic Stone
algebra. We prove that the family of rough sets, determined by the unions
of equivalence classes of the relation R with the operations of rough addi-
tion, rough multiplication, and complement, is a complete atomic Boolean
algebra. If the relation R determines a partition of set U into one-element
equivalence classes, then the family of rough sets with the above operations
is a Boolean algebra that is isomorphic with a Boolean algebra of subsets of
universum U.

1 Introduction The rough set concept was introduced by Pawlak [4],[5]. A
certain generalization of his conception was offered by Iwinski [3]. Both formu-
lations were then extended by Janusz and Jacek Pomykala [7]. Janusz Pomykala
also proposed another definition of approximation space [6]. This definition was
modified by Bryniarski [1], who also proposed a different formulation of rough
set theory.

The aim of this paper is to prove some algebraic properties of rough sets and
to show that the algebra of classes is a particular case of the algebra of rough sets.

2 Approximation space and approximations of set Let U be a finite non-
empty set and let R be an equivalence relation in U. The set U is called the univer-
sum and the relation R is called the indiscernibility relation. We will call the pair
Q@ = (U, R) the approximation space. As U is a finite set, the relation R deter-
mines a partition of U into a finite number of equivalence classes. The equiva-

*Some of my results were presented in 1989 at XXXV Conference of History of Logic
at the Jagiellonian University, Cracow.
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lence classes of the relation R will be called the atoms of relation R (the
elementary sets of relation R). We assume that the empty set is also an atom of
relation R. Every union of elementary sets of relation R will be called a composed
set. It follows from this assumption that every composed set is a union of a fi-
nite number of elementary sets of relation R. We denote the family of all com-
posed sets by ComR. If the relation R determines # equivalence classes, ComR
is composed of 2" elements.

It is easily noticed that:

Theorem 2.1 The algebra ® = (ComR, N, VU, ’, D, U) is the atomic, complete
Boolean algebra. The inclusion relation < is its natural order.

Let us observe that the equivalence classes of relation R are atoms of the al-
gebra ®@. Every nonempty atom of relation R is an atom of ®&.
Let X be any fixed subset of set U.

Definition 2.2
(@) The lower approximation of set X is the set

PX=U{Y:YS XAYe€ UR].
(b) The upper approximation of set X is the set
PX=U{Y:XNY# D AYEU/R).
(¢) The boundary of set X is the set
BN(X) = PX\PX.
Definition 2.2 implies
Conclusion 2.3

(@ PX=U({Y:YS XA Y€ ComR}.
(b) PX=N{Y: XS YAYE ComR}.

Notice also that

Conclusion 2.4 The following conditions are equivalent:

(a) X=PXx,
(b) X=PX,
(c) X & ComR.

One can easily prove the following

Theorem 2.5 The operations of the lower approximation and the upper ap-
proximation have the following properties:

Wl PXcXcbPx W2 PU=PU=U

W3 PO=PO=0 W4 PPX)=PFPX)=PX
W5 P(PX)=P{PX)=PX W6 P(XUY)=PXUPY
W7 P(XNY)=PXNPY w8 Px=@WX"))

W9 PX=(P(X")) W10 P(XNY)cPXNPY
Wil PXUPYcCP(XUY) W12 PX\PYc P(X\Y)
W13 P(X\Y) < PX\PY Wil4 X< Y=PXcPY

W15 Xc Y=PXcPY.
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Theorem 2.6 If X € ComR or Y € ComR then
(@ P(XUY)=PXUPY,
(b) P(XNY)=PXNPY.

Proof: (a) Let us assume, without loss of generality, that X € ComR. Let us
denote the lower approximation of set X U Y by W. It follows from Conclusion
2.3athat X< W. Hence W= XU (W\X). Since We XU Y,so W\XC Yand
WA\X € ComR. This and Conclusion 2.3a imply that W\X < PY. It follows
from this that W< XU PY, and, hence W =P(X U Y) € PX U PY. The in-
verse inclusion is satisfied by property W11 of Theorem 2.5.

(b) Let X € ComR. Let W denote the upper approximation of set X N Y.
This and Conclusion 2.3b imply that W < X. Hence W= XN (X’ U W). Since
X'UWeComRand YS X' UW,PYS X' U W. Hence XNPYS XN
(X’ U W) = W. This and Conclusion 2.4 imply that PXNPY < P(X N Y). The
inverse inclusion holds by property W10 of Theorem 2.5.

3 Sample of a set Let @ = (U, R) be an approximation space.

Definition 3.1 _
(@) The set Y is called the lower sample of set X iff Y € X and PY = PX.
(b) The set Y is called the upper sample of set X iff Y < X and PY = PX.

Definition 3.2

(a) The set Y is called the minimal lower sample of set X (Y = mls(X)) iff Y
is the lower sample of set X and there is no lower sample Z of set X such
that |Z| < |Y].

(b) The set Y is called the minimal upper sample of set X (Y = mus(X)) iff Y
is the upper sample of set X and there is no upper sample Z of set X such
that | Z| < |Y].

One can easily prove the following.
Conclusion 3.3

X € ComR = (Y =mls(X) © Y = mus(X)).

Theorem 3.4 Let X be any subset of U.

(a) Every nonempty lower (upper) sample of set X has a nonempty intersection
with every nonempty elementary set of relation R from PX (PX).

(b) Every nonempty minimal lower (upper) sample of set X has exactly one
common element with every nonempty elementary set of relation R from PX
(PX).

Proof: (a) If PX = O, then there exists exactly one lower sample of set X,
namely the empty set. If PX # & then PX is a union of a finite number of el-
ementary sets of relation R. Let Y be a nonempty lower sample of set X. To gen-
erate a contradiction, let us assume that there exists a nonempty elementary set
Z < PX, suchthat ZN Y = @. So Z is not a subset of PY. Hence PY # PX,
which contradicts the assumption that Y is the lower sample of set X. The truth-
fulness of the theorem for an upper sample of set X is shown analogously.
(b) Let Y be a nonempty minimal lower sample of set X. Y has a nonempty
intersection with every nonempty elementary set from PX because Y is a non-
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empty lower sample of set X. To generate a contradiction, let us assume that
there exists an elementary set Z < PX such that |YN Z| > 1. Let x and y be dif-
ferent elements of set Y N Z. Hence set Y\ { } is also the lower sample of set
X and |Y\{y}| < |Y]. This contradicts the assumption that Y is the minimal
lower sample of set X. That the theorem is true for the minimal upper sample
of set X is proved analogously.

Theorem 3.5 Let X, Y be any subset of U. _ _

(a) If Pis the minimal upper (lower) sample of set PX N PY then PPSPX N
PY.

(b) If P is the minimal upper (lower) sample of set PX U PY then PP PX U
PY.

Proof: (a) Let Pbe a minimal upper sample of set PXNPY.If PXNPY=©
then P = & and PP < PX N PY. Let us suppose then that PXNPY # &. Since
PX N PY € ComR, then from Conclusion 2.4 we have PX N PY = P(PX N
PY)) # @. Hence P # &. Definition 2.2b and the fact that P is the upper sam-
ple of set PX N PY imply that P< PX N PY. From this and property W1 of The-
orem 2.5 we have PP < PX N PY. Since PX N PY is the nonempty composed
set, so PXNPY = UL, 4;, where A4; are nonempty elementary sets of relation
R.If |A;]| > 1 for every 1 < i < k, then the assumption of the theorem, Theo-
rem 3.4b and Definition 2.2a imply that PP = . Hence PP S PX N PY. Now
suppose that there exists at least one one-element elementary set of relation R
included in PX N PY. From Theorem 3.4b it follows that P has exactly one com-
mon element with every set A;, 1 < i < k. We obtain from this and Definition
2.2athat  #PP={xe P:3ie{l,...,k}{x} =A;}]. Let x€ PP; thenx €
PX N PY. Because x € PX and {x} is the elementary set of relation R, it follows
from Definition 2.2b that x € X. This, Definition 2.2a, and the fact that {x} €
U/R imply that x € PX. It is shown analogously that xEPY. Sox€ PXNPY.
It follows from this that PP S PX N PY.

If P is the minimal lower sample of set PX N PY, then Conclusion 3.3 im-
plies that P is the minimal upper sample of set PX N PY. Hence PP PX N PY.

Likewise one can prove that PP € PX U PY, where P is a minimal upper
(lower) sample of set PX U PY.

4 Rough sets, relations and operations Let @ = (U, R) be an approxima-
tion space and let X, Y, Z be subsets of U. Let us define the rough inclusion re-
lation and the rough equality relation.

Definition 4.1 The set X is roughly included in Y (X Sx Y) iff PX S PY
and PX € PY.

l_)efinit_ion 4.2 The sets X, Y are roughly equal (X = Y) iff PX = PY and
PX =PY.

These definitions of the inclusion and equality relations imply the following
conclusions:

Conclusion 4.3 The rough inclusion relation (Syg) is a quasi-ordering rela-
tion in P(U).
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Conclusion 4.4 The rough equality relation (=) is an equivalence relation in
P(U).

From the assumption that set U is finite, it follows that relation R determines
a partition of U into a finite number of equivalence classes. Let us suppose that
relation R determines a partition of U into n equivalence classes. Then the rough
equality relation determines as many equivalence classes as there are ordered pairs
of composed sets (X, Y) such that X € Y. One can show easily that there exist
3” equivalence classes of relation Sg.

Since P(U) is a nonempty finite set and the rough equality relation is an
equivalence relation in P(U), we can define the following approximation space:

Definition 4.5 The approximation space @* = (P(U),=) is called an exten-
sion of space @ = (U, R).

Definition 4.6 Equivalence classes of the rough equality relation are called
rough sets in @*.

Let us introduce inclusion of rough sets.
Definition 4.7 [X]. = [Y]l.®XcR Y.
The above definition and Conclusion 4.1 imply
Theorem 4.8 The relation <. is a partial ordering in P(U)/=.
From Theorem 4.8 there follows:
Conclusion 4.9 The ordered pair (P(U)/=,<.) is a partially ordered set.

It follows from the above conclusion that there can exist the least element
and the greatest element. It turns out that [U]. = { U} is the greatest element
and [J]. = (D} is the least element. This follows from properties W14 and
W15 of Theorem 2.5 and the fact that & € X < U holds for every subset X of
set U.

Let us notice that a rough set determined by a composed set is a one-element
set composed only of this composed set. Therefore rough sets determined by
composed sets will be called exact sets.

Let us take two rough sets [ X]. and [Y].. We will investigate whether the
set {[X]~,[Y].} has an infimum and a supremum.

Let us denote a fixed minimal upper sample of the set PX N PY by P. We
have from Definition 3.1b

PP=P(PXNPY)=PXNPY.
Let Z=PXNPYU P. We shall prove that [Z]._ is the infimum of set {[ X].,
[Y].}. Since PX N PY € ComR, so by Theorems 2.6 and 3.5 we have:
PZ=P(PXNPY)UPP=PXNPY.

Hence PZ < PX and PZ < PY. From property W6 of Theorem 2.5 and the as-
sumption it follows that

PZ=P(PXNPY)UPP=PXNPYUPXNPY=PXNPY.
Hence PZ < PX and PZ c PY.
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The above remarks and Definition 4.1 imply that Z Sz X and Z S Y. This
and Definition 4.7 imply that [Z]. =. [X]. and [Z]. <. [Y]..

Now let us suppose that [W]. =_[X]. and [W]. <. [Y].. From Defi-
nition 4.7 and Definition 4.1 we obtain

PW<CPXand PWC PYandalso PW< PX and PW c PY.
The above inclusions, Theorems 2.6, 2.5, and 3.5 imply

PWSPXNPY=PEBXNPY)=P(EBXNPY)UPP
=P(PXNPYUP)=PZ

PWcPXNPY=PPcPPXNPY)UPP=P(PXNPYUP)=PZ,

where P is the earlier fixed minimal upper sample of the set PX N PY. Hence
W g Z which implies that [W]. <. [Z].. We have proved in this way that
[Z]. is the infimum of set {[X].,[Y]~}.

Now let us denote the minimal upper sample of the set PX U PY by P. Def-
inition 3.2b implies that

PP=P(PXUPY)=PXUPY.
Let Z=PXUPY U P. One can prove, analogously to the above, that [Z]. is
the supremum of the set {{X].,[Y].]}.
We have shown in this way that every pair of rough sets possesses an infi-

mum and a supremum. Therefore we can define an operation u of rough addi-
tion and operation n of rough multiplication in P(U)/~, namely

[X]<u [Y]. =sup({[X]-,[Y]: D),
[X].n [Y]. =inf({[X].,[Y].}),

for any [X]. and [Y]..

Definition 4.10 Let X, Y be any subset of U.

@ [X]-u[Y].=[PXUPYU P]., where P is a minimal upper sample of
set PXUPY.

(b) [X]on[Y]. =[PXNPYU P]_, where Pis a minimal upper sample of
set PX N PY.

From the above remarks there follows immediately:

Lemma 4.11 The algebra P*(U) = (P(U)/=,n,u) is the distributive lattice
with identity element ([ D.) and unit element ([U].).

5 The Stone algebra of rough sets Let @ = (U, R) be an approximation
space and P(U)/= be a family of rough sets.

Lemma 5.1 The lattice P*(U) = (P(U)/=,n,u) is the complete atomic lat-
tice where atoms are determined by proper subsets of elementary sets of relation
R or by one-element elementary sets of relation R.

Proof: P*(U) is the complete atomic lattice because P*(U) is the finite lattice
(see Gratzer [2]).
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Let us remember that the expression “elementary set of relation R” is equiv-
alent to the expression “equivalence class of relation R”. To show that sets [ X].
are atoms in P*(U), where X is a one-element elementary set of relation R or
proper subset of an elementary set of relation R, it is sufficient to prove that:

a. these sets are atoms in P*(U),

b. only these sets are atoms in P*(U), namely if [ X]. is an atom in P*(U),
then X is a one-element elementary set of relation R or X is a proper sub-
set of a certain elementary set of relation R.

Consider a rough set [ X]., where X is a proper subset of a certain elemen-
tary set Z. Of course PX = @ and PX = Z. We notice also that [ X]. is a fam-
ily of all proper subsets of elementary set Z. Let us assume that [ X]. is not an
atom. Then there exists rough set [W]. such that

6)) [(W]. # [D]- and

[0)) [W]. # [X]. and

3 (W1 <. [X]..

From (1) and (2) we have respectively

) PW+PO =0 VvPW+PO = &,
) PW+PX=OVvPW#PX=2Z
From (3) we obtain

6) PWcSPX=C and

) PWcPx=2

(6) implies that PW = . From this and (4) we have PW # . Since Z is an el-
ementary set, (7) implies that PW = Z. From this and (5) we have PW # &. We
have obtained a contradiction, and in this way we have proved that [.X]. is an
atom in P*(U).

Let us take rough set [ X]., where X is a one-element elementary set. Hence
there is no set Y < X such that PY = @ and PY = X. Of course PX=PX = X.
Let us assume that [ X]. is not an atom. Therefore there exists rough set [W].
satisfying the properties (1)-(3). (1) and (3) imply, respectively, that

® PW+ O VvPW =,
) PW+XVvPW=%X.
From (3) we obtain

(10) PWcX.
11 PWc Xx.

Since X is a one-element set, either PW = & or PW = X. PW = & implies by
(8) that PW # @. Then by (11), PW = X. We have obtained a contradiction, be-
cause there is no set W < X such that PW = @ and PW = X. PW = X implies
by (9) that PW # X. Hence by (11) PW = &. We have obtained a contradiction,
because an upper approximation of a set cannot be a proper subset of a lower
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approximation of that set. In both cases we have obtained a contradiction. Hence
[X]. is an atom in P*(U).

We will prove now that condition (b) holds. Let [ X]. be a rough set such
that X is not a one-element elementary set and X is not a proper subset of any
elementary set of relation R. Two cases are possible: either X is an elementary
set of relation R (where, of course, | X| > 1) or X has a nonempty intersection
with at least two elementary sets.

Let us suppose that X is an elementary set and | X| > 1. Of course PX =
PX = X. Let Y be a proper subset of X. Hence PY = @ and PY = X. There-
fore inclusions PY € PX and PY < P.X are true. By Definition 4.7, [Y]. <.
[X]1~. Because also [Y]. # @ and [Y]. # [X]~, then [X]. cannot be an
atom in P*(U).

Let X therefore have a nonempty intersection with at least two elementary
sets. Let Z be such set. Now let us suppose that | Z| > 1. Let us denote a proper
subset of Z included in X by W. Of course PW = & < PX. Since PW = Z is the
proper subset of PX, [W]. <. [X]. and [W]. # [X].. Because also [W]. #
[D]~, [X]- cannot be an atom in P*(U). If Z is a one-clement elementary set,
then Z=PZcPXand Z=PZ < PX. Hence [Z]. <. [X]..Since PZ # &,
[Z]. # [@].. And [Z]. # [X]., because PZ # P.X. It follows from this that
[X]. cannot be an atom in P*(U).

Since P*(U) is a distributive complete lattice, its every element possesses a
pseudocomplement. One can easily prove that the rough set [U\PX1]. is the
greatest rough set such that [U\PX]_n[X]. = [D].. Hence we have the fol-
lowing result.

Theorem 5.2 A rough set [ X% = [U\PX]). is a pseudocomplement of set
[X]-.

We will now prove the following theorem.

Theorem 5.3 The algebra P*(U) = (P(U)/=,n,u,*,[D]1.,[U].) is the
complete atomic Stone algebra.

Proof: Let us recall that algebra @ = (V, A, Vv, *0,1) is called the Stone algebra
only if the following conditions hold (see [2]):

(i) ® = (V,A, V) is the distributive lattice with the identity element 0 and
the unit element 1,
(ii) for any element x € V element x* is its pseudo-complement,
(iii) the Stone identity (x* v x** = 1) holds for every element x € V.

The truth of condition (i) follows from Lemma 4.11. Condition (ii) holds by
Theorem 5.2. Let [ X]. be any rough set. Hence

[X]L = [U\PX]. and
[X] = [U\P(U\PX)]. = [U\(U\PX)]. = [PX]..
This implies that
[X]Zu [X]Z = [P(U\PX)UP(PX)UP].,
where P = mus(P(U\PX) U P(PX)).
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Hence we obtain
[X]1Eu [X]2 = [(U\ISX) UPXUP].=[UUP].=[Ul..

This means that the Stone identity holds. Hence P*(U) is the Stone algebra.
Lemma 5.1 implies that P*(U) is complete and atomic.

6 The Boolean algebra of exact sets Let @ = (U, R) be an approximation
space and P(U)/= be a family of rough sets. Let us denote the family of exact
sets by E. Let [X].,[Y]. € E. Hence X, Y € ComR. Of course, PX=PX =
Xand PY =PY =Y. Hence

[X]-u[Y]. =[PXUPYUP]_., where P=mus(PXUPY) and
[X]-n[Y].=[PXNPYUS]., whereS=mus(PXNPY).

Because PXUPY=XU Yand PXNPY=XNY,PcXUYandSS XN
Y. Hence

[X]l-u[Y]l.=[XUY].€F and [X].n[Y]l.=[XNY].€EE.

This means that the algebra & = (FE, n, u) is the sublattice of lattice P*(U). This,
together with Lemmas 4.11 and 5.1, implies the following.

Lemma 6.1 The algebra & = (E,n,u) is the complete, atomic, distributive
lattice with identity element [ O 1. and unit element [U].. The atoms are deter-
mined by the equivalence classes of relation R.

One can easily prove that in the family of exact sets the following holds.

Lemma 6.2 An exact set [ X]. = [U\X). is a complement of the exact set
[X]<.

Let us notice that a pseudocomplement of an exact set is also its complement
(X1 = [X]., if X € ComR). From the above lemmas there follows immedi-
ately:

Theorem 6.3 The algebra & = (E,n,u,’,[D].,[U].) is the complete,
atomic Boolean algebra.

Theorem 6.4 The Boolean algebras ® and & are isomorphic.

Proof: Let y: ® — & be a function such that ¥ (X) = [ X]., X € ComR. One
can easily prove that the function ¢ is an isomorphism.

Let us consider now a particular case, when the relation R determines the par-
tition of set U into one-element equivalence classes. Then the family ComR of
composed sets and the family P(U) of subsets of set U are equal. It follows from
this that the family P(U)/= of rough sets and the family F of exact sets are
equal. One can easily prove that the family of rough sets together with the op-
erations of rough addition, rough multiplication, and complement is the Bool-
ean algebra, which is isomorphic with the Boolean algebra of subsets of
universum U. This implies that the rough sets algebra can be treated as an ex-
tension of the algebra of classes.
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