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A Certain Conception of the

Calculus of Rough Sets*

ZBIGNIEW BONIKOWSKI

Abstract We consider the family of rough sets in the present paper. In this
family we define, by means of a minimal upper sample, the operations of
rough addition, rough multiplication, and pseudocomplement. We prove that
the family of rough sets with the above operations is a complete atomic Stone
algebra. We prove that the family of rough sets, determined by the unions
of equivalence classes of the relation R with the operations of rough addi-
tion, rough multiplication, and complement, is a complete atomic Boolean
algebra. If the relation R determines a partition of set U into one-element
equivalence classes, then the family of rough sets with the above operations
is a Boolean algebra that is isomorphic with a Boolean algebra of subsets of
universum U.

1 Introduction The rough set concept was introduced by Pawlak [4], [5]. A
certain generalization of his conception was offered by Iwiήski [3]. Both formu-
lations were then extended by Janusz and Jacek Pomykala [7]. Janusz Pomykaϊa
also proposed another definition of approximation space [6]. This definition was
modified by Bryniarski [1], who also proposed a different formulation of rough
set theory.

The aim of this paper is to prove some algebraic properties of rough sets and
to show that the algebra of classes is a particular case of the algebra of rough sets.

2 Approximation space and approximations of set Let U be a finite non-
empty set and let R be an equivalence relation in U. The set U is called the univer-
sum and the relation R is called the indiscernibility relation. We will call the pair
d = (U,R) the approximation space. As ί/is a finite set, the relation R deter-
mines a partition of C/into a finite number of equivalence classes. The equiva-

*Some of my results were presented in 1989 at XXXV Conference of History of Logic
at the Jagiellonian University, Cracow.
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lence classes of the relation R will be called the atoms of relation R (the
elementary sets of relation R). We assume that the empty set is also an atom of
relation R. Every union of elementary sets of relation R will be called a composed
set. It follows from this assumption that every composed set is a union of a fi-
nite number of elementary sets of relation R. We denote the family of all com-
posed sets by Com/?. If the relation R determines n equivalence classes, ComR
is composed of 2n elements.

It is easily noticed that:

Theorem 2.1 The algebra (Ά = (Com/?, Π, U,', 0, t/) is the atomic, complete
Boolean algebra. The inclusion relation c= is its natural order.

Let us observe that the equivalence classes of relation R are atoms of the al-
gebra (B. Every nonempty atom of relation R is an atom of (B.

Let X be any fixed subset of set U.

Definition 2.2

(a) The lower approximation of set X is the set

PX=\J{Y:Y^XΛYG U/R}.

(b) The upper approximation of set X is the set

Pχ=\J{Y:XΠYΦ 0 ΛYG U/R}.

(c) The boundary of set X is the set

BN(^) = P J \ P X

Definition 2.2 implies

Conclusion 2.3

(a) ΐX = UiY:Y^XΛY<ΞComR}.

(b) FX=n{Y:X^ YAYGCOYΠR}.

Notice also that

Conclusion 2.4 The following conditions are equivalent:

(a) X=PX9

(b) X = PX,
(c) XG ComR.

One can easily prove the following

Theorem 2.5 The operations of the lower approximation and the upper ap-
proximation have the following properties:

Wl PJcjcp^ W2 ?U=PU=U

W3 P 0 = P0_= 0 W4 P(PΛΓ) = P(P_^) = PX
W5 P(PΛΓ) = P(PΛΓ) = P * W6 P(XUY)=PXUPY
W7 P(xnγ) = pχπpγ ws pχ = (P(X')y
W9 PX=(P(X')Y W10 P(XΠY)^PXΠPY
wii PXUPY^P(XUY) wi2 pi\pyςp(j\η

W13 P(X\Y)^PX\PY W14 Jcy^pjcpy
W15 icy^picpr,
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Theorem 2.6 IfX G Comi? or F G Comi? then
(a) pf^u F) = pxupr,
(b) P(^n r) = pjπpy.

Proof: (a) Let us assume, without loss of generality, that X G Comi?. Let us
denote the lower approximation of set XU Yby W. It follows from Conclusion
2.3athat X^ W. Hence W = XU (W\X). Since W^XU Y, so W\X^ 7 and
W\X G Com/?. This and Conclusion 2.3a imply that W\X c py. It follows
from this that JVQXUPY, and, hence W= P(XU Y) c P ^ U PK The in-
verse inclusion is satisfied by property Wll of Theorem 2.5.

(b) Let X G Comi?. Let W denote the upper approximation of set XΠ Y.
This and Conclusion 2.3b imply that Wβ X. Hence W = XΠ {Xf UW). Since
X' U W G Comi? and Y c j r U W, P 7 c χ> U ίF. Hence Z Π P y ς z n
(*" UW) = W. This and Conclusion 2.4 imply that P ^ Π P F c P(XΠ Y). The
inverse inclusion holds by property W10 of Theorem 2.5.

3 Sample of a set Let d = {U,R) be an approximation space.

Definition 3.1
(a) The set Y is called the lower sample of set Xiίf YQX and PY = P X
(b) The set Y is called the upper sample of set X iff Y c j r and P F = P X

Definition 3.2
(a) The set Y is called the minimal lower sample of set X (Y = mlsίX)) iff Y

is the lower sample of set X and there is no lower sample Z of set X such
that \Z\ <\Y\.

(b) The set Y is called the minimal upper sample of set X (Y = mus(JO) iff F
is the upper sample of set X and there is no upper sample Z of set X such
that \Z\ < \Y\.

One can easily prove the following.

Conclusion 3.3

XGComR^ (Y=mls(X)& r = mus(J*O).

Theorem 3.4 Let X be any subset of U.
(a) Every nonempty lower (upper) sample of set X has a nonempty intersection

with every nonempty elementary set of relation R from PX (PX).
(b) Every nonempty minimal lower (upper) sample of set X has exactly one

common element with every nonempty elementary set of relation Rfrom PX
<P*).

Proof: (a) If PX = 0 , then there exists exactly one lower sample of set X,
namely the empty set. If PXΦ 0 then PXΊs a union of a finite number of el-
ementary sets of relation R. Let Y be a nonempty lower sample of set X. To gen-
erate a contradiction, let us assume that there exists a nonempty elementary set
Z c PX, such that Z Π Y = 0 . So Z is not a subset of PY. Hence PY Φ PΛΓ,
which contradicts the assumption that Y is the lower sample of set X. The truth-
fulness of the theorem for an upper sample of set X is shown analogously.

(b) Let Y be a nonempty minimal lower sample of set X. Y has a nonempty
intersection with every nonempty elementary set from PX because Y is a non-
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empty lower sample of set X. To generate a contradiction, let us assume that
there exists an elementary set Z £ px such that | yfl Z| > 1. Let Λ: and y be dif-
ferent elements of set YΠZ. Hence set Y\ [y] is also the lower sample of set
Λf and I Y\ {y}\ < \Y\. This contradicts the assumption that Fis the minimal
lower sample of set X. That the theorem is true for the minimal upper sample
of set X is proved analogously.

Theorem 3-5 Let Xy Y be any subset of U.
(a) IfP is the minimal upper {lower) sample of set PXΠPY then PPQPXΠ

PY.
(b) If Pis the minimal upper (lower) sample of set PX U P Y then PP c PX U

Proof: (a) Let P be a minimal upper sample of set P X ΠPYΛΐ PX Π P Y = 0
then P= 0 and PP c PX ΠP7. Let us suppose then that PX ΠPYΦ 0 .^ince
PXΠPYe ComR, then from Conclusion 2.4 we have PXΠPY = P(PX Π
pY)) φ 0 . Hence P * 0 . Definition 2.2b and the fact that Pis the upper sam-
ple of set PX Π p y implythat Pβ PXΠ PY. From this and property Wl of The-
orem 2.5 we have PP c PX ΠPY. Since PX Π P y is the nonempty composed
set, so PXΠ PY = U?=i Ai9 where y4, are nonempty elementary sets of relation
R. If \Aj \ > 1 for every 1 < / < k, then the assumption of the theorem, Theo-
rem 3.4b and Definition 2.2a imply that PP = 0 . Hence PP^PXΠPY. Now
suppose that there exists at least one one-element elementary set of relation R
included in PXΠ PY. From Theorem 3.4b it follows that Phas exactly one com-
mon element with every set Ai9 1 < / < k. We obtain from this and Definition
2.2a that 0 * P P = ( JC_GP:3/G {1 ArJ {JC} = A } Let x G P P ; thenxG
PXΓ) PY. Because x E P^and [x] is the elementary set of relation R, it follows
from Definition 2.2b that x G X. This, Definition 2.2a, and the fact that {x} G
U/R imply that x G P X It is shown analogously that xePY.SoxEPXΠPY.
It follows from this that PP c PXΠ P y

If P is the minimal lower sample of set PXΠ PY, then Conclusion 3.3 im-
plies that P is the minimal upper sample of set PX ΠPY. Hence PP c p^f ΠPY.

Likewise one can prove that P P c: PX U P 7 , where P is a minimal upper
(lower) sample of set PXUPY.

4 Rough sets, relations and operations Let & = (£/, R) be an approxima-
tion space and let X, Y, Z be subsets of U. Let us define the rough inclusion re-
lation and the rough equality relation.

Definition 4.1 The set X is roughly included in Y (X £R Y) iff PXQPY
a n d P J c p y ,

Definition 4.2 The sets X, Y are roughly equal (X « Y) iff PX = PY and
PX=PY.

These definitions of the inclusion and equality relations imply the following
conclusions:

Conclusion 4.3 The rough inclusion relation ( ς ^ ) is a quasi-ordering rela-
tion in P(U).
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Conclusion 4.4 The rough equality relation (~) is an equivalence relation in
P(U).

From the assumption that set U is finite, it follows that relation R determines
a partition of ί/into a finite number of equivalence classes. Let us suppose that
relation R determines a partition of U into n equivalence classes. Then the rough
equality relation determines as many equivalence classes as there are ordered pairs
of composed sets (X, Y) such that X £ Y. One can show easily that there exist
3n equivalence classes of relation c Λ ,

Since P(U) is a nonempty finite set and the rough equality relation is an
equivalence relation in P( U), we can define the following approximation space:

Definition 4.5 The approximation space Q* = (P( £/),«) is called an exten-
sion of space d = (£/, R).

Definition 4.6 Equivalence classes of the rough equality relation are called
rough sets in β*.

Let us introduce inclusion of rough sets.

Definition 4.7 [X]^ <« [Y]x e> X £R Y.

The above definition and Conclusion 4.1 imply

Theorem 4.8 The relation <« is a partial ordering in P(U)/~.

From Theorem 4.8 there follows:

Conclusion 4.9 The ordered pair (P (U) /«,<«) is a partially ordered set.

It follows from the above conclusion that there can exist the least element
and the greatest element. It turns out that [ C/]« = {C/} is the greatest element
and [ 0 ] ^ = {0} is the least element. This follows from properties W14 and
W15 of Theorem 2.5 and the fact that 0 c ^ c ( / holds for every subset X of
set U.

Let us notice that a rough set determined by a composed set is a one-element
set composed only of this composed set. Therefore rough sets determined by
composed sets will be called exact sets.

Let us take two rough sets [X]^ and [Y]^. We will investigate whether the
set [[X]«, [ Y]«} has an infimum and a supremum.

Let us denote a fixed minimal upper sample of the set PX Π P Y by P. We
have from Definition 3.1b

pp = P(PxnPY) = PxnPγ.

Let Z = PXΠ PY U P We shall prove that [Z]» is the infimum of set {[Ar]«,
[Y]~). Since PXΠ PYE COΠLR, SO by Theorems 2.6 and 3.5 we have:

PZ = PίP^ npr)upp = pjnpr.

Hence PZ c P^f and PZ c py. From property W6 of Theorem 2.5 and the as-
sumption it follows that

PZ = P(PXΠPY) u PP = pxn PYUPXΠPY = PXΠPY.

Hence PZ e p ^ and PZ c P Y.
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The above remarks and Definition 4.1 imply that Z QR X and Z QR Y. This
and Definition 4.7 imply that [Z]_ <« [AT], and [Z]_ <« [7]«.

Now let us suppose that [W]m < [Ar]ίβ and [FT]* <« [7]«. From Defi-
nition 4.7 and Definition 4.1 we obtain

FWQPXand PW<^ PYand also PW<^ PJT and P J ^ c py.

The above inclusions, Theorems 2.6, 2.5, and 3.5 imply

p^g pχnpr=p(pχnP7) = P(PXΠPY) U PP
= P(PJΠP7UP) = PZ,

PWQPXΠPY=PPQ P(PJΠPY) U PP = P(PXΠ PY U P) = PZ,

where P is the earlier fixed minimal upper sample of the set PXΠPF. Hence
W ^R Z which implies that [ W]« <« [Z]_. We have proved in this way that
[Z]« is the infimum of set {[A"]., [ 7 ] . ) .

Now let us denote the minimal upper sample of the set PXU PY by P. Def-
inition 3.2b implies that

p p = p(PΛΠjpy) = PXUPY.

Let Z = PXU P 7 U P. One can prove, analogously to the above, that [Z]» is
the supremum of the set {[X]«, [ Y]«}.

We have shown in this way that every pair of rough sets possesses an infi-
mum and a supremum. Therefore we can define an operation u of rough addi-
tion and operation n of rough multiplication in P( (/)/«, namely

[X]~ulY]m = sup({[X]m9[Y]~})>

lX]^n[Y]x = inf(i[X]^,[Y]~}),

for any [X]m and [Y]m.

Definition 4.10 Let X, Y be any subset of U.
(a) [XU u [ Y_]« = [PX U P Y U P]«, where P is a minimal upper sample of

set PXU PK
(b) [XU n[Y]a, = [PXΠ PYU P]«, where P is a minimal upper sample of

setPXΠPΓ.

From the above remarks there follows immediately:

Lemma 4.11 The algebra P*( U) = (P( t/)/«, n, u) /s ίΛe distributive lattice
with identity element ([ 0 ]«) and unit element ([ t/]«).

5 JΛ^ Sϊofle algebra of rough sets Let <S = (ί/, J?) be an approximation
space and P( t/)/« be a family of rough sets.

Lemma 5.1 The lattice P*( U) = (P( t/)/«, n, u) is /Λβ complete atomic lat-
tice where atoms are determined by proper subsets of elementary sets of relation
R or by one-element elementary sets of relation R.

Proof: P*( U) is the complete atomic lattice because P*( U) is the finite lattice
(see Gratzer [2]).
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Let us remember that the expression "elementary set of relation R" is equiv-
alent to the expression "equivalence class of relation R". To show that sets [X]^
are atoms in P*( U)9 where X is a one-element elementary set of relation R or
proper subset of an elementary set of relation R9 it is sufficient to prove that:

a. these sets are atoms in P*(U),
b. only these sets are atoms in P*( U), namely if [X]~ is an atom in P*( U),

then X is a one-element elementary set of relation R or X\s a proper sub-
set of a certain elementary set of relation R.

Consider a rough set [X]ae9 where X is a proper subset of a certain elemen-
tary set Z. Of course PX = 0 and PX = Z. We notice also that [X] m is a fam-
ily of all proper subsets of elementary set Z. Let us assume that [X]*, is not an
atom. Then there exists rough set [W]^ such that

(1) [»Ί~*[0]- and

(2) [W]mΦ[X]m and

(3) [»Ί_ <« [*]_.

From (1) and (2) we have respectively

(4) PWΦP0 = 0vPWΦP0 = 0,

(5) PWΦPX= 0vPWΦPX=Z.

From (3) we obtain

(6) P^cpz=0 and

(7) PWQPX = Z.

(6) implies that P W = 0. From this and (4) we have P W Φ 0. Since Z is an el-
ementary set, (7) implies that PW= Z. From this and (5) we have YWΦ 0 . We
have obtained a contradiction, and in this way we have proved that [X]^ is an
atominP*((7).

Let us take rough set [X]^, where X is a one-element elementary set. Hence
there is no set Y c X such that P Y = 0 and P Y = X. Of course PJf = P ^ = X.
Let us assume that [X]^ is not an atom. Therefore there exists rough set [W]m

satisfying the properties (l)-(3). (1) and (3) imply, respectively, that

(8) YWΦ 0vPWΦ 0 ,

(9) PWΦXvPWΦX.

From (3) we obtain

(10) P^cχ

(11) PfΓcΛΓ.

Since A'js a one-element set, either PW = 0 or PW = X. PW = 0 implies by
(8) that P W Φ 0. Then by (11), P W = X. We have obtained a contradiction, be-
cause thereis no set W c Jf such that P J F = 0 a n d P J Γ = X P J Γ = Λ r implies
by (9) that PWΦX. Hence by (11) PW = 0. We have obtained a contradiction,
because an upper approximation of a set cannot be a proper subset of a lower
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approximation of that set. In both cases we have obtained a contradiction. Hence
[XL is an atom in P*( U).

We will prove now that condition (b) holds. Let [XL be a rough set such
that X is not a one-element elementary set and X is not a proper subset of any
elementary set of relation R. Two cases are possible: either X is an elementary
set of relation R (where, of course, | X\ > 1) or X has a nonempty intersection
with at least two elementary sets.

Let us suppose that X is an elementary set and |X\ > 1. Of course PX =
PX = X. Let Y be a proper subset of X. Hence PY = 0 and PY = X. There-
fore inclusions PYc PXand P y g PXare true. By Definition 4.7, [ F L <«
[ X L . Because also [Y]~ Φ 0 and [ F L * [X].,, then [XL cannot be an
atominP*((7).

Let X therefore have a nonempty intersection with at least two elementary
sets. Let Z be such set. Now let us suppose that | Z\ > 1. Let us denote a proper
subset of Z included in X by W. Of course P JF = 0 c PX. Since P W = Z is the
proper subset of PX, [WU <« [XL and [WL * [XL. Because also [JFL Φ
[ 0 L , [X]« cannot be an atom in P*( U). If Z is a one-element elementary set,
then Z = P Z ς P A r a n d Z = P Z c P X Hence [Z]« ^« [X]~ Since PZ ^ 0 ,
[Z]mΦ[0]m. And [Z]« ^ [XL, because PZΦ PX. It follows from this that
[X]« cannot be an atom in P*( U).

Since P*( ί/) is a distributive complete lattice, its every elementpossesses a
pseudocomplement. One can easily prove that the rough set [£ΛPXL is the
greatest rough set such that [ CΛPX]« n [ X ] . = [ 0 L . Hence we have the fol-
lowing result.

Theorem 5.2 A rough set [X]t = [ ί/\PX]» is a pseudocomplement of set
[ X L .

We will now prove the following theorem.

Theorem 5.3 The algebra P*( U) = (P( £/)/«, n, u, *, [ 0 ] . , [ U]«) fe Λ̂e
complete atomic Stone algebra.

Proof: Let us recall that algebra (B = (F,Λ, V,*,0,1) is called the Stone algebra
only if the following conditions hold (see [2]):

(i) (B = (F,Λ, v) is the distributive lattice with the identity element 0 and
the unit element 1,

(ii) for any element x G V element x* is its pseudo-complement,
(iii) the Stone identity (JC*VJ** = 1) holds for every element x G V.

The truth of condition (i) follows from Lemma 4.11. Condition (ii) holds by
Theorem 5.2. Let [XL be any rough set. Hence

[X]t = [CΛPXL and

[X]t* = [C/\P(l/\PX)L = [ί/\(ί/\PX)L = [PAΊ..

This implies that

[X]tu [X]V= [ P ( C Λ P X ) U P ( P X ) U P L ,

where P = mus(P(CΛPX) U P(PX)).
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Hence we obtain

[AΓ]lu [X]t*= [(U\PX)UPXUP]m = [UUP]m = [U]m.

This means that the Stone identity holds. Hence P*(U) is the Stone algebra.
Lemma 5.1 implies that P*(U) is complete and atomic.

6 The Boolean algebra of exact sets Let β = (£/, R) be an approximation
space and P(£/)/« be a family of rough sets. Let us denote the family of^xact
sets by E. LetJA] m,[Y]~eE. Hence X,Ye ComR. Of course, PX = PX =
A r a n d P r = P y = F. Hence

[ * ] . u [Y]m = [ P I U P 7 U P ] S , where P = mus(P^UPy) and

[AΊ.n [Π = [PXΠPYUS]^, where 5 = mus(PJm PY).

Because PA U P r = ΛΓU Γand PAD PY = XΠ Y,P^XU 7and 5 ^XΠ
Y. Hence

[Al. u [r] = [XU Y]^eE and [AΊ.n [K]. = [XΠY]sseE.

This means that the algebra δ = (£*, n, u) is the sublattice of lattice P*( U). This,
together with Lemmas 4.11 and 5.1, implies the following.

Lemma 6.1 The algebra δ = (E, n, u) is the complete, atomic, distributive
lattice with identity element [ 0 ]» and unit element [ U]«. 77ie atoms are deter-
mined by the equivalence classes of relation R.

One can easily prove that in the family of exact sets the following holds.

Lemma 6.2 An exact set [X]^ = [ UXX]^ is a complement of the exact set

Let us notice that a pseudocomplement of an exact set is also its complement
([X]t = [X]'*., ΊϊXE: ComR). From the above lemmas there follows immedi-
ately:

Theorem 6.3 The algebra δ = (E, n, u,', [ 0 ] . , [£/]«) is the complete,
atomic Boolean algebra.

Theorem 6.4 The Boolean algebras (B and δ are isomorphic.

Proof: Let ψ: (B -> δ be a function such that ^(A') = [A] . , XG Com/?. One
can easily prove that the function ψ is an isomorphism.

Let us consider now a particular case, when the relation R determines the par-
tition of set ί/into one-element equivalence classes. Then the family Comi? of
composed sets and the family P( U) of subsets of set U are equal. It follows from
this that the family P (£/)/« of rough sets and the family E of exact sets are
equal. One can easily prove that the family of rough sets together with the op-
erations of rough addition, rough multiplication, and complement is the Bool-
ean algebra, which is isomorphic with the Boolean algebra of subsets of
universum U. This implies that the rough sets algebra can be treated as an ex-
tension of the algebra of classes.
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