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A Simple Proof of Arithmetical Completeness
for �1-conservativity Logic

GIORGI JAPARIDZE

Abstract Hájek and Montagna proved that the modal propositional logicILM
is the logic of�1-conservativity over sound theories containingI�1 (PA with
induction restricted to�1 formulas). I give a simpler proof of the same fact.

1 Introduction By a “theory” we mean an effectively axiomatized theory whose
language contains that ofPA (arithmetic).

We say that a theoryT2 is �1-conservative over a theoryT1 if T1 proves every
�1-theorem ofT2. And T2 is interpretable in T1 if, intuitively, the language ofT2 can
be translated into the language ofT1 in such a way thatT1 proves the translation of
every theorem ofT2.

We say that a theory isessentially reflexive if for any formula α it proves
PrPC(�α�) → α, where�α� is the code (G̈odel number) ofα andPrPC(x) is the stan-
dard formalization of “x is the code of a formula provable in the classical predicate
calculus.”

It is known thatPA is essentially reflexive, but no finitely axiomatizable reason-
able theory, includingI�1 (PA with induction restricted to�1-formulas), can be such.
Indeed, supposeT is a sufficiently strong finitely axiomatized theory. Let thenAx be
the conjunction of the universal quantifier closures of its axioms. IfT is essentially re-
flexive, thenT � PrPC(�¬Ax�) → ¬Ax, whenceT � ¬PrPC(�¬Ax�), which means
thatT proves its own consistency and hence by Gödel’s Second Incompleteness The-
oremT is inconsistent.

According to a nice fact known asOrey-Hájek characterization, if given theo-
ries are essentially reflexive, one is interpretable in another if and only if one is�1-
conservative over the other; moreover, this fact is provable inPA, so we can say that
interpretability and�1-conservativity relations between essentially reflexive theories
are “the same.” However, this is not true for finitely axiomatized theories likeI�1.

De Jongh and Veltman [5] introduced the propositional modal logicILM, whose
language contains two modal operators:� (unary) and� (binary). Berarducci [1] and
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Shavrukov [7], independently, proved thatILM is the logic of interpretability overPA,
that is,ILM yields exactly the schemata ofPA-provable formulas, when�A is under-
stood as a formalization of “A isPA-provable” andA � B as a formalization of “PA+B
is interpretable inPA+A.” By the Orey-H́ajek characterization, this result immedi-
ately implies thatILM is the logic of�1-conservativity overPA as well. However,
the question whetherILM is the logic of�1-conservativity overI�1 (whose logic of
interpretability was in Visser [10] shown to be different fromILM) remained open
until Hájek and Montagna [6] found a positive answer.

In this paper I present an alternative proof of completeness ofILM as the logic of
�1-conservativity overI�1 and its sound extensions; this proof is more direct (as it
appeals only to the most elementary facts about�1-sentences and is based directly on
the natural semantics forILM—Veltman models) and therefore considerably simpler
than that of H́ajek and Montagna; since, in view of the Orey-Hájek characterization,
this result immediately implies completeness ofILM as the logic of interpretability
over PA, this is at the same time a new proof of the above-mentioned Berarducci-
Shavrukov theorem, which seems the simplest among those known so far.

2 Modal Logic Preliminaries ILM is given as the classical propositional logic plus
the rule of necessitation� A ⇒ � �A and the following axiom schemata (� =
¬�¬):

�(A → B) → (�A → �B);

�(�A → A) → �A;

�(A → B) → (A � B);

((A � B) ∧ (B � C)) → (A � C);

((A � C) ∧ (B � C)) → ((A ∨ B) � C);

(A � B) → (�A → �B);

(�A) � A;

(A � B) → ((A ∧ �C) � (B ∧ �C)).

Thus,ILM contains the provability logicGL and, therefore,ILM � �A → ��A
(see Boolos [2]).

One can show thatILM � �A ↔ (¬A) � ⊥, which means that� can be elim-
inated from the language ofILM.

A finite Veltman frame is a system〈W, R, {Sw}w∈W〉, whereW is a finite non-
empty set (of “worlds”) andR and eachSw are binary relations onW such that the
following holds:

1. R is transitive and irreflexive;
2. eachSw is transitive and reflexive;
3. uSwv only if wRu andwRv;
4. wRuRv =⇒ uSwv;
5. uSwvRr =⇒uRr.

A finite Veltman model is a system

〈W, R, {Sw}w∈W , |=〉,
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where〈W, R, {Sw}w∈W〉 is a finite Veltman frame and|= is a (“forcing”) relation be-
tween worlds andILM-formulas such that:

• The Boolean connectives are treated in the classical way:w |= ⊥, w |= A →
B ⇐⇒ (w |= A or w |= B), etc.;

• w |= �A ⇐⇒ (for all u, if wRu, thenu |= A);
• w |= A � B ⇐⇒ (for all u, if wRu andu |= A, then there isv such thatuSwv

andv |= B).

A formulaA is said to bevalid in a Veltman model〈W, R, {Sw}w∈W , |=〉, if w |=
A for all w ∈ W.

Theorem 2.1 (De Jongh and Veltman [5]) ILM � A iff A is valid in all finite Velt-
man models.

3 Arithmetic Preliminaries We fix atheoryT containingI�1. For safety we as-
sume thatT is in the language of arithmetic andT is sound, i.e., all its axioms are
true (in the standard model of arithmetic). In fact it is easy to adjust our proof of the
completeness theorem to the weaker condition of�1-soundness ofT.

A realization is a function * which assigns an arithmetical sentencep* to each
propositional letterp of the modal language and which is extended to other modal
formulas in the following way:

• * commutes with the Boolean connectives:⊥∗ = ⊥, (A → B)∗ = A∗ → B∗,
etc.;

• (�A)∗ = Pr(�A∗�);
• (A � B)∗ = Conserv(�A∗�, �B∗�),

wherePr(�A∗�) andConserv(�A∗�, �B∗�) are natural formalizations of “A* is T-
provable” and “T+B* is �1-conservative overT+A*”.

Weneed to introduce some more notation and terminology.
We will read �x F as saying thatx is the code of someT-proof of the formula

F.
Wetake “�1!” to denote the class of the arithmetical formulas which have an ex-

plicit �1 form, i.e.,∃xF for some primitive recursive formulaF. And we let “�1” de-
note the class of the formulas which areT-provably equivalent to some�1!-formula,
similarly for �1.

Let us fix∃yRegwitness(x, y) as a natural�1!-formalization of the predicate “x
is the code of a true�1!-sentence” such that (T proves that) for each�1!-sentenceF,
T � F ↔ ∃yRegwitness(�F�, y).

The existence of the formulaRegwitness(x, y) is the only not very trivial—but
quite well known (see, e.g., Smorynski [8])—a fact about�1- (�1-) sentences that
will be used in the arithmetical completeness proof below.

We say that a natural numberk is aregular counterwitness for a �1!-sentence
∀xF, if Regwitness(�∃x¬F�, k̄) is true.

4 The Completeness Theorem

Theorem 4.1 ILM � A iff for any realization ∗, T � A∗.
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The rest of the paper is a proof of this theorem. This proof has a lot of similarity
with proofs given in Dzhaparidze [3] and [4], and in Zambella [11]. Just as in [3] and
[4], I define here a Solovay function in terms of regular witnesses rather than provabil-
ity in finite subtheories (as this is done in [1], [7], [11]). Disregarding this difference,
my Solovay function is almost the same as the one given in [11]. Both works, unlike
[1] or [7], employ finite Veltman models rather than infinite Visser models.

The (=⇒) part of the theorem can be checked by a routine induction onILM-
proofs. Here we are going to prove only the (⇐=) part.

SupposeILM � A. Then, by Theorem 2.1, there is a finite Veltman model
〈W, R, {Sw}w∈W , |=〉 in which A is not valid. We may assume thatW = {1, . . . , l}, 1
is the root of the model in the sense that 1Rw for all 1 = w ∈ W, and 1|= A.

Wedefine a new frame〈W ′, R′, {S′
w}w∈W ′ 〉:

W ′ = W ∪ {0};
R′ = R ∪ {(0,w) : w ∈ W};
S′

0 = S1 ∪ {(1,w) : w ∈ W} and for eachw ∈ W, S′
w = Sw.

Observe that〈W ′, R′, {S′
w}w∈W ′ 〉 is a finite Veltman frame.

Following the “traditional” way of arithmetical completeness proofs, we are go-
ing to embed this frame intoT by means of a Solovay [9] style functiong : ω → W ′

and sentencesLimw (w ∈ W ′) which assert thatw is the limit of g. This function will
be defined in such a way that the following basic lemma holds:

Lemma 4.2

a) T proves that g has a limit in W ′, i.e., T � ∨{Limr : r ∈ W ′}.
b) If w = u, then T � ¬(Limw ∧ Limu).
c) If wR′u, then T + Limw proves that T � ¬Limu.
d) If w = 0 and not wR′u, then T + Limw proves that T � ¬Limu.
e) If uS′

wv, then T + Limw proves that T + Limv is �1-conservative over T +
Limu.

f) Suppose wR′u and V is a subset of W ′ such that for no v ∈ V do we have uSwv.
Then T + Limw proves that T + ∨{Limv : v ∈ V} is not �1-conservative over
T + Limu.

g) Lim0 is true.

To deduce the main thesis from this lemma, we define a realization∗ by setting
for each propositional letterp,

p∗ =
∨

{Limr : r ∈ W, r |= p}.

Lemma 4.3 For any w ∈ W and any ILM-formula B,

a) if w |= B, then T + Limw � B∗;
b) if w |= B, then T + Limw � ¬B∗.

Proof: By induction on the complexity ofB. If B is atomic, then clause (a) is
evident and clause (b) is also clear in view of Lemma 4.2b. The cases whenB
is a Boolean combination are straightforward; and since�C is ILM-equivalent to
(¬C) � ⊥, it is enough to consider only the case whenB = C1 � C2.
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Assumew ∈ W. Then we can always writewRx andxSw y instead ofwR′x and
xS′

w y. Letαi = {r : wRr, r |= Ci} (i = 1,2). First we establish that for eachi = 1,2,

(*) T + Limw proves thatT � C∗
i ↔ ∨{Limr : r ∈ αi}.

We argue inT + Limw. Since eachr ∈ αi forcesCi, we have by the induction
hypothesis (clause (a)) that for each suchr, T � Limr → C∗

i , whenceT � ∨{Limr :
r ∈ αi} → C∗

i . Next, according to Lemma 4.2a,T � ∨{Limr : r ∈ W ′} and, according
to Lemma 4.2d,T disproves everyLimr with not wRr; consequently,T � ∨{Limr :
wRr}; at the same time, by the induction hypothesis (clause (b)),C∗

i implies inT the
negation of eachLimr with r |= Ci. Weconclude thatT � C∗

i → ∨{Limr : wRr, r |=
Ci}, i.e., T � C∗

i → ∨{Limr : r ∈ αi}. Thus (*) is proved. Now we continue:
(a) Supposew |= C1 � C2. We argue inT + Limw. By (*), to prove thatT + C∗

2
is �1-conservative overT + C∗

1, it is enough to show thatT + ∨{Limr : r ∈ α2}
is �1-conservative overT + ∨{Limr : r ∈ α1}. Consider an arbitraryu ∈ α1 (the
case with emptyα1 is trivial, for any theory is conservative overT + ⊥). Sincew |=
C1 � C2, there isv ∈ α2 such thatuSwv. Then, by Lemma 4.2e,T + Limv is �1-
conservative overT + Limu. Then so isT + ∨{Limr : r ∈ α2} (which is weaker than
T + Limv). Thus, for eachu ∈ α1, T + ∨{Limr : r ∈ α2} is �1-conservative over
T + Limu. Clearly this implies thatT + ∨{Limr : r ∈ α2} is �1-conservative over
T + ∨{Limr : r ∈ α1}.

(b) Supposew |= C1 � C2. Let us then fix an elementu of α1 such that for no
v ∈ α2 do we haveuSwv. We argue inT + Limw. By Lemma 4.2f,T + ∨{Limr :
r ∈ α2} is not�1-conservative overT + Limu. Then neither is it�1-conservative
overT + ∨{Limr : r ∈ α1} (which is weaker thanT + Limu). This means by (*) that
T + C∗

2 is not�1-conservative overT + C∗
1.

Now we can pass to the desired conclusion: since 1|= A, Lemma 4.3 givesT �
Lim1 → ¬A∗, whenceT � ¬Lim1 =⇒ T � A∗. But we haveT � ¬Lim1 because,
by the Clauses (c) and (g) of Lemma 4.2, this fact is derivable in the sound theoryT
from the true sentenceLim0.

Our remaining duty now is to define the functiong and prove Lemma 4.2. The
Recursion Theorem enables us to define this function simultaneously with the sen-
tencesLimw (for eachw ∈ W ′), which, as we have mentioned already, assert thatw

is the limit of g, and formulas�wu(y) (for each pair(w, u) with wR′u), which we
define by

�wu(y) ≡ ∃t > y(g(t) = ū ∧ ∀z(y ≤ z < t → g(z) = w̄)).

Definition 4.4 (of the functiong) Wedefineg(0) = 0. Assume nowg(y) has been
defined for everyy ≤ x, and letg(x) = w. Theng(x + 1) is defined as follows:

1. SupposewR′u, n ≤ x and for allz with n ≤ z ≤ x we haveg(z) = w. Then,
if �x Limu → ¬�wu(n̄), wedefineg(x + 1) = u.

2. Otherwise supposem ≤ x, F is a�1!-sentence and the following holds:

a) F has a regular counterwitness which is≤ x;

b) �m Limu → F;
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c) wSg(m)u;

d) m is the least number for which suchF andu exist, i.e., there are nom′ :
m′ < m, world u′ and�1!-sentenceF′ satisfying the conditions (a)–(c)
whenm′, u′ andF′ stand form, u andF.

Then we defineg(x + 1) = u.

3. In all the remaining casesg(x + 1) = g(x).

It is not hard to see thatg is primitive recursive. Before we start proving Lemma
4.2, let us agree on some jargon and prove two auxiliary lemmas.

When the transfer fromw = g(x) to u = g(x + 1) is determined by Definition
4.4.1, we say that at the momentx + 1 the functiong makes (or we make) anR′-move
from the worldw to the worldu. If this transfer is determined by Definition 4.4.2, then
we say that anS′-transfer takes place and call the numberm from Definition 4.4.2 the
rank of this S′-transfer. Sometimes theS′-transfer leads to a new world, but “mostly”
it does not, i.e.,(u =)g(x + 1) = g(x)(= w), and then it is not a move in the proper
sense. ThoseS′-transfers which lead to a new world we callS′-moves. As for R′-
transfers, they (by irreflexivity ofR′) always lead to a new world, so we always say
“ R′-move” instead of “R′-transfer.”

In these terms, the formula�wu(n) asserts that beginning from the momentn
(but perhaps also before this moment) and until some momentt, westay at the world
w without any motion and then, at the momentt, wemove directly tou.

Intuitively, we make anR′-move fromw to u, wherewR′u, in the following
situation: since some momentn and up to now we have been staying at the world
w, and at the present moment we have reached evidence thatT + Limu thinks that
the first (proper) move which happens after passing the momentn (and thus our next
move) cannot lead directly to the worldu; then, to spite this belief ofT + Limu, we
just move tou.

And the conditions for anS′-transfer fromw to u can be described as follows:
Weare staying at the worldw and by the present moment we have reached evidence
thatT + Limu proves a false�1!-sentenceF. This evidence consists of two compo-
nents: (1) a regular counterwitness, which indicates thatF is false, and (2) the rankm
of the transfer, which indicates thatT + Limu � F. Then, as soon aswSg(m)u, the next
moment we must be atu (move tou, if u = w, and remain atw, if u = w); if there are
several possibilities of this transfer, we choose the one with the least rank. Besides,
the necessary condition for anS′-transfer is that in the given situation anR′-move is
impossible.

Lemma 4.5 (T �:) For each natural number m and each w ∈ W ′, T + Limw

proves that no S′-transfer to w can have rank which is less than m.

Proof: Note that “the rank of anS′-transfer is< m” means thatT + Limw proves
a false�1!-sentenceF (i.e., one with a regular counterwitness) and the code of this
proof (i.e., of theT-proof of Limw → F) is smaller thanm. But the number of all
�1!-sentences with such short proofs is finite, and asT + Limw proves each of them,
it also proves that none of these sentences has a regular counterwitness (recall our
assumptions about the formulaRegwitness(x, y)).
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Lemma 4.6 (T �:) If g(x)R′w, then for all y ≤ x, g(y)R′w.

Proof: Supposeg(x)R′w and y ≤ x. We proceed by induction onn = x − y. If
y = x, we are done. Suppose nowg(y + 1)R′w. If g(y) = g(y + 1), weare done. If
not, then at the momenty + 1 the function makes either anR′-move or anS′-move.
In the first case we haveg(y)R′g(y + 1) and, by transitivity ofR′, g(y)R′w; in the
second case we haveg(y)S′

vg(y + 1) for somev, and the desired thesis then follows
from the Property 5 of Veltman frames.

Proof: (of Lemma 4.2) In each case below, except (g), we reason inT .

(a) First observe that there isz such that for allz′ ≥ z, not g(z′)R′g(z′ + 1).
Indeed, suppose this is not the case. Then, by Lemma 4.6, for allz there isz′

with g(z)R′g(z′). This means that there is an infinite (or “sufficiently long”) chain
w1R′w2R′ . . ., which is impossible becauseW ′ is finite andR′ is transitive and ir-
reflexive.

So let us fix this numberz. Then we never make anR′-move after the momentz.
Weclaim thatS′-moves can also take place at most a finite number of times (whence
it follows thatg has a limit and this limit is, of course, one of the elements ofW ′).

Indeed, letx be an arbitrary moment afterz at which we make anS′-move, and
let m be the rank of this move. Taking into account reflexivity of the relationsSw, a
little analysis of the Condition 4.4.2 convinces us that the rank of each nextS′-move
is less than that of the previous one, soS′-moves can take place at mostm times after
passingx.

(b) Clearlyg cannot have two different limitsw andu.

(c) Assumew is the limit of g andwR′u. Let n be such that for allx ≥ n,
g(x) = w. We need to show thatT � ¬Limu. Suppose this was not the case. Then
T � Limu → ¬�wu(n̄) and, since every provable formula has arbitrary long proofs,
there isx ≥ n such that�x Limu → ¬�wu(n̄). But then, according to Definition 4.4.1,
we must haveg(x + 1) = u, which, asu = w (by irreflexivity of R′), is a contradic-
tion.

(d) Assumew = 0, w is the limit of g and notwR′u.
If u = w, then (sincew = 0) there isx such thatg(x) = v = u andg(x + 1) = u.

This means that at the momentx + 1 we make either anR′-move or anS′-move. In
the first case we haveT � Limu → ¬�vu(n̄) for somen for which, as it is easy to see,
the�1!-sentence�vu(n̄) is true, whence, by�1!-completeness,T � ¬Limu. And if
anS′-move is the case, then againT � ¬Limu becauseT + Limu proves a false (with
a ≤ x regular counterwitness)�1!-sentence.

Suppose nowu = w. Let us fix a numberz with g(z) = w. Sinceg is primitive
recursive,T proves thatg(z) = w.

Now we argue inT + Limu: Sinceu is the limit ofg andg(z) = w = u, there is a
numberx with x ≥ z such thatg(x) = u andg(x + 1) = u. Since not(w =)g(z)R′u,
we have by Lemma 4.6 that

(*) For eachy with z ≤ y ≤ x, not g(y)R′u.

In particular, notg(x)R′u and the transfer fromg(x) to g(x + 1)(= u) can be de-
termined only by Definition 4.4.2. Then (*) together with the Property 3 of Velt-
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man frames and Definition 4.4.2c, implies that the rank of thisS′-move is less thanz,
which, by Lemma 4.5, is a contradiction.

Thus,T + Limu is inconsistent, i.e.,T � ¬Limu.

(e) AssumeuS′
wv = u (the casev = u is trivial). Supposew is the limit of g, F

is a�1-sentence andT �z Limv → F. We may suppose thatF ∈ �1! and thatz is
sufficiently large, namely,g(z) = w. Fix this z. Weneed to show thatT + Limu � F.

We argue inT + Limu. Suppose notF. Then there is a regular counterwitnessc
for F. Let us fix a numberx > z, c such thatg(x) = g(x +1) = u (asu is the limit ofg,
such a number exists). Then, according to 4.4.2, the only reason forg(x + 1) = u = v

can be that we make anS′-transfer fromu to u and the rank of this transfer is less than
z, which, by Lemma 4.5, is not the case. We therefore conclude thatF (is true).

(f) Assumew is the limit of g, wR′u, V ⊆ W ′ and for eachv ∈ V , not , uS′
wv.

Let n be such that for allz ≥ n, g(z) = w. By the primitive recursiveness of
g, T proves thatg(n) = w. By 4.4.1,T + Limu � ¬�wu(n̄). So, as¬�wu(n̄) is a
�1-sentence, in order to prove thatT + ∨{Limv : v ∈ V} is not�1-conservative
overT + Limu, it isenough to show that for eachv ∈ V , T + Limv � ¬�wu(n̄). Let
us fix anyv ∈ V . According to our assumption, notuS′

wv and, by reflexivity ofS′
w,

u = v.
Wenow argue inT + Limv. Suppose, for a contradiction, that�wu(n) holds, i.e.,

there ist > n such thatg(t) = u and for allz with n ≤ z < t, g(z) = w. Asv is the limit
of g andv = u, there ist′ > t such thatg(t′ − 1) = v and at the momentt′ we arrive
to v to stay there for ever. Let thenx0 < . . . < xk be all the moments in the interval
[t, t′] at which R′- or S′-moves take place, and letu0 = g(x0), . . . , uk = g(xk). Thus
t = x0, t′ = xk, u = u0, v = uk andu0, . . . , uk is the route ofg after departing from
w (at the momentt).

Now let j be the least number among 1, . . . , k such that for allj ≤ i ≤ k, not
u0R′ui. Note that such aj does exist because at leastj = k satisfies this condition
(otherwise, if(u =)u0R′uk(= v), Property 4 of Veltman frames would implyuS′

wv).
Note also that for eachi with j ≤ i ≤ k, the move toui cannot be anR′-move.

Indeed, otherwise we must haveui−1R′ui, whence, by Lemma 4.6,u0R′ui, which is
impossible fori ≥ j.

Thus, beginning from the momentx j (inclusive), each move is anS′-move.
Moreover, for eachi with j ≤ i ≤ k, the rank of theS′-move toui is less thanx0.
For otherwise Property 3 of Veltman frames together with Lemma 4.6 and Defini-
tion 4.4.2c would entail thatu0R′ui. On the other hand, since consecutiveS′-moves
decrease the rank (as we noted in the proof of (a) above) and since the rank of the
S′-move touk cannot be less thann (Lemma 4.5), we conclude that for eachi with
j ≤ i ≤ k, the rank of theS′-move toui is in the interval [n, x0 − 1]. But the value of
g in this interval isw, and by Definition 4.4.2c this means thatu j−1S′

wu j S′
w . . . S′

wuk.
At the same time, we have eitheru0 = u j−1 or u0R′u j−1. In both cases we then have
u0S′

wu j−1 (in the first case by reflexivity ofS′
w and in the second case by the Property

4 of Veltman frames), whence, by transitivity ofS′
w, u0S′

wuk, i.e., uS′
wv, which is a

contradiction.
Thus we can conclude thatT + Limv � ¬�wu(n̄).

(g) By Lemma 4.2a, asT is sound, one of theLimw (w ∈ W ′) is true. Since for
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no w do we havewR′w, Lemma 4.2d means that eachLimw, exceptLim0, implies
in T its ownT-disprovability and therefore is false. Consequently,Lim0 is true. This
completes the proof of Lemma 4.2.

This in turn completes the proof of Theorem 4.1.
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