On Bounded Type-Definable Equivalence Relations

Krzysztof Krupiński and Ludomir Newelski

Abstract We investigate some topological properties of the spaces of classes of bounded type-definable equivalence relations.

1 Introduction

In this paper *T* is a complete theory in a countable language \mathcal{L} and \mathfrak{C} is a monster model of *T*. We will consider type-definable (over \emptyset) equivalence relations on some \mathfrak{C}^k ($k \in \omega$), that is, relations defined by some type over \emptyset . Namely, each such relation *E* on \mathfrak{C}^k is defined by

$$E(\overline{x},\overline{y}) \Leftrightarrow \bigwedge_{n < \omega} \theta_n(\overline{x},\overline{y})$$

for some type $\{\theta_n(\overline{x}, \overline{y}) : n < \omega\}$. By compactness we can assume that each $\theta_n(\overline{x}, \overline{y})$ is symmetric and $\models \theta_{n+1}(\overline{x}, \overline{y}) \land \theta_{n+1}(\overline{y}, \overline{z}) \rightarrow \theta_n(\overline{x}, \overline{z})$. We say that *E* is bounded, if *E* has boundedly many classes. When we consider two such relations E_1 and E_2 , then $E_1 \subseteq E_2$ means that E_1 is finer than E_2 .

There is a topology τ on \mathfrak{S}^k/E with a basis of open sets

$$\mathcal{B} = \{ [\varphi(\overline{x})] : \varphi(\overline{x}) \in \mathcal{L}(\mathfrak{C}) \},\$$

where $[\varphi(\overline{x})] = \{\overline{a}/E : \overline{a}/E \subseteq \varphi(\mathfrak{C})\}$. Then a basis of closed sets is of the form $\{\langle \varphi(\overline{x}) \rangle : \varphi(\overline{x}) \in \mathcal{L}(\mathfrak{C})\}$, where $\langle \varphi(\overline{x}) \rangle = \{\overline{a}/E : \overline{a}/E \cap \varphi(\mathfrak{C}) \neq \emptyset\}$. By compactness (and boundedness of *E*) we have that $(\mathfrak{C}^k/E, \tau)$ is a compact Hausdorff topological space. It is easy to see that $\{[\theta_n(\overline{x},\overline{a})] : n \in \omega\}$ is a basis of open neighborhoods of the point \overline{a}/E in \mathfrak{C}^k/E . This topology was defined in Hrushovski [1] and Lascar and Pillay [4].

Throughout, *E* will denote a bounded 0-type-definable equivalence relation on some \mathfrak{C}^k (we will write \mathfrak{C} instead of \mathfrak{C}^k). $S(\emptyset)$ denotes $S_k(\emptyset)$ unless stated otherwise. There are three important examples of such equivalence relations which will be denoted in a special way:

Received April 17, 2002; accepted February 13, 2003; printed December 19, 2003 2001 Mathematics Subject Classification: Primary, 03C45 Keywords: type-definable equivalence relations, balanced relations ©2003 University of Notre Dame

- 1. the relation of having the same type over \emptyset , denoted by \equiv ,
- 2. the relation of having the same strong type over \emptyset , denoted by $\stackrel{\circ}{=}$,
- 3. the finest bounded equivalence relation, denoted by $\stackrel{bd}{\equiv}$.

Remark 1.1 When *T* is simple then the $\stackrel{bd}{\equiv}$ -classes are Lascar strong types. Similarly, the \equiv -classes correspond to complete types over \varnothing and the $\stackrel{s}{\equiv}$ -classes to types in $S(\operatorname{acl}^{\operatorname{eq}}(\varnothing))$. These correspondences are homeomorphisms between \mathfrak{C}/\equiv and $S(\varnothing)$ and between $\mathfrak{C}/\stackrel{s}{\equiv}$ and $S(\operatorname{acl}^{\operatorname{eq}}(\varnothing))$.

The aim of this paper is to understand what topologies can appear as \mathfrak{G}/E for some bounded type-definable equivalence relation *E*. Such relations were investigated, for example, in [4], but this elementary aspect seemed neglected.

We discern three cases. In Section 2, we describe fully which topologies are of the form \mathfrak{C}/E , where *E* is coarser than \equiv . It turns out that if *T* is not small, then any compact metric space occurs in this way. Hence in this respect all theories that are not small look alike. Then we investigate relations *E* finer than \equiv but coarser than $\stackrel{s}{\equiv}$. In this case \mathfrak{C}/E is 0-dimensional, hence *E* is an intersection of 0-definable finite equivalence relations. This is folklore but we give a proof.

In Section 3, we investigate relations E finer than $\stackrel{s}{\equiv}$ but necessarily coarser than $\stackrel{bd}{\equiv}$. In this case the connected components of \mathfrak{C}/E correspond to strong types ([1], Lemma 2.1). We give an example where the connected components are not locally connected. Using a Haar measure we define an invariant metric on each connected component of \mathfrak{C}/E . This leads us to a new proof of a result of Kim [2] that in a small theory $\stackrel{bd}{\equiv}$ equals $\stackrel{s}{\equiv}$.

In Section 4, we focus on a connected component X of the space \mathfrak{G}/E for some E finer than $\stackrel{s}{\equiv}$ but coarser than $\stackrel{bd}{\equiv}$. Similarly as in [4], we consider the group G of elementary permutations of X. G is a compact topological group acting continuously on X. Hence G is a projective limit of compact Lie groups (Weil [7]). We characterize those Es for which G itself is a Lie group. It turns out that sometimes the very topological nature of X determines G to be a Lie group. This happens, for example, when X is homeomorphic to the circle S^1 .

We will often use the following basic facts.

Fact 1.2 Suppose that $E_1 \subseteq E_2$ are as above.

- 1. The canonical map $\pi : \mathfrak{C}/E_1 \to \mathfrak{C}/E_2$ is continuous.
- 2. The topology on \mathfrak{C}/E_2 is the quotient topology induced by π from the topology on \mathfrak{C}/E_1 .

Proof (1) Let E_1 and E_2 be defined by $\{\theta_n^1(\overline{x}, \overline{y}) : n \in \omega\}$ and $\{\theta_n^2(\overline{x}, \overline{y}) : n \in \omega\}$, respectively. We can assume that $\models \theta_n^1(\overline{x}, \overline{y}) \to \theta_n^2(\overline{x}, \overline{y})$. Let $[\varphi]$ be a basic open set in \mathfrak{C}/E_2 . We want to show that $\pi^{-1}([\varphi])$ is open in \mathfrak{C}/E_1 . Take $\overline{a}/E_1 \in \pi^{-1}([\varphi])$. Then $\overline{a}/E_2 \in [\theta_n^2(\overline{x}, \overline{a})] \subseteq [\varphi]$ for some $n \in \omega$. It suffices to show that $[\theta_{n+1}^1(\overline{x}, \overline{a})] \subseteq \pi^{-1}([\varphi])$. So let $\overline{b}/E_1 \in [\theta_{n+1}^1(\overline{x}, \overline{a})]$. Take any $\overline{b'} \in \overline{b}/E_2$. Then $\models \theta_{n+1}^2(\overline{b}, \overline{b'})$. We also have $\models \theta_{n+1}^1(\overline{b}, \overline{a})$, which implies that $\models \theta_{n+1}^2(\overline{b}, \overline{a})$. Therefore $\models \theta_n^2(\overline{b'}, \overline{a})$, so $\overline{b}/E_2 \in [\theta_n^2(\overline{x}, \overline{a})]$, which means that $\overline{b}/E_1 \in \pi^{-1}([\varphi])$.

(2) This follows from (1) and the compactness of both topologies.

Fact 1.3 The space \mathfrak{C}/E is metrizable.

Proof \mathfrak{C}/E is compact, so it is sufficient to show that \mathfrak{C}/E has a countable basis. By compactness, for every $n \in \omega$, there are $\overline{a}_1^n, \ldots, \overline{a}_{m_n}^n \in \mathfrak{C}$ (for some $m_n \in \omega$) such that

$$[\theta_n(\overline{x},\overline{a}_1^n)] \cup \cdots \cup [\theta_n(\overline{x},\overline{a}_{m_n}^n)] = \mathfrak{C}/E.$$

We will prove that the sets $[\theta_n(\overline{x}, \overline{a}_i^n)]$, $n \in \omega$, $i \leq m_n$, form a basis of the topology on \mathfrak{S}/E . So let $\overline{a} \in \mathfrak{S}$ and $n \in \omega$. It is enough to show that for some $k \in \omega$ and $i \leq k$ we have $\overline{a}/E \in [\theta_k(\overline{x}, \overline{a}_i^k)] \subseteq [\theta_n(\overline{x}, \overline{a})]$. Let k = n + 1. Choose $i \leq m_k$ such that $\overline{a}/E \in [\theta_k(\overline{x}, \overline{a}_i^k)]$. Since $\models \theta_{n+1}(\overline{x}, \overline{y}) \land \theta_{n+1}(\overline{y}, \overline{z}) \to \theta_n(\overline{x}, \overline{z})$, we get that $[\theta_k(\overline{x}, \overline{a}_i^k)] \subseteq [\theta_n(\overline{x}, \overline{a})]$.

2 Equivalence Relations Coarser Than \equiv

First we recall an example of Pillay and Poizat [6] of a bounded type-definable equivalence relation (in a stable theory T) which is not an intersection of definable equivalence relations.

Example 2.1 Let T = Th(M), where M consists of the universe Q and unary predicates $U_a = \{x \in Q : x \le a\}$ for $a \in Q$. We have $S(\emptyset) = \{t_a^+ : a \in Q\} \cup \{t_a^- : a \in Q\} \cup \{t_a : a \notin Q\}$, where

- 1. t_a^+ is determined by $\{U_b(x) : a < b \in Q\} \cup \{\neg U_b(x) : a \ge b \in Q\},\$
- 2. t_a^- is determined by $\{U_b(x) : a \le b \in Q\} \cup \{\neg U_b(x) : a > b \in Q\}$,
- 3. t_a is determined by $\{U_b(x) : a < b \in Q\} \cup \{\neg U_b(x) : a > b \in Q\}$.

Let *E* be the equivalence relation defined by the conjunction of formulas $(U_a(x) \rightarrow U_b(y)) \land (U_a(y) \rightarrow U_b(x))$ for a < b. Then $\mathfrak{C}/E = \{t_a^+(\mathfrak{C}) \cup t_a^-(\mathfrak{C}) : a \in Q\} \cup \{t_a(\mathfrak{C}) : a \notin Q\}$. So we see that *E* is bounded. One can show that *T* is stable and *E* is not a conjunction of definable equivalence relations.

For us it is important that in the above example \mathfrak{C}/E is homeomorphic to the unit interval *I* (symbolically: $\mathfrak{C}/E \approx I$). Generalizing this example we will fully describe the topological spaces occuring as \mathfrak{C}/E for some *E* coarser than \equiv . It turns out that stability of *T* is quite irrelevant here.

Theorem 2.2 Let X be a Hausdorff topological space. Then $X \approx \mathfrak{G}/E$ for some E coarser than \equiv if and only if X is a continuous image of $S(\emptyset)$.

Proof (\Rightarrow) The proof is obvious (Fact 1.2).

 (\Leftarrow) Let $f: S_k(\emptyset) \to X$ be a continuous surjection. Let E_f be the equivalence relation on $S_k(\emptyset)$ defined by

$$E_f(p,q) \Leftrightarrow f(p) = f(q).$$

As X is Hausdorff we see that $E_f \subseteq S_k(\emptyset) \times S_k(\emptyset)$ is closed. Let $h : \mathfrak{C} \times \mathfrak{C} \to S_{2k}(\emptyset)$ and $g : S_{2k}(\emptyset) \to S_k(\emptyset) \times S_k(\emptyset)$ be defined by $h(\overline{x}, \overline{y}) = tp(\overline{xy})$ and $g(tp(\overline{xy})) = (tp(\overline{x}), tp(\overline{y}))$. Then $g^{-1}(E_f)$ is closed in $S_{2k}(\emptyset)$, so $E := h^{-1}(g^{-1}(E_f))$ is a type-definable equivalence relation on \mathfrak{C} coarser than \equiv . It is easy to see that $\mathfrak{C}/E \approx S_k(\emptyset)/E_f \approx X$. If $S(\emptyset)$ is uncountable, then the Cantor set is a continuous image of $S(\emptyset)$, and then in turn (by a well-known topological result), every compact metric space is a continuous image of the Cantor set. Hence we get the following corollary.

Corollary 2.3 Assume that $S(\emptyset)$ is uncountable. For every metric compact space *X* there is *E* coarser than \equiv such that $\mathfrak{C}/E \approx X$.

In the example of Pillay and Poizat, E is not an intersection of 0-definable equivalence relations. This may be seen directly. However, it may be also deduced from the following proposition and the fact that in this example $\mathfrak{G}/E \approx I$ is not 0-dimensional. This proposition is folklore; it appears in Pillay [5] (without proof).

Proposition 2.4 \mathfrak{C}/E is 0-dimensional if and only if *E* is an intersection of definable equivalence relations.

Proof (\Leftarrow) Let $E(\overline{x}, \overline{y}) \Leftrightarrow \bigwedge_{i \in \omega} E_i(\overline{x}, \overline{y})$ where E_i is a definable equivalence relation. We can assume that $\models E_{i+1}(\overline{x}, \overline{y}) \Rightarrow E_i(\overline{x}, \overline{y})$. We see that $\{[E_i(\overline{x}, \overline{a})] : i \in \omega, \overline{a} \in \mathfrak{S}\}$ is a basis of the topology on \mathfrak{S}/E consisting of clopen sets.

(\Rightarrow) We will show in Section 3 (Corollary 3.4) that if \mathfrak{C}/E is 0-dimensional, then E is coarser than $\stackrel{s}{\equiv}$, that is, $\stackrel{s}{\equiv} \subseteq E$. Let $\pi : \mathfrak{C}/\stackrel{s}{\equiv} \to \mathfrak{C}/E$ be the canonical mapping and let $\{U_{\alpha}\}_{\alpha \in I}$ be a basis of clopen sets in \mathfrak{C}/E . Then $V_{\alpha} := \pi^{-1}(U_{\alpha})$ is a clopen set in $\mathfrak{C}/\stackrel{s}{\equiv}$ for every $\alpha \in I$. So there is a definable equivalence relation E_{α} with two classes X_{α} and Y_{α} such that $\{\overline{a}/\stackrel{s}{\equiv} : \overline{a} \in X_{\alpha}\} = V_{\alpha}$ and $\{\overline{a}/\stackrel{s}{\equiv} : \overline{a} \in Y_{\alpha}\} = V_{\alpha}^{c}$. Obviously E_{α} is coarser than E and E_{α} is almost over \varnothing . Let E'_{α} be the conjunction of the conjugates of E_{α} . We see that E'_{α} is 0-definable and

$$E(\overline{x}, \overline{y}) \Leftrightarrow \bigwedge_{\alpha \in I} E'_{\alpha}(\overline{x}, \overline{y}).$$

The above results show that the example of Pillay and Poizat is not exceptional and any compact metric space can be interpreted as \mathfrak{C}/E for some *E* coarser than \equiv .

Now we turn to relations *E* finer than \equiv but coarser than $\stackrel{s}{\equiv}$.

Fact 2.5 If *E* is finer than \equiv and coarser than $\stackrel{s}{\equiv}$, then \mathfrak{C}/E is 0-dimensional, so *E* is a conjunction of definable relations.

Proof Let $G = \operatorname{Aut}(\operatorname{acl}^{eq}(\varnothing))$ be the group of elementary permutations of $\operatorname{acl}^{eq}(\varnothing)$. *G* is a topological group with the topology of pointwise convergence. One can show that *G* is a profinite group, so it is a compact 0-dimensional group. The action of *G* on $\mathfrak{C}/\stackrel{s}{\equiv}$ is continuous, because the basic open sets in $\mathfrak{C}/\stackrel{s}{\equiv}$ are of the form $\{\overline{a}/\stackrel{s}{\equiv}: \models \varphi(\overline{a}, \overline{b})\}$, where \overline{b} is a finite sequence of elements from $\operatorname{acl}^{eq}(\varnothing)$. Via the canonical map $\pi : \mathfrak{C}/\stackrel{s}{\equiv} \to \mathfrak{C}/E$ we get an induced action of *G* on \mathfrak{C}/E , which is also continuous. Denote this action by \odot .

Let $p/E = \{\overline{a}/E : \overline{a} \models p\}$ for $p \in S(\emptyset)$. p/E is a closed subspace of \mathfrak{G}/E and G acts transitively upon it. Fix some $a^* = \overline{a}/E \in p/E$ and take a closed subgroup G_{a^*} of G defined by $G_{a^*} = \{g \in G : ga^* = a^*\}$. We get a function $f : G/G_{a^*} \rightarrow p/E$ defined by $f(gG_{a^*}) = ga^*$.

We claim that f is a homeomorphism from G/G_{a^*} onto p/E, where G/G_{a^*} is considered with the quotient topology.

235

To see this it is sufficient to show that f is continuous (because f is a bijection and, moreover, G/G_{a^*} and p/E are compact and Hausdorff). Let $\tau : G \to G/G_{a^*}$ be a canonical map and $\pi_1 : G \times \mathfrak{C}/E \to G$ be a projection on the first coordinate. Fix some open set $U \subseteq p/E$. We have that $\tau^{-1}(f^{-1}(U)) = \pi_1(\odot^{-1}(U) \cap G \times \{a^*\})$ is open, so $f^{-1}(U)$ is open, too, and f is continuous.

Since $G/G_{a^*} \approx p/E$, we get that p/E is 0-dimensional. We also have that $\pi : \mathfrak{C}/E \to \mathfrak{C}/\equiv$ is continuous, $\mathfrak{C}/\equiv \approx S(\emptyset)$ is 0-dimensional, and $\pi^{-1}(\overline{a}/\equiv) = tp(\overline{a})/E$. We conclude that \mathfrak{C}/E is 0-dimensional.

3 Bounded Equivalence Relations Finer Than \doteq

In this section we investigate bounded 0-type-definable equivalence relations *E* finer than $\stackrel{s}{\equiv}$. Such an *E* is necessarily coarser than $\stackrel{bd}{\equiv}$ (which is the finest bounded 0-type-definable equivalence relation). First we describe the connected components of \mathfrak{C}/E . For $p \in S(\operatorname{acl}^{\operatorname{eq}}(\emptyset))$ let $p/E = \{\overline{a}/E : \overline{a} \models p\}$. The following proposition appears in [1].

Proposition 3.1 The sets p/E, $p \in S(\operatorname{acl}^{eq}(\emptyset))$, are the connected components of \mathfrak{C}/E .

Proof It is easy to see that every connected component is contained in some p/E. Indeed, suppose $X \subseteq \mathfrak{G}/E$ is a connected component meeting p/E and q/E for some distinct $p, q \in S(\operatorname{acl}^{\operatorname{eq}}(\varnothing))$. Choose $\overline{a} \models p$ and $\overline{b} \models q$ with \overline{a}/E , $\overline{b}/E \in X$. Choose a clopen set $U \subseteq S(\operatorname{acl}^{\operatorname{eq}}(\varnothing))$ such that $p \in U$ and $q \notin U$. Let $\pi : \mathfrak{G}/E \to \mathfrak{G}/\stackrel{s}{\equiv}$ be canonical. Then $\overline{a}/E \in \pi^{-1}(U)$ and $\overline{b}/E \notin \pi^{-1}(U)$, hence $\pi^{-1}(U)$ and $\pi^{-1}(U^c)$ are distinct clopen sets meeting X, a contradiction.

It is harder to show that p/E is connected for every $p \in S(\operatorname{acl}^{\operatorname{eq}}(\emptyset))$. Suppose for a contradiction that p/E is not connected, that is, there are clopen in p/E nonempty disjoint sets $U, V \subseteq p/E$ such that $U \cup V = p/E$. So there are sets of formulas (with parameters) { $\varphi_i(\overline{x}) : i \in I$ } and { $\psi_j(\overline{x}) : j \in J$ } closed under finite conjunctions for which

$$U = \{\overline{a}/E : \exists \overline{b} E \overline{a} \bigwedge_{i \in I} \models \varphi_i(\overline{b})\}, \quad V = \{\overline{a}/E : \exists \overline{b} E \overline{a} \bigwedge_{j \in J} \models \psi_j(\overline{b})\}.$$

Claim 3.2 There is $n \in \omega$ such that for all $\overline{a}/E \in U$ and $\overline{b}/E \in V$ we have $\models \neg \theta_n(\overline{a}, \overline{b})$.

Proof If not, then the following set of formulas is consistent: $\{\varphi_i(\overline{x}) \land \psi_j(\overline{y}) \land \theta_n(\overline{x}, \overline{y}) : i \in I, j \in J, n \in \omega\}$. By compactness, there is an $\overline{a}/E \in U \cap V$, which is impossible.

Let $n \in \omega$ be as in the claim. *E* is bounded, so by compactness there are $\overline{a}_1, \ldots, \overline{a}_m \in p(\mathfrak{C})$ (for some $m \in \omega$) such that $p(\mathfrak{C}) \subseteq \theta_n(\mathfrak{C}, \overline{a}_1) \cup \cdots \cup \theta_n(\mathfrak{C}, \overline{a}_m)$. Hence there is $n' \in \omega$ such that for all $\overline{a} \in p(\mathfrak{C})$ and $\overline{b} \in p(\mathfrak{C})$ if $\models \bigwedge_{0 \le i \le k} \theta_n(\overline{b}_i, \overline{b}_{i+1})$ for some sequence $\overline{b}_0 = \overline{a}, \ldots, \overline{b}_{k+1} = \overline{b}$ of elements of $p(\mathfrak{C})$, then there is such a sequence of length at most n'. Define a relation E^* on $p(\mathfrak{C})$ by

$$E^*(\overline{x}_1, \overline{x}_{n'}) \Leftrightarrow \exists \overline{x}_2, \dots, \overline{x}_{n'-1} \bigwedge_{1 \le i \le n'-1} \models \theta_n(\overline{x}_i, \overline{x}_{i+1}) \land \bigwedge_{1 \le i \le n'} \overline{x}_i \models p.$$

 E^* is an $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -type-definable equivalence relation on $p(\mathfrak{C})$, which has finitely many classes (in fact $\leq m$ -many classes). So E^* is equivalent on $p(\mathfrak{C})$ to some finite equivalence relation E' definable over $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$. Moreover, by the claim, there are $\overline{a}, \overline{b} \models p$ such that $\neg E'(\overline{a}, \overline{b})$, a contradiction.

The following example shows that in Proposition 3.1 we cannot prove that p/E is locally connected.

Example 3.3 Let S^1 be the unit circle viewed as the multiplicative group of complex numbers of absolute value 1. Let S^{∞} be the projective limit of the system $\{X_n, f_{n+1,n}\}_{n < \omega}$, where $X_n = S^1$ and $f_{n+1,n} : X_{n+1} \to X_n$ is given by $f_{n+1,n}(z) = z^2$. So topologically the group S^{∞} is a solenoid (i.e., the projective limit of a system of circles) and is not locally connected.

Let $f_{\infty,n}: S^{\infty} \to X_n$ be the projection map. The sets $f_{\infty,n}^{-1}[U], U \subseteq X_n$ open, $n < \omega$, form a basis of the topology on S^{∞} , and if $U \subseteq X_n$ is a short open arc, then $f_{\infty,n}^{-1}[U]$ is homeomorphic with $U \times C$, where C is the Cantor set.

Let *d* be the usual metric on S^1 . We define a first-order structure *M* with universe S^{∞} by

 $M = (S^{\infty}, \{U_q^n(x, y) : q \in \mathbb{Q}^+\}),$

where $U_q^n(x, y)$ holds if and only if $d(f_{\infty,n}(x), f_{\infty,n}(y)) < q$.

 S^{∞} acts on *M* by translation as a group of automorphisms. In fact, Aut(*M*) = $S^{\infty} \rtimes \mathbb{Z}_2$, where \mathbb{Z}_2 acts on *M* by complex conjugation. We have several type-definable equivalence relations on *M*. For $n < \omega$ let

$$E_n(x, y) \Leftrightarrow \bigwedge_q U_q^n(x, y) \text{ and } E(x, y) \Leftrightarrow \bigwedge_n E_n(x, y).$$

Actually, E equals $\stackrel{bd}{\equiv}$ here. Since S^{∞} acts transitively on M, in Th(M), $S_1(\emptyset)$ consists of a single type p. Moreover, since S^{∞} is Abelian and divisible, it has no proper subgroups of finite index. It follows that there is no 0-definable nontrivial equivalence relation on M with finitely many classes. Hence p is a strong type in Th(M).

Clearly, for each n, $p/E_n \approx X_n \approx S^1$, while $p/E \approx S^\infty$. So p/E is connected but not locally connected. This example may be modified by replacing the connecting functions z^2 by other powers of z.

Using Proposition 3.1 we get a corollary referred to in the proof of Proposition 2.4.

Corollary 3.4 Assume E is a bounded 0-type-definable equivalence relation. If \mathfrak{G}/E is 0-dimensional, then E is coarser than $\stackrel{s}{\equiv}$.

Proof Suppose that $E \not\supseteq \stackrel{s}{\equiv}$. Let $E' = E \cap \stackrel{s}{\equiv}$. Then E' is a type-definable equivalence relation finer than $\stackrel{s}{\equiv}$. Take $\overline{a}, \overline{b} \in \mathfrak{S}$ such that $\overline{a} \stackrel{s}{\equiv} \overline{b}$ but $\neg E(\overline{a}, \overline{b})$. Let $p = tp(\overline{a}/\operatorname{acl}^{\operatorname{eq}}(\varnothing))$. By Proposition 3.1 the set p/E' is connected in \mathfrak{S}/E' . So the image X of p/E' under the canonical mapping $\mathfrak{S}/E' \to \mathfrak{S}/E$ is connected, but |X| > 1, because X contains two distinct points \overline{a}/E and \overline{b}/E . This contradicts the assumption that \mathfrak{S}/E is 0-dimensional.

For any bounded 0-type-definable E let G_E denote the group of elementary permutations of \mathfrak{C}/E induced by automorphisms of \mathfrak{C} . Every element of G_E is a homeomorphism of \mathfrak{C}/E . We can regard G_E as a closed subset of the space $(\mathfrak{C}/E)^{\mathfrak{C}/E}$

with the Tychonov product topology. G_E with the induced subspace topology is a compact Hausdorff topological group, acting continuously on \mathfrak{C}/E (cf. [4]). When E equals $\stackrel{bd}{\equiv}$, [1] calls G_E the compact Lascar group.

By Fact 1.3, \mathfrak{C}/E is metrizable. Let d_0 be a metric on \mathfrak{C}/E inducing the topology on it. Modifying d_0 we obtain an equivalent metric d on \mathfrak{C}/E , which is invariant under Aut(\mathfrak{C}). Namely, let μ be the Haar measure on G_E (i.e., the probabilistic measure on G_E invariant under translations). Then the metric d on \mathfrak{C}/E defined by

$$d(\overline{x},\overline{y}) = \int_{G_E} d_0(g\overline{x},g\overline{y})d\mu$$

satisfies our demands. Using this metric we can give a new proof of the following result of [2].

Theorem 3.5 In a small theory, $\stackrel{bd}{\equiv} equals \stackrel{s}{\equiv}$.

Proof Suppose for a contradiction that $\stackrel{bd}{\equiv}$ is essentially finer than $\stackrel{s}{\equiv}$. This means that for some $p \in S(\operatorname{acl}^{\operatorname{eq}}(\emptyset))$ we have $|p/\stackrel{bd}{\equiv}| > 1$. Choose $\overline{a}/\stackrel{bd}{\equiv} \neq \overline{b}/\stackrel{bd}{\equiv} \in p/\stackrel{bd}{\equiv}$ and let $\rho = d(\overline{a}/\stackrel{bd}{\equiv}, \overline{b}/\stackrel{bd}{\equiv})$. So $\rho > 0$. By Proposition 3.1, $p/\stackrel{bd}{\equiv}$ is connected, hence, for every δ with $0 < \delta < \rho$ the set $X_{\delta} = \{\overline{c}/\stackrel{bd}{\equiv} \in p/\stackrel{bd}{\equiv}: d(\overline{a}/\stackrel{bd}{\equiv}, \overline{c}/\stackrel{bd}{\equiv}) = \delta\}$ is nonempty. For each δ with $0 < \delta < \rho$ choose $\overline{c_{\delta}}/\stackrel{bd}{\equiv} \in X_{\delta}$. Since d is Aut(\mathfrak{S}) invariant, we see that for $\delta_1 \neq \delta_2$, $tp(\overline{ac_{\delta_1}}) \neq tp(\overline{ac_{\delta_2}})$. Hence $S(\emptyset)$ is uncountable, a contradiction.

4 Balanced Relations

Throughout this section, E^* is a bounded 0-type-definable equivalence relation on \mathfrak{S} , finer than $\stackrel{s}{\equiv}$. By Proposition 3.1, the connected components of \mathfrak{S}/E^* are of the form p/E^* , $p \in S(\operatorname{acl}^{\operatorname{eq}}(\emptyset))$. Fix a type $p \in S(\operatorname{acl}^{\operatorname{eq}}(\emptyset))$. It is interesting to learn what the structure of p/E^* can be. The structure of \mathfrak{S} is to some extent reflected in the structure of Aut(\mathfrak{S}). So in order to understand the structure of p/E^* it is reasonable to investigate the structure of the group

$$G = \{f : p/E^* \to p/E^* : f \in \operatorname{Aut}(\mathfrak{G}) \text{ preserves } p(\mathfrak{G})\}$$
$$= \{f : p/E^* \to p/E^* : f \in \operatorname{Aut}(\mathfrak{G}/Cb(p))\},\$$

where $Cb(p) = \{a/E : E \in FE(\emptyset), a \models p\} \subseteq \operatorname{acl}^{eq}(\emptyset)$. Similarly as the group G_{E^*} , G is a compact topological group acting continuously on p/E^* . From the theory of Lie groups [7] we know that

- 1. every compact group is a projective limit of compact Lie groups;
- 2. a compact group *H* is a Lie group if and only if *H* has DCC on closed subgroups.

In this section we provide a model-theoretic condition equivalent to *G* being itself a Lie group. To do this we establish a correspondence between bounded Cb(p)type-definable equivalence relations *E* on $p(\mathfrak{G})$ coarser than E^* and closed normal subgroups *H* of *G*. Namely, for such *E* and *H* we define a subgroup H(E) of *G* and two equivalence relations: E'_H on p/E^* and E_H on $p(\mathfrak{G})$ in the following way.

$$E'_H(\overline{a}/E^*, b/E^*) \iff \exists h \in H, h(\overline{a}/E^*) = b/E^*.$$

 $(\pi \times \pi)^{-1}(E'_H)$, where $\pi : p(\mathfrak{H}) \to p/E^*$ is the natural projection.

$$E_H = (\pi \times \pi)^{-1} (E_H)$$
, where $\pi : p(\mathfrak{G}) \to p/E^+$ is the natural projection
 $H(E) = \{h \in G : \forall \overline{a} \models p, h(\overline{a}/E) = \overline{a}/E\}.$

Remark 4.1

1. E'_H is a closed subset of $p/E^* \times p/E^*$.

- 2. E_H is Cb(p)-type-definable, coarser than E^* on $p(\mathfrak{G})$.
- 3. H(E) is a closed normal subgroup of G.

Proof (1) This follows from compactness of G and p/E^* and continuity of the action of G on p/E^* .

(2) From (1) and the fact that a set $A \subseteq p/E^* \times p/E^*$ is closed if and only if $(\pi \times \pi)^{-1}(A)$ is type-definable we have that E_H is type-definable. To see that E_H is Cb(p)-type-definable we use normality of H in G in the following way. Let $E_H(\overline{a}, \overline{b})$ and $f \in \operatorname{Aut}(\mathfrak{C}/Cb(p))$. Then there is $h \in H$ such that $\overline{a}/E^* = h(\overline{b}/E^*)$, so there is $h_1 \in H$ such that $f(\overline{a}/E^*) = h_1(f(\overline{b}/E^*))$. This means that $E_H(f(\overline{a}), f(\overline{b}))$.

(3) H(E) is closed in *G*, because $h \in H(E) \Leftrightarrow \forall \overline{a} \models p, h(\overline{a}/E^*) \in \pi_0^{-1}(\overline{a}/E)$ and $\pi_0^{-1}(\overline{a}/E)$ is closed in p/E^* (here $\pi_0: p/E^* \to p/E$ is the canonical map). H(E) is normal in *G*, because for $h \in H(E), g \in G$ and any $\overline{a} \models p$ we have $g^{-1}hg(\overline{a}/E) = g^{-1}(h(\overline{b}/E)) = g^{-1}(\overline{b}/E) = \overline{a}/E$, where $g(\overline{a}/E) = \overline{b}/E$. \Box

Proposition 4.2 For *E* and *H* as above we have

 $E_{H(E)} \subseteq E, H \subseteq H(E_H), E_{H(E_H)} = E_H, \text{ and } H(E_{H(E)}) = H(E).$

Proof The first two items follow from definitions and imply the last two.

Not all bounded Cb(p)-type-definable equivalence relations E on $p(\mathfrak{G})$ coarser than E^* are of the form E_H for some closed $H \triangleleft G$. Similarly, not all closed $H \triangleleft G$ are of the form H(E). This is the motivation for the following definition.

Definition 4.3 Assume *E* is an $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -type-definable equivalence relation on $p(\mathfrak{G})$ coarser than E^* and *H* is closed normal subgroup of *G* (symbolically, $H \triangleleft_c G$).

- 1. We say that *E* is balanced on p/E^* if $E = E_{H_1}$ for some $H_1 \triangleleft_c G$ (by Proposition 4.2, this is equivalent to $E = E_{H(E)}$).
- 2. We say that *H* is *-closed in *G* if $H = H(E_1)$ for some Cb(p)-type-definable equivalence relation E_1 on $p(\mathfrak{S})$ coarser than E^* (by Proposition 4.2, this is equivalent to $H = H(E_H)$).
- We say that E* is balanced if x̄ ≡ ȳ and E*(x̄, ȳ) implies f(x̄) = ȳ for some f ∈ Aut(𝔅) with f|_{𝔅/E*} = id (here E* is not necessarily finer than ≡).
- For A ⊆ 𝔅^{eq} we say that E* is A-balanced if E*(x̄, ȳ) implies f(x̄) = ȳ for some f ∈ Aut(𝔅/A) with f|_{𝔅/E*} = id.

Remark 4.4

1. *E* is balanced on p/E^* if and only if for $\overline{x}, \overline{y} \models p$, $E(\overline{x}, \overline{y})$ implies $f(\overline{x}/E^*) = \overline{y}/E^*$ for some $f \in Aut(\mathfrak{G}/Cb(p))$ with $f|_{p/E} = id$.

- 2. If E^* is Cb(p)-balanced, then E is balanced on p/E^* if and only if for $\overline{x}, \overline{y} \models p, E(\overline{x}, \overline{y})$ implies $f(\overline{x}) = \overline{y}$ for some $f \in Aut(\mathfrak{C}/Cb(p))$ with $f|_{p/E} = id$.
- 3. Relations \equiv , $\stackrel{s}{\equiv}$, $\stackrel{bd}{\equiv}$ are balanced.

Proposition 4.2 yields the following corollary.

Corollary 4.5 The mapping $H \rightarrow E_H$ is a Galois correspondence between \ast -closed subgroups of G and equivalence relations balanced on p/E^* .

Now we will use balanced equivalence relations to express when our group G is a Lie group.

Proposition 4.6 *G* is a Lie group if and only if there is no proper infinite chain $E_0 \supseteq E_1 \supseteq \cdots \supseteq E^*$ of equivalence relations balanced on p/E^* .

Proof (\Rightarrow) This follows easily from Corollary 4.5 and the fact that a Lie group has DCC on closed subgroups.

(\Leftarrow) Suppose that *G* is not a Lie group. Still *G*, as a compact group, is a projective limit of Lie groups, so there exists a family $\{H_{\alpha}\}_{\alpha \in I}$ of closed normal subgroups of *G* such that

- 1. $\bigcap_{\alpha \in I} H_{\alpha} = {\text{id}},$
- 2. $\forall \alpha, \beta \in I \exists \gamma \in I, H_{\gamma} \subseteq H_{\alpha} \cap H_{\beta},$
- 3. G/H_{α} is a Lie group for all $\alpha \in I$.

So, $H_{\alpha} \neq \{id\}$ for all $\alpha \in I$. Obviously for all $\alpha, \beta \in I$ we have that $E_{\alpha} := E_{H_{\alpha}}$ is balanced on p/E and $H_{\alpha} \supseteq H_{\beta}$ implies $E_{\alpha} \supseteq E_{\beta}$.

It is sufficient to show that for every $\alpha \in I$ there exists a $\beta \in I$ such that $E_{\alpha} \supseteq E_{\beta}$ and $E_{\alpha} \neq E_{\beta}$. First we prove that $E_{\alpha} \neq E^*$ on $p(\mathfrak{C})$. Otherwise, by Proposition 4.2, we have $H_{\alpha} \subseteq H(E_{H_{\alpha}}) = H(E_{\alpha}) = H(E^*|p(\mathfrak{C}) \times p(\mathfrak{C})) = \{\text{id}\}$, which is impossible.

So choose $\overline{a}/E^* \neq \overline{b}/E^* \in p/E^*$ with $E'_{H_{\alpha}}(\overline{a}/E^*, \overline{b}/E^*)$. Then id $\notin \{g \in G : g(\overline{a}/E^*) = \overline{b}/E^*\}$ and the last set is closed in *G*. By compactness of *G* and the choice of the family $\{H_{\alpha}\}_{\alpha \in I}$ we get some $\beta \in I$ such that $H_{\alpha} \supseteq H_{\beta}$ and $H_{\beta} \cap \{g \in G : g(\overline{a}/E^*) = \overline{b}/E^*\} = \emptyset$. So $\neg E'_{H_{\beta}}(\overline{a}/E^*, \overline{b}/E^*)$, hence $E_{\alpha} \neq E_{\beta}$ and of course $E_{\alpha} \supseteq E_{\beta}$.

Sometimes the very topological structure of p/E^* implies that the condition from Proposition 4.6 is satisfied, whence G is a Lie group. It is so with another example of Poizat (Lascar [3]), where p/E^* is homeomorphic to the circle S^1 .

Remark 4.7 If p/E^* is homeomorphic to the circle S^1 , then G is a Lie group.

Proof We want to prove that the condition from Proposition 4.6 is satisfied. By Definition 4.3, every equivalence relation balanced on p/E^* is of the form E_H for some $H \triangleleft_c G$. G acts transitively on p/E^* so all classes of E'_H on p/E^* have the same cardinality. So it suffices to prove that for every $H \triangleleft_c G$, the orbit O of some $\overline{a}/E^* \in p/E^*$ under H is finite or equal to p/E^* .

Suppose for a contradiction that *O* is infinite and $O \neq p/E^*$. We identify topologically p/E^* with S^1 . So *O* is a closed homogeneous subset of S^1 , hence it is an uncountable perfect set. As $O \neq S_1$, there is an open arc *I* on S_1 disjoint from *O*,

with endpoints in *O*. *H* acts transitively on *O*, so every point $z \in O$ is an endpoint of an open arc I_z disjoint from *O*, but with both endpoints in *O*. By construction, for distinct $z, z' \in O$ the arcs $I_z, I_{z'}$ are equal or disjoint, hence there are countably many of them. However, each such arc has only two endpoints, while *O* is uncountable, a contradiction.

We end this paper with some examples of unbalanced equivalence relations.

Example 4.8 (finite unbalanced equivalence relation finer than \equiv) Let *E* be an equivalence relation on a countable set *V* with *n* infinite classes, where $n \ge 3$. Let $V/E = \{a_0, \ldots, a_{n-1}\}$. For $\sigma \in \text{Sym}(n)$ let $\overline{a}_{\sigma} = a_{\sigma(0)}, a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}$. We choose $U(\overline{a}_{\sigma}), \sigma \in \text{Sym}(n)$, a family of infinite disjoint subsets of *V* such that for every i < n, $a_i = \bigcup \{U(\overline{a}_{\sigma}) : \sigma(0) = i\}$.

We define an (n + 1)-ary relation R on V by

 $R(x_0, \ldots, x_n) \Leftrightarrow x_0, \ldots, x_{n-1}$ are pairwise not *E*-equivalent and $x_n \in U(\overline{a}_{\sigma})$,

where $\overline{a}_{\sigma} = \langle x_0/E, \ldots, x_{n-1}/E \rangle$.

Finally, let M = (V; E, R). We will show that E is unbalanced in M. First notice that in M^{eq} we can define the sets $U(\overline{a}_{\sigma}), \sigma \in \text{Sym}(n)$, over $\{a_0, \ldots, a_{n-1}\}$. Indeed, $U(\overline{a}_{\sigma}) = R(b_0, \ldots, b_{n-1}, M)$, where b_0, \ldots, b_{n-1} are arbitrary elements of M satisfying $b_i/E = a_{\sigma(i)}$.

Secondly we show that Aut(*M*) acts transitively on *M*, hence *E* is finer than \equiv . To see this, for any $\tau \in \text{Sym}(n)$ let $f_{\tau} : M \to M$ be a bijection mapping each set $U(\overline{a}_{\sigma})$ onto $U(\overline{a}_{\tau\sigma})$. Clearly, $f_{\tau} \in \text{Aut}(M)$, so the orbit of each point in *M* meets each set $U(\overline{a}_{\sigma})$. Also, for a fixed σ all elements of $U(\overline{a}_{\sigma})$ are in the same orbit, so we are done.

Finally *E* is not balanced, since for $\sigma \neq \tau \in \text{Sym}(n)$ with $\sigma(0) = \tau(0)$, elements of $U(\overline{a}_{\sigma})$ and $U(\overline{a}_{\tau})$ lie in the same *E*-class but in different orbits over $\{a_0, \ldots, a_{n-1}\}$. In fact, here *E* is also unbalanced on $p/\stackrel{s}{\equiv}$, where *p* is the complete 1-type in Th(*M*).

In this example we must have assumed that n > 2, since each equivalence relation finer than \equiv , which has 2 classes, is balanced.

Example 4.9 (unbalanced relation with infinitely many classes, finer than \equiv but coarser than $\stackrel{s}{\equiv}$) Let n > 2 and, for $k < \omega$, let E_k , R_k be defined on a countable infinite set V as in Example 4.8 and additionally so, that the corresponding partitions $\{U_k(\overline{a}_{\sigma}) : \sigma \in \text{Sym}(n)\}, k < \omega$, are independent. Let $M = (V, \{E_k, R_k : k < \omega\})$ and let $E = \bigwedge_k E_k$. As in Example 4.8, in Th(M) there is just one complete 1-type p and E is not balanced. Also, E is not balanced on $p/\stackrel{s}{\equiv}$.

Example 4.10 (unbalanced relation finer than $\stackrel{s}{\equiv}$ **but coarser than** $\stackrel{bd}{\equiv}$) Consider the group of rotations $SO(3, \mathbb{R})$ acting on S^2 , the unit sphere in \mathbb{R}^3 . Let *d* be the usual metric on \mathbb{R}^3 . Let $M = (S^2, \{U_q(x, y)\}_{q \in \mathbb{Q}^+})$, where $U_q(x, y) \Leftrightarrow d(x, y) < q$.

As in the example in Section 3, in $\hat{Th}(M)$ there is just one complete 1-type p over \emptyset . Also, on M there is no finite 0-definable equivalence relation, hence p is a strong type. This is because $SO(3, \mathbb{R})$, being a connected Lie group, has no proper subgroup of finite index.

On *M* we have a type-definable equivalence relation E_0 given by

$$E_0(x, y) \Leftrightarrow \bigwedge_q U_q(x, y)$$

We have $p/E_0 \approx S^2$. In fact, E_0 equals $\stackrel{bd}{\equiv}$ here, hence it is balanced. However, we will define an unbalanced relation on some strong 2-type. Fix $a \in S^2$. For $\rho \in (0, 2)$ let $S_{\rho}^1(a) = \{b \in S^2 : d(a, b) = \rho\}$. The circle $S_{1,2}^1(a)$

Fix $a \in S^2$. For $\rho \in (0, 2)$ let $S^1_{\rho}(a) = \{b \in S^2 : d(a, b) = \rho\}$. The circle $S^1_{1,2}(a)$ is *a*-definable in *M* by the formula $\neg U_{1,2}(a, x) \land \neg U_{1,6}(a^+, x)$, where a^+ is the antipode of *a* defined by the formula $\neg U_2(a, x)$. Let $b \in S^1_{1,2}(a)$ and q = tp(ab). We see that *q* is isolated. *p* is a strong type and the group of rotations of S^2 around the axis going through *a* acts transitively on $S^1_{1,2}(a)$, hence *q* is a strong type. On *q* we define two equivalence relations:

 $E(x, y; x', y') \Leftrightarrow E_0(x, x')$ and $E^*(x, y; x'y') \Leftrightarrow E_0(x, x') \wedge E_0(y, y')$.

We see that E and E^* are bounded equivalence relations on q.

$$\begin{aligned} q/E^* &\approx & \{(a/E_0, b/E_0) : a \in S^2 \land b \in S^1_{1,2}(a)\} \\ &\approx & \{(a,b) : a \in S^2 \land b \in S^1_{1,2}(a)\} \subseteq S^2 \times S^2. \end{aligned}$$

Notice that q/E^* is not homeomorphic to $S^2 \times S^1$. In the monster model \mathfrak{G} we have

$$ab/E = \{(a', b') : a'E_0a \land b' \in S^1_{1,2}(a')\} \subseteq a/E_0 \times \bigcup \{b'/E_0 : b' \in S^1_{1,2}(a)\},\$$

hence any $f \in Aut(\mathfrak{G})$ fixing ab/E setwise fixes a/E_0 setwise.

Now *E* is not balanced. Indeed, any $f \in Aut(\mathfrak{C})$ fixing \mathfrak{C}/E fixes also \mathfrak{C}/E_0 . So if $b' \in S_{1,2}^1(a)$ and $b' \neq b$, then $f(ab) \neq ab'$. Likewise, *E* is not balanced on q/E^* .

References

- [1] Hrushovski, E., "Simplicity and the Lascar group," preprint, 1997. 231, 232, 235, 237
- [2] Kim, B., "A note on Lascar strong types in simple theories," *The Journal of Symbolic Logic*, vol. 63 (1998), pp. 926–36. Zbl 0961.03030. MR 2000a:03053. 232, 237
- [3] Lascar, D., "The group of automorphisms of a relational saturated structure," pp. 225–36 in *Finite and Infinite Combinatorics in Sets and Logic*, vol. 411 of *NATO Science Series: Mathematical and Physical Sciences*, Kluwer Academic Publishers, Dordrecht, 1993. Zbl 0845.03015. MR 95d:03060. 239
- [4] Lascar, D., and A. Pillay, "Hyperimaginaries and automorphism groups," *The Journal of Symbolic Logic*, vol. 66 (2001), pp. 127–43. Zbl 1002.03027. MR 2002f:03067. 231, 232, 237
- [5] Pillay, A., "Compact groups and automorphism groups," lecture notes, Barcelona, 1997. 234
- [6] Pillay, A., and B. Poizat, "Pas d'imaginaires dans l'infini!" The Journal of Symbolic Logic, vol. 52 (1987), pp. 400–403. Zbl 0631.03014. MR 88j:03019. 233

[7] Weil, A., L'intègration dans les Groupes Topologiques et ses Applications, Actualités Scientifiques et Industrielles, Hermann, Paris, 1940. Zbl 0063.08195. MR 3,198b. 232, 237

Acknowledgments

We would like to thank Piotr Kowalski for some helpful comments. Research supported by KBN Grant 2 P03A 002 16.

Mathematical Institute University of Wroclaw pl. Grunwaldzki 2/4 50-384 Wroclaw POLAND kkrup@math.uni.wroc.pl newelski@math.uni.wroc.pl