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On Bounded Type-Definable Equivalence Relations

Krzysztof Krupiński and Ludomir Newelski

Abstract We investigate some topological properties of the spaces of classes
of bounded type-definable equivalence relations.

1 Introduction

In this paper T is a complete theory in a countable language L and C is a monster
model of T . We will consider type-definable (over ∅) equivalence relations on some
Ck (k ∈ ω), that is, relations defined by some type over ∅. Namely, each such
relation E on Ck is defined by

E(x, y) ⇔
∧
n<ω

θn(x, y)

for some type {θn(x, y) : n < ω}. By compactness we can assume that each θn(x, y)
is symmetric and |H θn+1(x, y)∧ θn+1(y, z) → θn(x, z). We say that E is bounded,
if E has boundedly many classes. When we consider two such relations E1 and E2,
then E1 ⊆ E2 means that E1 is finer than E2.

There is a topology τ on Ck/E with a basis of open sets

B = {[ϕ(x)] : ϕ(x) ∈ L(C)},

where [ϕ(x)] = {a/E : a/E ⊆ ϕ(C)}. Then a basis of closed sets is of the form
{〈ϕ(x)〉 : ϕ(x) ∈ L(C)}, where 〈ϕ(x)〉 = {a/E : a/E ∩ ϕ(C) 6= ∅}. By com-
pactness (and boundedness of E) we have that (Ck/E, τ ) is a compact Hausdorff
topological space. It is easy to see that {[θn(x, a)] : n ∈ ω} is a basis of open neigh-
borhoods of the point a/E in Ck/E . This topology was defined in Hrushovski [1]
and Lascar and Pillay [4].

Throughout, E will denote a bounded 0-type-definable equivalence relation on
some Ck (we will write C instead of Ck). S(∅) denotes Sk(∅) unless stated other-
wise. There are three important examples of such equivalence relations which will
be denoted in a special way:
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232 Krzysztof Krupiński and Ludomir Newelski

1. the relation of having the same type over ∅, denoted by ≡,
2. the relation of having the same strong type over ∅, denoted by

s
≡,

3. the finest bounded equivalence relation, denoted by
bd
≡.

Remark 1.1 When T is simple then the
bd
≡-classes are Lascar strong types. Simi-

larly, the ≡-classes correspond to complete types over ∅ and the
s
≡-classes to types

in S(acleq(∅)). These correspondences are homeomorphisms between C/≡ and
S(∅) and between C/

s
≡ and S(acleq(∅)).

The aim of this paper is to understand what topologies can appear as C/E for some
bounded type-definable equivalence relation E . Such relations were investigated, for
example, in [4], but this elementary aspect seemed neglected.

We discern three cases. In Section 2, we describe fully which topologies are of
the form C/E , where E is coarser than ≡. It turns out that if T is not small, then any
compact metric space occurs in this way. Hence in this respect all theories that are
not small look alike. Then we investigate relations E finer than ≡ but coarser than
s
≡. In this case C/E is 0-dimensional, hence E is an intersection of 0-definable finite
equivalence relations. This is folklore but we give a proof.

In Section 3, we investigate relations E finer than
s
≡ but necessarily coarser than

bd
≡. In this case the connected components of C/E correspond to strong types ([1],
Lemma 2.1). We give an example where the connected components are not locally
connected. Using a Haar measure we define an invariant metric on each connected
component of C/E . This leads us to a new proof of a result of Kim [2] that in a small

theory
bd
≡ equals

s
≡.

In Section 4, we focus on a connected component X of the space C/E for some

E finer than
s
≡ but coarser than

bd
≡. Similarly as in [4], we consider the group G

of elementary permutations of X . G is a compact topological group acting contin-
uously on X . Hence G is a projective limit of compact Lie groups (Weil [7]). We
characterize those Es for which G itself is a Lie group. It turns out that sometimes
the very topological nature of X determines G to be a Lie group. This happens, for
example, when X is homeomorphic to the circle S1.

We will often use the following basic facts.

Fact 1.2 Suppose that E1 ⊆ E2 are as above.
1. The canonical map π : C/E1 → C/E2 is continuous.
2. The topology on C/E2 is the quotient topology induced by π from the topol-

ogy on C/E1.

Proof (1) Let E1 and E2 be defined by {θ1
n (x, y) : n ∈ ω} and {θ2

n (x, y) : n ∈ ω},
respectively. We can assume that |H θ1

n (x, y) → θ2
n (x, y). Let [ϕ] be a ba-

sic open set in C/E2. We want to show that π−1([ϕ]) is open in C/E1. Take
a/E1 ∈ π−1([ϕ]). Then a/E2 ∈ [θ2

n (x, a)] ⊆ [ϕ] for some n ∈ ω. It suffices
to show that [θ1

n+1(x, a)] ⊆ π−1([ϕ]). So let b/E1 ∈ [θ1
n+1(x, a)]. Take any

b′ ∈ b/E2. Then |H θ2
n+1(b, b′). We also have |H θ1

n+1(b, a), which implies that
|H θ2

n+1(b, a). Therefore |H θ2
n (b′, a), so b/E2 ∈ [θ2

n (x, a)], which means that
b/E1 ∈ π−1([ϕ]).

(2) This follows from (1) and the compactness of both topologies. �
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Fact 1.3 The space C/E is metrizable.

Proof C/E is compact, so it is sufficient to show that C/E has a countable basis.
By compactness, for every n ∈ ω, there are an

1, . . . , an
mn

∈ C (for some mn ∈ ω)
such that

[θn(x, an
1)] ∪ · · · ∪ [θn(x, an

mn
)] = C/E .

We will prove that the sets [θn(x, an
i )], n ∈ ω, i ≤ mn, form a basis of the topology

on C/E . So let a ∈ C and n ∈ ω. It is enough to show that for some k ∈ ω and
i ≤ k we have a/E ∈ [θk(x, ak

i )] ⊆ [θn(x, a)]. Let k = n + 1. Choose i ≤ mk such
that a/E ∈ [θk(x, ak

i )]. Since |H θn+1(x, y) ∧ θn+1(y, z) → θn(x, z), we get that
[θk(x, ak

i )] ⊆ [θn(x, a)]. �

2 Equivalence Relations Coarser Than ≡

First we recall an example of Pillay and Poizat [6] of a bounded type-definable equiv-
alence relation (in a stable theory T ) which is not an intersection of definable equiv-
alence relations.

Example 2.1 Let T = Th(M), where M consists of the universe Q and unary
predicates Ua = {x ∈ Q : x ≤ a} for a ∈ Q. We have S(∅) = {t+

a : a ∈ Q}∪

{t−a : a ∈ Q} ∪ {ta : a /∈ Q}, where

1. t+a is determined by {Ub(x) : a < b ∈ Q} ∪ {¬Ub(x) : a ≥ b ∈ Q},

2. t−a is determined by {Ub(x) : a ≤ b ∈ Q} ∪ {¬Ub(x) : a > b ∈ Q},

3. ta is determined by {Ub(x) : a < b ∈ Q} ∪ {¬Ub(x) : a > b ∈ Q}.

Let E be the equivalence relation defined by the conjunction of formulas (Ua(x) →

Ub(y)) ∧ (Ua(y) → Ub(x)) for a < b. Then C/E = {t+a (C) ∪ t−a (C) : a ∈ Q}∪

{ta(C) : a /∈ Q}. So we see that E is bounded. One can show that T is stable and E
is not a conjunction of definable equivalence relations.

For us it is important that in the above example C/E is homeomorphic to the unit in-
terval I (symbolically: C/E ≈ I ). Generalizing this example we will fully describe
the topological spaces occuring as C/E for some E coarser than ≡. It turns out that
stability of T is quite irrelevant here.

Theorem 2.2 Let X be a Hausdorff topological space. Then X ≈ C/E for some E
coarser than ≡ if and only if X is a continuous image of S(∅).

Proof (⇒) The proof is obvious (Fact 1.2).

(⇐) Let f : Sk(∅) → X be a continuous surjection. Let E f be the equivalence
relation on Sk(∅) defined by

E f (p, q) ⇔ f (p) = f (q).

As X is Hausdorff we see that E f ⊆ Sk(∅) × Sk(∅) is closed. Let h : C × C →

S2k(∅) and g : S2k(∅) → Sk(∅) × Sk(∅) be defined by h(x, y) = t p(x y)
and g(t p(x y)) = (t p(x), t p(y)). Then g−1(E f ) is closed in S2k(∅), so E :=

h−1(g−1(E f )) is a type-definable equivalence relation on C coarser than ≡. It is
easy to see that C/E ≈ Sk(∅)/E f ≈ X . �
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If S(∅) is uncountable, then the Cantor set is a continuous image of S(∅), and
then in turn (by a well-known topological result), every compact metric space is a
continuous image of the Cantor set. Hence we get the following corollary.

Corollary 2.3 Assume that S(∅) is uncountable. For every metric compact space
X there is E coarser than ≡ such that C/E ≈ X.

In the example of Pillay and Poizat, E is not an intersection of 0-definable equi-
valence relations. This may be seen directly. However, it may be also deduced
from the following proposition and the fact that in this example C/E ≈ I is not
0-dimensional. This proposition is folklore; it appears in Pillay [5] (without proof).

Proposition 2.4 C/E is 0-dimensional if and only if E is an intersection of defin-
able equivalence relations.

Proof (⇐) Let E(x, y) ⇔
∧

i∈ω Ei (x, y) where Ei is a definable equivalence
relation. We can assume that |H Ei+1(x, y) ⇒ Ei (x, y). We see that
{[Ei(x, a)] : i ∈ ω, a ∈ C} is a basis of the topology on C/E consisting of
clopen sets.

(⇒) We will show in Section 3 (Corollary 3.4) that if C/E is 0-dimensional, then
E is coarser than

s
≡, that is,

s
≡ ⊆ E . Let π : C/

s
≡ → C/E be the canonical mapping

and let {Uα}α∈I be a basis of clopen sets in C/E . Then Vα := π−1(Uα) is a clopen
set in C/

s
≡ for every α ∈ I . So there is a definable equivalence relation Eα with

two classes Xα and Yα such that {a/
s
≡ : a ∈ Xα} = Vα and {a/

s
≡ : a ∈ Yα} = V c

α .
Obviously Eα is coarser than E and Eα is almost over ∅. Let E ′

α be the conjunction
of the conjugates of Eα. We see that E ′

α is 0-definable and

E(x, y) ⇔
∧
α∈I

E ′
α(x, y).

�

The above results show that the example of Pillay and Poizat is not exceptional and
any compact metric space can be interpreted as C/E for some E coarser than ≡.

Now we turn to relations E finer than ≡ but coarser than
s
≡.

Fact 2.5 If E is finer than ≡ and coarser than
s
≡, then C/E is 0-dimensional, so E

is a conjunction of definable relations.

Proof Let G = Aut(acleq(∅)) be the group of elementary permutations of acleq(∅).
G is a topological group with the topology of pointwise convergence. One can show
that G is a profinite group, so it is a compact 0-dimensional group. The action
of G on C/

s
≡ is continuous, because the basic open sets in C/

s
≡ are of the form

{a/
s
≡ : |H ϕ(a, b)}, where b is a finite sequence of elements from acleq(∅). Via the

canonical map π : C/
s
≡ → C/E we get an induced action of G on C/E , which is

also continuous. Denote this action by �.
Let p/E = {a/E : a |H p} for p ∈ S(∅). p/E is a closed subspace of C/E

and G acts transitively upon it. Fix some a∗ = a/E ∈ p/E and take a closed
subgroup Ga∗ of G defined by Ga∗ = {g ∈ G : ga∗ = a∗}. We get a function
f : G/Ga∗ → p/E defined by f (gGa∗) = ga∗.

We claim that f is a homeomorphism from G/Ga∗ onto p/E , where G/Ga∗ is
considered with the quotient topology.
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To see this it is sufficient to show that f is continuous (because f is a bijection
and, moreover, G/Ga∗ and p/E are compact and Hausdorff). Let τ : G → G/Ga∗

be a canonical map and π1 : G × C/E → G be a projection on the first coordinate.
Fix some open set U ⊆ p/E . We have that τ−1( f −1(U)) = π1(�

−1(U)∩G×{a∗})

is open, so f −1(U) is open, too, and f is continuous.
Since G/Ga∗ ≈ p/E , we get that p/E is 0-dimensional. We also have

that π : C/E → C/ ≡ is continuous, C/ ≡ ≈ S(∅) is 0-dimensional, and
π−1(a/≡) = t p(a)/E . We conclude that C/E is 0-dimensional. �

3 Bounded Equivalence Relations Finer Than
s
≡

In this section we investigate bounded 0-type-definable equivalence relations E finer

than
s
≡. Such an E is necessarily coarser than

bd
≡ (which is the finest bounded 0-

type-definable equivalence relation). First we describe the connected components of
C/E . For p ∈ S(acleq(∅)) let p/E = {a/E : a |H p}. The following proposition
appears in [1].

Proposition 3.1 The sets p/E, p ∈ S(acleq(∅)), are the connected components of
C/E.

Proof It is easy to see that every connected component is contained in some
p/E . Indeed, suppose X ⊆ C/E is a connected component meeting p/E and
q/E for some distinct p, q ∈ S(acleq(∅)). Choose a |H p and b |H q with a/E ,
b/E ∈ X . Choose a clopen set U ⊆ S(acleq(∅)) such that p ∈ U and q /∈ U . Let
π : C/E → C/

s
≡ be canonical. Then a/E ∈ π−1(U) and b/E 6∈ π−1(U), hence

π−1(U) and π−1(U c) are distinct clopen sets meeting X , a contradiction.
It is harder to show that p/E is connected for every p ∈ S(acleq(∅)). Suppose for

a contradiction that p/E is not connected, that is, there are clopen in p/E nonempty
disjoint sets U , V ⊆ p/E such that U∪V = p/E . So there are sets of formulas (with
parameters) {ϕi(x) : i ∈ I } and {ψ j (x) : j ∈ J } closed under finite conjunctions for
which

U = {a/E : ∃bEa
∧
i∈I

|H ϕi (b)}, V = {a/E : ∃bEa
∧
j∈J

|H ψ j (b)}.

Claim 3.2 There is n ∈ ω such that for all a/E ∈ U and b/E ∈ V we have
|H ¬θn(a, b).

Proof If not, then the following set of formulas is consistent: {ϕi(x) ∧ ψ j (y)∧
θn(x, y) : i ∈ I, j ∈ J, n ∈ ω}. By compactness, there is an a/E ∈ U ∩ V , which is
impossible.

Let n ∈ ω be as in the claim. E is bounded, so by compactness there are
a1, . . . , am ∈ p(C) (for some m ∈ ω) such that p(C) ⊆ θn(C, a1)∪ · · ·∪ θn(C, am).
Hence there is n′ ∈ ω such that for all a ∈ p(C) and b ∈ p(C) if |H

∧
0≤i≤k

θn(bi , bi+1) for some sequence b0 = a, . . . , bk+1 = b of elements of p(C), then
there is such a sequence of length at most n′. Define a relation E∗ on p(C) by

E∗(x1, xn′ ) ⇔ ∃x2, . . . , xn′−1
∧

1≤i≤n′−1

|H θn(x i , x i+1) ∧
∧

1≤i≤n′

x i |H p.
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E∗ is an acleq(∅)-type-definable equivalence relation on p(C), which has finitely
many classes (in fact ≤ m-many classes). So E∗ is equivalent on p(C) to some finite
equivalence relation E ′ definable over acleq(∅). Moreover, by the claim, there are
a, b |H p such that ¬E ′(a, b), a contradiction. �

The following example shows that in Proposition 3.1 we cannot prove that p/E is
locally connected.

Example 3.3 Let S1 be the unit circle viewed as the multiplicative group of
complex numbers of absolute value 1. Let S∞ be the projective limit of the sys-
tem {Xn, fn+1,n}n<ω , where Xn = S1 and fn+1,n : Xn+1 → Xn is given by
fn+1,n(z) = z2. So topologically the group S∞ is a solenoid (i.e., the projective
limit of a system of circles) and is not locally connected.

Let f∞,n : S∞ → Xn be the projection map. The sets f −1
∞,n[U ],U ⊆ Xn open,

n < ω, form a basis of the topology on S∞, and if U ⊆ Xn is a short open arc, then
f −1
∞,n[U ] is homeomorphic with U × C , where C is the Cantor set.

Let d be the usual metric on S1. We define a first-order structure M with universe
S∞ by

M = (S∞, {Un
q (x, y) : q ∈ Q

+}),

where U n
q (x, y) holds if and only if d( f∞,n(x), f∞,n(y)) < q.

S∞ acts on M by translation as a group of automorphisms. In fact, Aut(M) =

S∞
o Z2, where Z2 acts on M by complex conjugation. We have several type-

definable equivalence relations on M . For n < ω let

En(x, y) ⇔
∧

q

Un
q (x, y) and E(x, y) ⇔

∧
n

En(x, y).

Actually, E equals
bd
≡ here. Since S∞ acts transitively on M , in Th(M), S1(∅) con-

sists of a single type p. Moreover, since S∞ is Abelian and divisible, it has no
proper subgroups of finite index. It follows that there is no 0-definable nontrivial
equivalence relation on M with finitely many classes. Hence p is a strong type in
Th(M).

Clearly, for each n, p/En ≈ Xn ≈ S1, while p/E ≈ S∞. So p/E is con-
nected but not locally connected. This example may be modified by replacing the
connecting functions z2 by other powers of z.

Using Proposition 3.1 we get a corollary referred to in the proof of Proposition 2.4.

Corollary 3.4 Assume E is a bounded 0-type-definable equivalence relation. If
C/E is 0-dimensional, then E is coarser than

s
≡.

Proof Suppose that E 6⊇
s
≡. Let E ′ = E ∩

s
≡. Then E ′ is a type-definable equiv-

alence relation finer than
s
≡. Take a, b ∈ C such that a

s
≡ b but ¬E(a, b). Let

p = t p(a/acleq(∅)). By Proposition 3.1 the set p/E ′ is connected in C/E ′. So
the image X of p/E ′ under the canonical mapping C/E ′ → C/E is connected, but
|X | > 1, because X contains two distinct points a/E and b/E . This contradicts the
assumption that C/E is 0-dimensional. �

For any bounded 0-type-definable E let G E denote the group of elementary permu-
tations of C/E induced by automorphisms of C. Every element of G E is a home-
omorphism of C/E . We can regard G E as a closed subset of the space (C/E)C/E
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with the Tychonov product topology. G E with the induced subspace topology is a
compact Hausdorff topological group, acting continuously on C/E (cf. [4]). When

E equals
bd
≡, [1] calls G E the compact Lascar group.

By Fact 1.3, C/E is metrizable. Let d0 be a metric on C/E inducing the topology
on it. Modifying d0 we obtain an equivalent metric d on C/E , which is invariant
under Aut(C). Namely, let µ be the Haar measure on G E (i.e., the probabilistic
measure on G E invariant under translations). Then the metric d on C/E defined by

d(x, y) =

∫
GE

d0(gx, gy)dµ

satisfies our demands. Using this metric we can give a new proof of the following
result of [2].

Theorem 3.5 In a small theory,
bd
≡ equals

s
≡.

Proof Suppose for a contradiction that
bd
≡ is essentially finer than

s
≡. This means

that for some p ∈ S(acleq(∅)) we have |p/
bd
≡ | > 1. Choose a/

bd
≡ 6= b/

bd
≡ ∈ p/

bd
≡

and let ρ = d(a/
bd
≡, b/

bd
≡). So ρ > 0. By Proposition 3.1, p/

bd
≡ is connected,

hence, for every δ with 0 < δ < ρ the set Xδ = {c/
bd
≡ ∈ p/

bd
≡: d(a/

bd
≡, c/

bd
≡) = δ}

is nonempty. For each δ with 0 < δ < ρ choose cδ/
bd
≡ ∈ Xδ . Since d is Aut(C)

invariant, we see that for δ1 6= δ2, t p(acδ1) 6= t p(acδ2). Hence S(∅) is uncountable,
a contradiction. �

4 Balanced Relations

Throughout this section, E∗ is a bounded 0-type-definable equivalence relation on C,
finer than

s
≡. By Proposition 3.1, the connected components of C/E∗ are of the form

p/E∗, p ∈ S(acleq(∅)). Fix a type p ∈ S(acleq(∅)). It is interesting to learn what
the structure of p/E∗ can be. The structure of C is to some extent reflected in the
structure of Aut(C). So in order to understand the structure of p/E∗ it is reasonable
to investigate the structure of the group

G = { f : p/E∗ → p/E∗ : f ∈ Aut(C) preserves p(C)}

= { f : p/E∗ → p/E∗ : f ∈ Aut(C/Cb(p))},

where Cb(p) = {a/E : E ∈ F E(∅), a |H p} ⊆ acleq(∅). Similarly as the group
GE∗ , G is a compact topological group acting continuously on p/E∗. From the
theory of Lie groups [7] we know that

1. every compact group is a projective limit of compact Lie groups;

2. a compact group H is a Lie group if and only if H has DCC on closed sub-
groups.

In this section we provide a model-theoretic condition equivalent to G being itself
a Lie group. To do this we establish a correspondence between bounded Cb(p)-
type-definable equivalence relations E on p(C) coarser than E∗ and closed normal
subgroups H of G. Namely, for such E and H we define a subgroup H (E) of G and
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two equivalence relations: E ′
H on p/E∗ and EH on p(C) in the following way.

E ′
H (a/E∗, b/E∗) ⇐⇒ ∃h ∈ H, h(a/E∗) = b/E∗.

EH = (π × π)−1(E ′
H ), where π : p(C) → p/E∗ is the natural projection.

H (E) = {h ∈ G : ∀a |H p, h(a/E) = a/E}.

Remark 4.1

1. E ′
H is a closed subset of p/E∗ × p/E∗.

2. EH is Cb(p)-type-definable, coarser than E∗ on p(C).
3. H (E) is a closed normal subgroup of G.

Proof (1) This follows from compactness of G and p/E∗ and continuity of the
action of G on p/E∗.

(2) From (1) and the fact that a set A ⊆ p/E∗ × p/E∗ is closed if and only
if (π × π)−1(A) is type-definable we have that E H is type-definable. To see
that EH is Cb(p)-type-definable we use normality of H in G in the following
way. Let EH (a, b) and f ∈ Aut(C/Cb(p)). Then there is h ∈ H such that
a/E∗ = h(b/E∗), so there is h1 ∈ H such that f (a/E∗) = h1( f (b/E∗)). This
means that EH ( f (a), f (b)).

(3) H (E) is closed in G, because h ∈ H (E) ⇔ ∀a |H p, h(a/E∗) ∈ π−1
0 (a/E)

and π−1
0 (a/E) is closed in p/E∗ (here π0 : p/E∗ → p/E is the canonical map).

H (E) is normal in G, because for h ∈ H (E), g ∈ G and any a |H p we have
g−1hg(a/E) = g−1(h(b/E)) = g−1(b/E) = a/E , where g(a/E) = b/E . �

Proposition 4.2 For E and H as above we have

EH(E) ⊆ E, H ⊆ H (EH), EH(EH ) = EH , and H (EH(E)) = H (E).

Proof The first two items follow from definitions and imply the last two. �

Not all bounded Cb(p)-type-definable equivalence relations E on p(C) coarser than
E∗ are of the form EH for some closed H G G. Similarly, not all closed H G G are
of the form H (E). This is the motivation for the following definition.

Definition 4.3 Assume E is an acleq(∅)-type-definable equivalence relation on
p(C) coarser than E∗ and H is closed normal subgroup of G (symbolically, H Gc G).

1. We say that E is balanced on p/E∗ if E = EH1 for some H1 Gc G (by
Proposition 4.2, this is equivalent to E = EH(E)).

2. We say that H is ∗-closed in G if H = H (E1) for some Cb(p)-type-definable
equivalence relation E1 on p(C) coarser than E∗ (by Proposition 4.2, this is
equivalent to H = H (EH)).

3. We say that E∗ is balanced if x ≡ y and E∗(x, y) implies f (x) = y for
some f ∈ Aut(C) with f |C/E∗ = id (here E∗ is not necessarily finer than

s
≡).

4. For A ⊆ Ceq we say that E∗ is A-balanced if E∗(x, y) implies f (x) = y for
some f ∈ Aut(C/A) with f |C/E∗ = id.

Remark 4.4

1. E is balanced on p/E∗ if and only if for x, y |H p, E(x, y) implies
f (x/E∗) = y/E∗ for some f ∈ Aut(C/Cb(p)) with f |p/E = id.
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2. If E∗ is Cb(p)-balanced, then E is balanced on p/E∗ if and only if for
x, y |H p, E(x, y) implies f (x) = y for some f ∈ Aut(C/Cb(p)) with
f |p/E = id.

3. Relations ≡,
s
≡,

bd
≡ are balanced.

Proposition 4.2 yields the following corollary.

Corollary 4.5 The mapping H → E H is a Galois correspondence between ∗-
closed subgroups of G and equivalence relations balanced on p/E ∗.

Now we will use balanced equivalence relations to express when our group G is a
Lie group.

Proposition 4.6 G is a Lie group if and only if there is no proper infinite chain
E0 ⊇ E1 ⊇ · · · ⊇ E∗ of equivalence relations balanced on p/E∗.

Proof (⇒) This follows easily from Corollary 4.5 and the fact that a Lie group
has DCC on closed subgroups.

(⇐) Suppose that G is not a Lie group. Still G, as a compact group, is a projective
limit of Lie groups, so there exists a family {Hα}α∈I of closed normal subgroups of
G such that

1.
⋂
α∈I Hα = {id},

2. ∀α, β ∈ I ∃γ ∈ I, Hγ ⊆ Hα ∩ Hβ ,
3. G/Hα is a Lie group for all α ∈ I .

So, Hα 6= {id} for all α ∈ I . Obviously for all α, β ∈ I we have that Eα := EHα is
balanced on p/E and Hα ⊇ Hβ implies Eα ⊇ Eβ .

It is sufficient to show that for every α ∈ I there exists a β ∈ I such that Eα ⊇ Eβ
and Eα 6= Eβ . First we prove that Eα 6= E∗ on p(C). Otherwise, by Proposition 4.2,
we have Hα ⊆ H (EHα) = H (Eα) = H (E∗|p(C)× p(C)) = {id}, which is impos-
sible.

So choose a/E∗ 6= b/E∗ ∈ p/E∗ with E ′
Hα (a/E∗, b/E∗). Then id /∈ {g ∈ G :

g(a/E∗) = b/E∗} and the last set is closed in G. By compactness of G and
the choice of the family {Hα}α∈I we get some β ∈ I such that Hα ⊇ Hβ and
Hβ ∩ {g ∈ G : g(a/E∗) = b/E∗} = ∅. So ¬E ′

Hβ (a/E∗, b/E∗), hence Eα 6= Eβ
and of course Eα ⊇ Eβ . �

Sometimes the very topological structure of p/E∗ implies that the condition from
Proposition 4.6 is satisfied, whence G is a Lie group. It is so with another example
of Poizat (Lascar [3]), where p/E∗ is homeomorphic to the circle S1.

Remark 4.7 If p/E∗ is homeomorphic to the circle S1, then G is a Lie group.

Proof We want to prove that the condition from Proposition 4.6 is satisfied. By
Definition 4.3, every equivalence relation balanced on p/E∗ is of the form EH for
some H Gc G. G acts transitively on p/E∗ so all classes of E ′

H on p/E∗ have the
same cardinality. So it suffices to prove that for every H Gc G, the orbit O of some
a/E∗ ∈ p/E∗ under H is finite or equal to p/E∗.

Suppose for a contradiction that O is infinite and O 6= p/E∗. We identify topo-
logically p/E∗ with S1. So O is a closed homogeneous subset of S1, hence it is an
uncountable perfect set. As O 6= S1, there is an open arc I on S1 disjoint from O,
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with endpoints in O. H acts transitively on O, so every point z ∈ O is an endpoint
of an open arc Iz disjoint from O, but with both endpoints in O. By construction, for
distinct z, z ′ ∈ O the arcs Iz, Iz′ are equal or disjoint, hence there are countably many
of them. However, each such arc has only two endpoints, while O is uncountable, a
contradiction. �

We end this paper with some examples of unbalanced equivalence relations.

Example 4.8 (finite unbalanced equivalence relation finer than ≡) Let E be an
equivalence relation on a countable set V with n infinite classes, where n ≥ 3. Let
V/E = {a0, . . . , an−1}. For σ ∈ Sym(n) let aσ = aσ(0), aσ(1), . . . , aσ(n−1). We
choose U(aσ ), σ ∈ Sym(n), a family of infinite disjoint subsets of V such that for
every i < n, ai =

⋃
{U(aσ ) : σ(0) = i}.

We define an (n + 1)-ary relation R on V by

R(x0, . . . , xn) ⇔ x0, . . . , xn−1 are pairwise not E-equivalent and xn ∈ U(aσ ),

where aσ = 〈x0/E, . . . , xn−1/E〉.
Finally, let M = (V ; E, R). We will show that E is unbalanced in M . First

notice that in Meq we can define the sets U(aσ ), σ ∈ Sym(n), over {a0, . . . , an−1}.
Indeed, U(aσ ) = R(b0, . . . , bn−1,M), where b0, . . . , bn−1 are arbitrary elements of
M satisfying bi/E = aσ(i).

Secondly we show that Aut(M) acts transitively on M , hence E is finer than ≡.
To see this, for any τ ∈ Sym(n) let fτ : M → M be a bijection mapping each set
U(aσ ) onto U(aτσ ). Clearly, fτ ∈ Aut(M), so the orbit of each point in M meets
each set U(aσ ). Also, for a fixed σ all elements of U(aσ ) are in the same orbit, so
we are done.

Finally E is not balanced, since for σ 6= τ ∈ Sym(n) with σ(0) = τ(0), el-
ements of U(aσ ) and U(aτ ) lie in the same E-class but in different orbits over
{a0, . . . , an−1}. In fact, here E is also unbalanced on p/

s
≡, where p is the com-

plete 1-type in Th(M).
In this example we must have assumed that n > 2, since each equivalence relation

finer than ≡, which has 2 classes, is balanced.

Example 4.9 (unbalanced relation with infinitely many classes, finer than ≡ but

coarser than
s
≡) Let n > 2 and, for k < ω, let Ek, Rk be defined on a countable

infinite set V as in Example 4.8 and additionally so, that the corresponding partitions
{Uk(aσ ) : σ ∈ Sym(n)}, k < ω, are independent. Let M = (V, {Ek, Rk : k < ω})

and let E =
∧

k Ek . As in Example 4.8, in Th(M) there is just one complete 1-type

p and E is not balanced. Also, E is not balanced on p/
s
≡.

Example 4.10 (unbalanced relation finer than
s
≡ but coarser than

bd
≡) Consider the

group of rotations SO(3,R) acting on S2, the unit sphere in R3. Let d be the usual
metric on R3. Let M = (S2, {Uq(x, y)}q∈Q+), where Uq(x, y) ⇔ d(x, y) < q.

As in the example in Section 3, in Th(M) there is just one complete 1-type p
over ∅. Also, on M there is no finite 0-definable equivalence relation, hence p is a
strong type. This is because SO(3,R), being a connected Lie group, has no proper
subgroup of finite index.
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On M we have a type-definable equivalence relation E0 given by

E0(x, y) ⇔
∧

q

Uq(x, y).

We have p/E0 ≈ S2. In fact, E0 equals
bd
≡ here, hence it is balanced. However, we

will define an unbalanced relation on some strong 2-type.
Fix a ∈ S2. For ρ ∈ (0, 2) let S1

ρ(a) = {b ∈ S2 : d(a, b) = ρ}. The circle S1
1.2(a)

is a-definable in M by the formula ¬U1.2(a, x) ∧ ¬U1.6(a+, x), where a+ is the
antipode of a defined by the formula ¬U2(a, x). Let b ∈ S1

1.2(a) and q = t p(ab).
We see that q is isolated. p is a strong type and the group of rotations of S2 around
the axis going through a acts transitively on S1

1.2(a), hence q is a strong type. On q
we define two equivalence relations:

E(x, y; x ′, y′) ⇔ E0(x, x ′) and E∗(x, y; x ′y′) ⇔ E0(x, x ′) ∧ E0(y, y ′).

We see that E and E∗ are bounded equivalence relations on q.

q/E∗ ≈ {(a/E0, b/E0) : a ∈ S2 ∧ b ∈ S1
1.2(a)}

≈ {(a, b) : a ∈ S2 ∧ b ∈ S1
1.2(a)} ⊆ S2 × S2.

Notice that q/E∗ is not homeomorphic to S2 × S1. In the monster model C we have

ab/E = {(a′, b′) : a′E0a ∧ b′ ∈ S1
1.2(a

′)} ⊆ a/E0 ×
⋃

{b′/E0 : b′ ∈ S1
1.2(a)},

hence any f ∈ Aut(C) fixing ab/E setwise fixes a/E0 setwise.
Now E is not balanced. Indeed, any f ∈ Aut(C) fixing C/E fixes also C/E0. So

if b′ ∈ S1
1.2(a) and b′ 6= b, then f (ab) 6= ab′. Likewise, E is not balanced on q/E∗.
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