A Simple Proof of Arithmetical Completeness for Π_{1}-conservativity Logic

GIORGI JAPARIDZE

Abstract

Hájek and Montagna proved that the modal propositional logic ILM is the logic of Π_{1}-conservativity over sound theories containing $I \Sigma_{1}$ (PA with induction restricted to Σ_{1} formulas). I give a simpler proof of the same fact.

1 Introduction By a "theory" we mean an effectively axiomatized theory whose language contains that of $P A$ (arithmetic).

We say that a theory T_{2} is Π_{1}-conservative over a theory T_{1} if T_{1} proves every Π_{1}-theorem of T_{2}. And T_{2} is interpretable in T_{1} if, intuitively, the language of T_{2} can be translated into the language of T_{1} in such a way that T_{1} proves the translation of every theorem of T_{2}.

We say that a theory is essentially reflexive if for any formula α it proves $\operatorname{Pr}_{P C}(\lceil\alpha\rceil) \rightarrow \alpha$, where $\lceil\alpha\rceil$ is the code (Gödel number) of α and $\operatorname{Pr}_{P C}(x)$ is the standard formalization of " x is the code of a formula provable in the classical predicate calculus."

It is known that $P A$ is essentially reflexive, but no finitely axiomatizable reasonable theory, including $I \Sigma_{1}$ (PA with induction restricted to Σ_{1}-formulas), can be such. Indeed, suppose T is a sufficiently strong finitely axiomatized theory. Let then $A x$ be the conjunction of the universal quantifier closures of its axioms. If T is essentially reflexive, then $T \vdash \operatorname{Pr}_{P C}(\lceil\neg A x\rceil) \rightarrow \neg A x$, whence $T \vdash \neg \operatorname{Pr}_{P C}(\lceil\neg A x\rceil)$, which means that T proves its own consistency and hence by Gödel's Second Incompleteness Theorem T is inconsistent.

According to a nice fact known as Orey-Hájek characterization, if given theories are essentially reflexive, one is interpretable in another if and only if one is $\Pi_{1^{-}}$ conservative over the other; moreover, this fact is provable in $P A$, so we can say that interpretability and Π_{1}-conservativity relations between essentially reflexive theories are "the same." However, this is not true for finitely axiomatized theories like $I \Sigma_{1}$.

De Jongh and Veltman [5] introduced the propositional modal logic $I L M$, whose language contains two modal operators: \square (unary) and \triangleright (binary). Berarducci 1 and

Shavrukov [7], independently, proved that ILM is the logic of interpretability over $P A$, that is, $I L M$ yields exactly the schemata of $P A$-provable formulas, when $\square A$ is understood as a formalization of " A is $P A$-provable" and $A \triangleright B$ as a formalization of " $P A+B$ is interpretable in $P A+A$." By the Orey-Hájek characterization, this result immediately implies that $I L M$ is the logic of Π_{1}-conservativity over $P A$ as well. However, the question whether $I L M$ is the logic of Π_{1}-conservativity over $I \Sigma_{1}$ (whose logic of interpretability was in Visser [10] shown to be different from ILM) remained open until Hájek and Montagna 6 found a positive answer.

In this paper I present an alternative proof of completeness of ILM as the logic of Π_{1}-conservativity over $I \Sigma_{1}$ and its sound extensions; this proof is more direct (as it appeals only to the most elementary facts about Π_{1}-sentences and is based directly on the natural semantics for ILM—Veltman models) and therefore considerably simpler than that of Hájek and Montagna; since, in view of the Orey-Hájek characterization, this result immediately implies completeness of ILM as the logic of interpretability over $P A$, this is at the same time a new proof of the above-mentioned BerarducciShavrukov theorem, which seems the simplest among those known so far.

2 Modal Logic Preliminaries ILM is given as the classical propositional logic plus the rule of necessitation $\vdash A \Rightarrow \vdash \square A$ and the following axiom schemata ($\diamond=$ $\neg \square \neg)$:

$$
\begin{aligned}
& \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B) ; \\
& \square(\square A \rightarrow A) \rightarrow \square A ; \\
& \square(A \rightarrow B) \rightarrow(A \triangleright B) ; \\
& ((A \triangleright B) \wedge(B \triangleright C)) \rightarrow(A \triangleright C) ; \\
& ((A \triangleright C) \wedge(B \triangleright C)) \rightarrow((A \vee B) \triangleright C) ; \\
& (A \triangleright B) \rightarrow(\diamond A \rightarrow \diamond B) ; \\
& (\diamond A) \triangleright A ; \\
& (A \triangleright B) \rightarrow((A \wedge \square C) \triangleright(B \wedge \square C)) .
\end{aligned}
$$

Thus, $I L M$ contains the provability logic $G L$ and, therefore, $I L M \vdash \square A \rightarrow \square \square A$ (see Boolos [2]).

One can show that $I L M \vdash \square A \leftrightarrow(\neg A) \triangleright \perp$, which means that \square can be eliminated from the language of $I L M$.

A finite Veltman frame is a system $\left\langle W, R,\left\{S_{w}\right\}_{w \in W}\right\rangle$, where W is a finite nonempty set (of "worlds") and R and each S_{w} are binary relations on W such that the following holds:

1. R is transitive and irreflexive;
2. each S_{w} is transitive and reflexive;
3. $u S_{w} v$ only if $w R u$ and $w R v$;
4. $w R u R v \Longrightarrow u S_{w} v$;
5. $u S_{w} v R r \Longrightarrow u R r$.

A finite Veltman model is a system

$$
\left\langle W, R,\left\{S_{w}\right\}_{w \in W}, \models\right\rangle,
$$

where $\left\langle W, R,\left\{S_{w}\right\}_{w \in W}\right\rangle$ is a finite Veltman frame and \models is a ("forcing") relation between worlds and $I L M$-formulas such that:

- The Boolean connectives are treated in the classical way: $w \not \models \perp, w \models A \rightarrow$ $B \Longleftrightarrow(w \not \models A$ or $w \models B)$, etc.;
- $w \models \square A \Longleftrightarrow$ (for all u, if $w R u$, then $u \models A$);
- $w \models A \triangleright B \Longleftrightarrow$ (for all u, if $w R u$ and $u \models A$, then there is v such that $u S_{w} v$ and $v \models B$).
A formula A is said to be valid in a Veltman model $\left\langle W, R,\left\{S_{w}\right\}_{w \in W}, \models\right\rangle$, if $w \models$ A for all $w \in W$.

Theorem 2.1 (De Jongh and Veltman (51) ILMトA iff A is valid in all finite Veltman models.

3 Arithmetic Preliminaries We fix a theory T containing $I \Sigma_{1}$. For safety we assume that T is in the language of arithmetic and T is sound, i.e., all its axioms are true (in the standard model of arithmetic). In fact it is easy to adjust our proof of the completeness theorem to the weaker condition of Σ_{1}-soundness of T.

A realization is a function * which assigns an arithmetical sentence p^{*} to each propositional letter p of the modal language and which is extended to other modal formulas in the following way:

- * commutes with the Boolean connectives: $\perp^{*}=\perp,(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}$, etc.;
- $(\square A)^{*}=\operatorname{Pr}\left(\left\lceil A^{*}\right\rceil\right)$;
- $(A \triangleright B)^{*}=\operatorname{Conserv}\left(\left\lceil A^{*}\right\rceil,\left\lceil B^{*}\right\rceil\right)$,
where $\operatorname{Pr}\left(\left\lceil A^{*}\right\rceil\right)$ and $\operatorname{Conserv}\left(\left\lceil A^{*}\right\rceil,\left\lceil B^{*}\right\rceil\right)$ are natural formalizations of " A^{*} is T provable" and " $T+B^{*}$ is Π_{1}-conservative over $T+A^{*}$ ".

We need to introduce some more notation and terminology.
We will read $\vdash_{x} F$ as saying that x is the code of some T-proof of the formula F.

We take " Σ_{1} !" to denote the class of the arithmetical formulas which have an explicit Σ_{1} form, i.e., $\exists x F$ for some primitive recursive formula F. And we let " Σ_{1} " denote the class of the formulas which are T-provably equivalent to some Σ_{1} !-formula, similarly for Π_{1}.

Let us fix $\exists y \operatorname{Regwitness}(x, y)$ as a natural Σ_{1} !-formalization of the predicate " x is the code of a true Σ_{1} !-sentence" such that (T proves that) for each Σ_{1} !-sentence F, $T \vdash F \leftrightarrow \exists y$ Regwitness $(\lceil F\rceil, y)$.

The existence of the formula Regwitness (x, y) is the only not very trivial-but quite well known (see, e.g., Smorynski [8)-a fact about $\Sigma_{1^{-}}\left(\Pi_{1^{-}}\right)$sentences that will be used in the arithmetical completeness proof below.

We say that a natural number k is a regular counterwitness for a Π_{1} !-sentence $\forall x F$, if Regwitness $(\lceil\exists x \neg F\rceil, \bar{k})$ is true.

4 The Completeness Theorem

Theorem 4.1 $I L M \vdash A$ iff for any realization *, $T \vdash A^{*}$.

The rest of the paper is a proof of this theorem. This proof has a lot of similarity with proofs given in Dzhaparidze [3] and 4, and in Zambella [11]. Just as in [3] and 47, I define here a Solovay function in terms of regular witnesses rather than provability in finite subtheories (as this is done in [1, (7), (11). Disregarding this difference, my Solovay function is almost the same as the one given in 111. Both works, unlike (1) or [7], employ finite Veltman models rather than infinite Visser models.

The (\Longrightarrow) part of the theorem can be checked by a routine induction on ILMproofs. Here we are going to prove only the (\Longleftarrow) part.

Suppose ILM $\forall A$. Then, by Theorem 2.1, there is a finite Veltman model $\left\langle W, R,\left\{S_{w}\right\}_{w \in W}, \models\right\rangle$ in which A is not valid. We may assume that $W=\{1, \ldots, l\}, 1$ is the root of the model in the sense that $1 R w$ for all $1 \neq w \in W$, and $1 \not \models A$.

We define a new frame $\left\langle W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}\right\}_{w \in W^{\prime}}\right\rangle$:

$$
\begin{aligned}
& W^{\prime}=W \cup\{0\} ; \\
& R^{\prime}=R \cup\{(0, w): \quad w \in W\} ; \\
& S_{0}^{\prime}=S_{1} \cup\{(1, w): \quad w \in W\} \text { and for each } w \in W, S_{w}^{\prime}=S_{w} .
\end{aligned}
$$

Observe that $\left\langle W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}\right\}_{w \in W^{\prime}}\right\rangle$ is a finite Veltman frame.
Following the "traditional" way of arithmetical completeness proofs, we are going to embed this frame into T by means of a Solovay 9 style function $g: \omega \rightarrow W^{\prime}$ and sentences $\operatorname{Lim}_{w}\left(w \in W^{\prime}\right)$ which assert that w is the limit of g. This function will be defined in such a way that the following basic lemma holds:

Lemma 4.2

a) T proves that g has a limit in W^{\prime}, i.e., $T \vdash \bigvee\left\{\operatorname{Lim}_{r}: r \in W^{\prime}\right\}$.
b) If $w \neq u$, then $T \vdash \neg\left(\operatorname{Lim}_{w} \wedge \operatorname{Lim}_{u}\right)$.
c) If $w R^{\prime} u$, then $T+\operatorname{Lim}_{w}$ proves that $T \nvdash \neg \operatorname{Lim}_{u}$.
d) If $w \neq 0$ and not $w R^{\prime} u$, then $T+\operatorname{Lim}_{w}$ proves that $T \vdash \neg \operatorname{Lim}_{u}$.
e) If $u S_{w}^{\prime} v$, then $T+\operatorname{Lim}_{w}$ proves that $T+\operatorname{Lim}_{v}$ is Π_{1}-conservative over $T+$ $L i m u_{u}$.
f) Suppose $w R^{\prime} u$ and V is a subset of W^{\prime} such that for no $v \in V$ do we have $u S_{w} v$. Then $T+\operatorname{Lim}_{w}$ proves that $T+\bigvee\left\{\operatorname{Lim}_{v}: v \in V\right\}$ is not Π_{1}-conservative over $T+\operatorname{Lim}_{u}$.
g) Lim_{0} is true.

To deduce the main thesis from this lemma, we define a realization * by setting for each propositional letter p,

$$
p^{*}=\bigvee\left\{\operatorname{Lim}_{r}: r \in W, r \models p\right\}
$$

Lemma 4.3 For any $w \in W$ and any ILM-formula B,

a) if $w \vDash B$, then $T+\operatorname{Lim}_{w} \vdash B^{*}$;
b) if $w \not \vDash B$, then $T+\operatorname{Lim}_{w} \vdash \neg B^{*}$.

Proof: By induction on the complexity of B. If B is atomic, then clause (a) is evident and clause (b) is also clear in view of Lemma 4.2b. The cases when B is a Boolean combination are straightforward; and since $\square C$ is $I L M$-equivalent to $(\neg C) \triangleright \perp$, it is enough to consider only the case when $B=C_{1} \triangleright C_{2}$.

Assume $w \in W$. Then we can always write $w R x$ and $x S_{w} y$ instead of $w R^{\prime} x$ and $x S_{w}^{\prime} y$. Let $\alpha_{i}=\left\{r: w R r, r=C_{i}\right\}(i=1,2)$. First we establish that for each $i=1,2$,
(*) $\quad T+\operatorname{Lim}_{w}$ proves that $T \vdash C_{i}^{*} \leftrightarrow \bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{i}\right\}$.
We argue in $T+\operatorname{Lim}_{w}$. Since each $r \in \alpha_{i}$ forces C_{i}, we have by the induction hypothesis (clause (a)) that for each such $r, T \vdash \operatorname{Lim}_{r} \rightarrow C_{i}^{*}$, whence $T \vdash \bigvee\left\{\operatorname{Lim}_{r}\right.$: $\left.r \in \alpha_{i}\right\} \rightarrow C_{i}^{*}$. Next, according to Lemma 4.2a, $T \vdash \bigvee\left\{\operatorname{Lim}_{r}: r \in W^{\prime}\right\}$ and, according to Lemma 4.2d, T disproves every Lim_{r} with not $w R r$; consequently, $T \vdash \bigvee\left\{\operatorname{Lim}_{r}\right.$: $w R r\}$; at the same time, by the induction hypothesis (clause (b)), C_{i}^{*} implies in T the negation of each Lim_{r} with $r \not \models C_{i}$. We conclude that $T \vdash C_{i}^{*} \rightarrow \bigvee\left\{\operatorname{Lim}_{r}: w R r, r \models\right.$ $\left.C_{i}\right\}$, i.e., $T \vdash C_{i}^{*} \rightarrow \bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{i}\right\}$. Thus (*) is proved. Now we continue:
(a) Suppose $w \models C_{1} \triangleright C_{2}$. We argue in $T+\operatorname{Lim}_{w}$. By (*), to prove that $T+C_{2}^{*}$ is Π_{1}-conservative over $T+C_{1}^{*}$, it is enough to show that $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{2}\right\}$ is Π_{1}-conservative over $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{1}\right\}$. Consider an arbitrary $u \in \alpha_{1}$ (the case with empty α_{1} is trivial, for any theory is conservative over $T+\perp$). Since $w \models$ $C_{1} \triangleright C_{2}$, there is $v \in \alpha_{2}$ such that $u S_{w} v$. Then, by Lemma 4.2e, $T+\operatorname{Lim}_{v}$ is $\Pi_{1^{-}}$ conservative over $T+\operatorname{Lim}_{u}$. Then so is $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{2}\right\}$ (which is weaker than $T+\operatorname{Lim}_{v}$). Thus, for each $u \in \alpha_{1}, T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{2}\right\}$ is Π_{1}-conservative over $T+\operatorname{Lim}_{u}$. Clearly this implies that $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{2}\right\}$ is Π_{1}-conservative over $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{1}\right\}$.
(b) Suppose $w \not \vDash C_{1} \triangleright C_{2}$. Let us then fix an element u of α_{1} such that for no $v \in \alpha_{2}$ do we have $u S_{w} v$. We argue in $T+\operatorname{Lim}_{w}$. By Lemma 4.2f, $T+\bigvee\left\{\operatorname{Lim}_{r}\right.$: $\left.r \in \alpha_{2}\right\}$ is not Π_{1}-conservative over $T+\operatorname{Lim}_{u}$. Then neither is it Π_{1}-conservative over $T+\bigvee\left\{\operatorname{Lim}_{r}: r \in \alpha_{1}\right\}$ (which is weaker than $T+$ Lim $_{u}$). This means by $\left({ }^{*}\right)$ that $T+C_{2}^{*}$ is not Π_{1}-conservative over $T+C_{1}^{*}$.

Now we can pass to the desired conclusion: since $1 \not \vDash A$, Lemma 4.3 gives $T \vdash$ $\operatorname{Lim}_{1} \rightarrow \neg A^{*}$, whence $T \nvdash \neg \operatorname{Lim}_{1} \Longrightarrow T \nvdash A^{*}$. But we have $T \nvdash \neg \operatorname{Lim}_{1}$ because, by the Clauses (c) and (g) of Lemma 4.2, this fact is derivable in the sound theory T from the true sentence Lim_{0}.

Our remaining duty now is to define the function g and prove Lemma 4.2. The Recursion Theorem enables us to define this function simultaneously with the sentences Lim_{w} (for each $w \in W^{\prime}$), which, as we have mentioned already, assert that w is the limit of g, and formulas $\Delta_{w u}(y)$ (for each pair (w, u) with $w R^{\prime} u$), which we define by

$$
\Delta_{w u}(y) \equiv \exists t>y(g(t)=\bar{u} \wedge \forall z(y \leq z<t \rightarrow g(z)=\bar{w})) .
$$

Definition 4.4 (of the function g) We define $g(0)=0$. Assume now $g(y)$ has been defined for every $y \leq x$, and let $g(x)=w$. Then $g(x+1)$ is defined as follows:

1. Suppose $w R^{\prime} u, n \leq x$ and for all z with $n \leq z \leq x$ we have $g(z)=w$. Then, if $\vdash_{x} \operatorname{Lim}_{u} \rightarrow \neg \Delta_{w u}(\bar{n})$, we define $g(x+1)=u$.
2. Otherwise suppose $m \leq x, F$ is a Π_{1} !-sentence and the following holds:
a) F has a regular counterwitness which is $\leq x$;
b) $\vdash_{m} \operatorname{Lim}_{u} \rightarrow F$;
c) $w S_{g(m)} u$;
d) m is the least number for which such F and u exist, i.e., there are no m^{\prime} : $m^{\prime}<m$, world u^{\prime} and Π_{1} !-sentence F^{\prime} satisfying the conditions (a)-(c) when m^{\prime}, u^{\prime} and F^{\prime} stand for m, u and F.

Then we define $g(x+1)=u$.
3. In all the remaining cases $g(x+1)=g(x)$.

It is not hard to see that g is primitive recursive. Before we start proving Lemma 4.2 , let us agree on some jargon and prove two auxiliary lemmas.

When the transfer from $w=g(x)$ to $u=g(x+1)$ is determined by Definition 4.4.1, we say that at the moment $x+1$ the function g makes (or we make) an R^{\prime}-move from the world w to the world u. If this transfer is determined by Definition 4.4.2, then we say that an S^{\prime}-transfer takes place and call the number m from Definition 4.4.2 the rank of this S^{\prime}-transfer. Sometimes the S^{\prime}-transfer leads to a new world, but "mostly" it does not, i.e., $(u=) g(x+1)=g(x)(=w)$, and then it is not a move in the proper sense. Those S^{\prime}-transfers which lead to a new world we call S^{\prime}-moves. As for R^{\prime} transfers, they (by irreflexivity of R^{\prime}) always lead to a new world, so we always say " R^{\prime}-move" instead of " R^{\prime}-transfer."

In these terms, the formula $\Delta_{w u}(n)$ asserts that beginning from the moment n (but perhaps also before this moment) and until some moment t, we stay at the world w without any motion and then, at the moment t, we move directly to u.

Intuitively, we make an R^{\prime}-move from w to u, where $w R^{\prime} u$, in the following situation: since some moment n and up to now we have been staying at the world w, and at the present moment we have reached evidence that $T+\operatorname{Lim}_{u}$ thinks that the first (proper) move which happens after passing the moment n (and thus our next move) cannot lead directly to the world u; then, to spite this belief of $T+\operatorname{Lim}_{u}$, we just move to u.

And the conditions for an S^{\prime}-transfer from w to u can be described as follows: We are staying at the world w and by the present moment we have reached evidence that $T+\operatorname{Lim}_{u}$ proves a false Π_{1} !-sentence F. This evidence consists of two components: (1) a regular counterwitness, which indicates that F is false, and (2) the rank m of the transfer, which indicates that $T+\operatorname{Lim}_{u} \vdash F$. Then, as soon as $w S_{g(m)} u$, the next moment we must be at u (move to u, if $u \neq w$, and remain at w, if $u=w$); if there are several possibilities of this transfer, we choose the one with the least rank. Besides, the necessary condition for an S^{\prime}-transfer is that in the given situation an R^{\prime}-move is impossible.

Lemma 4.5 ($T \vdash:$) For each natural number m and each $w \in W^{\prime}, \quad T+\operatorname{Lim}_{w}$ proves that no S^{\prime}-transfer to w can have rank which is less than m.

Proof: Note that "the rank of an S^{\prime}-transfer is $<m$ " means that $T+\operatorname{Lim}_{w}$ proves a false Π_{1} !-sentence F (i.e., one with a regular counterwitness) and the code of this proof (i.e., of the T-proof of $\operatorname{Lim}_{w} \rightarrow F$) is smaller than m. But the number of all Π_{1} !-sentences with such short proofs is finite, and as $T+\operatorname{Lim}_{w}$ proves each of them, it also proves that none of these sentences has a regular counterwitness (recall our assumptions about the formula Regwitness (x, y)).

Lemma $4.6 \quad(T \vdash:)$ If $g(x) R^{\prime} w$, then for all $y \leq x, g(y) R^{\prime} w$.
Proof: Suppose $g(x) R^{\prime} w$ and $y \leq x$. We proceed by induction on $n=x-y$. If $y=x$, we are done. Suppose now $g(y+1) R^{\prime} w$. If $g(y)=g(y+1)$, we are done. If not, then at the moment $y+1$ the function makes either an R^{\prime}-move or an S^{\prime}-move. In the first case we have $g(y) R^{\prime} g(y+1)$ and, by transitivity of $R^{\prime}, g(y) R^{\prime} w$; in the second case we have $g(y) S_{v}^{\prime} g(y+1)$ for some v, and the desired thesis then follows from the Property 5 of Veltman frames.

Proof: (of Lemma 4.2) In each case below, except (g), we reason in T.
(a) First observe that there is z such that for all $z^{\prime} \geq z, \operatorname{not} g\left(z^{\prime}\right) R^{\prime} g\left(z^{\prime}+1\right)$.

Indeed, suppose this is not the case. Then, by Lemma 4.6, for all z there is z^{\prime} with $g(z) R^{\prime} g\left(z^{\prime}\right)$. This means that there is an infinite (or "sufficiently long") chain $w_{1} R^{\prime} w_{2} R^{\prime} \ldots$, which is impossible because W^{\prime} is finite and R^{\prime} is transitive and irreflexive.

So let us fix this number z. Then we never make an R^{\prime}-move after the moment z. We claim that S^{\prime}-moves can also take place at most a finite number of times (whence it follows that g has a limit and this limit is, of course, one of the elements of W^{\prime}).

Indeed, let x be an arbitrary moment after z at which we make an S^{\prime}-move, and let m be the rank of this move. Taking into account reflexivity of the relations S_{w}, a little analysis of the Condition 4.4.2 convinces us that the rank of each next S^{\prime}-move is less than that of the previous one, so S^{\prime}-moves can take place at most m times after passing x.
(b) Clearly g cannot have two different limits w and u.
(c) Assume w is the limit of g and $w R^{\prime} u$. Let n be such that for all $x \geq n$, $g(x)=w$. We need to show that $T \nvdash \neg \operatorname{Lim}_{u}$. Suppose this was not the case. Then $T \vdash \operatorname{Lim}_{u} \rightarrow \neg \Delta_{w u}(\bar{n})$ and, since every provable formula has arbitrary long proofs, there is $x \geq n$ such that $\vdash_{x} \operatorname{Lim}_{u} \rightarrow \neg \Delta_{w u}(\bar{n})$. But then, according to Definition 4.4.1, we must have $g(x+1)=u$, which, as $u \neq w$ (by irreflexivity of R^{\prime}), is a contradiction.
(d) Assume $w \neq 0, w$ is the limit of g and not $w R^{\prime} u$.

If $u=w$, then (since $w \neq 0$) there is x such that $g(x)=v \neq u$ and $g(x+1)=u$. This means that at the moment $x+1$ we make either an R^{\prime}-move or an S^{\prime}-move. In the first case we have $T \vdash \operatorname{Lim}_{u} \rightarrow \neg \Delta_{v u}(\bar{n})$ for some n for which, as it is easy to see, the Σ_{1} !-sentence $\Delta_{v u}(\bar{n})$ is true, whence, by Σ_{1} !-completeness, $T \vdash \neg \operatorname{Lim}_{u}$. And if an S^{\prime}-move is the case, then again $T \vdash \neg \operatorname{Lim}_{u}$ because $T+\operatorname{Lim}_{u}$ proves a false (with $\mathrm{a} \leq x$ regular counterwitness) Π_{1} !-sentence.

Suppose now $u \neq w$. Let us fix a number z with $g(z)=w$. Since g is primitive recursive, T proves that $g(z)=w$.

Now we argue in $T+\operatorname{Lim}_{u}$: Since u is the limit of g and $g(z)=w \neq u$, there is a number x with $x \geq z$ such that $g(x) \neq u$ and $g(x+1)=u$. Since not $(w=) g(z) R^{\prime} u$, we have by Lemma 4.6 that
(*) For each y with $z \leq y \leq x$, not $g(y) R^{\prime} u$.
In particular, not $g(x) R^{\prime} u$ and the transfer from $g(x)$ to $g(x+1)(=u)$ can be determined only by Definition 4.4.2. Then (*) together with the Property 3 of Velt-
man frames and Definition 4.4.2c, implies that the rank of this S^{\prime}-move is less than z, which, by Lemma 4.5, is a contradiction.

Thus, $T+\operatorname{Lim}_{u}$ is inconsistent, i.e., $T \vdash \neg \operatorname{Lim}_{u}$.
(e) Assume $u S_{w}^{\prime} v \neq u$ (the case $v=u$ is trivial). Suppose w is the limit of g, F is a Π_{1}-sentence and $T \vdash_{z} \operatorname{Lim}_{v} \rightarrow F$. We may suppose that $F \in \Pi_{1}$! and that z is sufficiently large, namely, $g(z)=w$. Fix this z. We need to show that $T+\operatorname{Lim}_{u} \vdash F$.

We argue in $T+\operatorname{Lim}_{u}$. Suppose not F. Then there is a regular counterwitness c for F. Let us fix a number $x>z, c$ such that $g(x)=g(x+1)=u($ as u is the limit of g, such a number exists). Then, according to 4.4.2, the only reason for $g(x+1)=u \neq v$ can be that we make an S^{\prime}-transfer from u to u and the rank of this transfer is less than z, which, by Lemma 4.5 , is not the case. We therefore conclude that F (is true).
(f) Assume w is the limit of $g, w R^{\prime} u, V \subseteq W^{\prime}$ and for each $v \in V$, not , $u S_{w}^{\prime} v$.

Let n be such that for all $z \geq n, g(z)=w$. By the primitive recursiveness of g, T proves that $g(n)=w$. By 4.4.1, $T+\operatorname{Lim}_{u} \nvdash \neg \Delta_{w u}(\bar{n})$. So, as $\neg \Delta_{w u}(\bar{n})$ is a Π_{1}-sentence, in order to prove that $T+\bigvee\left\{\operatorname{Lim}_{v}: \quad v \in V\right\}$ is not Π_{1}-conservative over $T+\operatorname{Lim}_{u}$, it is enough to show that for each $v \in V, T+\operatorname{Lim}_{v} \vdash \neg \Delta_{w u}(\bar{n})$. Let us fix any $v \in V$. According to our assumption, not $u S_{w}^{\prime} v$ and, by reflexivity of S_{w}^{\prime}, $u \neq v$.

We now argue in $T+\operatorname{Lim}_{v}$. Suppose, for a contradiction, that $\Delta_{w u}(n)$ holds, i.e., there is $t>n$ such that $g(t)=u$ and for all z with $n \leq z<t, g(z)=w$. As v is the limit of g and $v \neq u$, there is $t^{\prime}>t$ such that $g\left(t^{\prime}-1\right) \neq v$ and at the moment t^{\prime} we arrive to v to stay there for ever. Let then $x_{0}<\ldots<x_{k}$ be all the moments in the interval [$\left.t, t^{\prime}\right]$ at which R^{\prime} - or S^{\prime}-moves take place, and let $u_{0}=g\left(x_{0}\right), \ldots, u_{k}=g\left(x_{k}\right)$. Thus $t=x_{0}, t^{\prime}=x_{k}, u=u_{0}, v=u_{k}$ and u_{0}, \ldots, u_{k} is the route of g after departing from w (at the moment t).

Now let j be the least number among $1, \ldots, k$ such that for all $j \leq i \leq k$, not $u_{0} R^{\prime} u_{i}$. Note that such a j does exist because at least $j=k$ satisfies this condition (otherwise, if ($u=$) $u_{0} R^{\prime} u_{k}(=v)$, Property 4 of Veltman frames would imply $u S_{w}^{\prime} v$).

Note also that for each i with $j \leq i \leq k$, the move to u_{i} cannot be an R^{\prime}-move. Indeed, otherwise we must have $u_{i-1} R^{\prime} u_{i}$, whence, by Lemma $4.6, u_{0} R^{\prime} u_{i}$, which is impossible for $i \geq j$.

Thus, beginning from the moment x_{j} (inclusive), each move is an S^{\prime}-move. Moreover, for each i with $j \leq i \leq k$, the rank of the S^{\prime}-move to u_{i} is less than x_{0}. For otherwise Property 3 of Veltman frames together with Lemma 4.6 and Definition 4.4.2c would entail that $u_{0} R^{\prime} u_{i}$. On the other hand, since consecutive S^{\prime}-moves decrease the rank (as we noted in the proof of (a) above) and since the rank of the S^{\prime}-move to u_{k} cannot be less than n (Lemma 4.5), we conclude that for each i with $j \leq i \leq k$, the rank of the S^{\prime}-move to u_{i} is in the interval [$n, x_{0}-1$]. But the value of g in this interval is w, and by Definition 4.4.2c this means that $u_{j-1} S_{w}^{\prime} u_{j} S_{w}^{\prime} \ldots S_{w}^{\prime} u_{k}$. At the same time, we have either $u_{0}=u_{j-1}$ or $u_{0} R^{\prime} u_{j-1}$. In both cases we then have $u_{0} S_{w}^{\prime} u_{j-1}$ (in the first case by reflexivity of S_{w}^{\prime} and in the second case by the Property 4 of Veltman frames), whence, by transitivity of $S_{w}^{\prime}, u_{0} S_{w}^{\prime} u_{k}$, i.e., $u S_{w}^{\prime} v$, which is a contradiction.

Thus we can conclude that $T+\operatorname{Lim}_{v} \vdash \neg \Delta_{w u}(\bar{n})$.
(g) By Lemma 4.2a, as T is sound, one of the $\operatorname{Lim}_{w}\left(w \in W^{\prime}\right)$ is true. Since for
no w do we have $w R^{\prime} w$, Lemma 4.2d means that each Lim_{w}, except Lim_{0}, implies in T its own T-disprovability and therefore is false. Consequently, Lim_{0} is true. This completes the proof of Lemma 4.2.

This in turn completes the proof of Theorem 4.1.

REFERENCES

[1] Berarducci, A., "The interpretability logic of Peano Arithmetic," The Journal of Symbolic Logic, vol. 55 (1990), pp. 1059-1089.Zbl 0725.03037/MR 92f:03066 1.4.4
[2] Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1993. Zbl 0891.03004|MR 95c:03038 2
[3] Dzhaparidze (Japaridze), G., "The logic of linear tolerance," Studia Logica, vol. 51 (1992), pp. 249-277. Zbl 0769.03010||MR 94e:03061 4.4.
[4] Dzhaparidze (Japaridze), G., "A generalized notion of weak interpretability and the corresponding modal logic," Annals of Pure and Applied Logic, vol. 61 (1993), pp. 113160. Zbl 0791.03032|MR 94d:03030 4,4
[5] de Jongh, D., and F. Veltman, "Provability logics for relative interpretability," pp. 3142 in Mathematical Logic, edited by P. Petkov, Plenum Press, New York, 1990. Zbl 0794.03026|l|MR 92d:03011 1. 2.1
[6] Hájek, P., and F. Montagna, "The logic of Π_{1}-conservativity," Archive for Mathematical Logic, vol. 30 (1990), pp. 113-123. Zbl 0713.03007MR 92a:03024
[7] Shavrukov, V., The logic of relative interpretability over Peano Arithmetic (in Russian). Preprint No. 5, Steklov Mathematical Institute, Moscow, 1988. 1.4.4
[8] Smorynski, C., "The incompleteness theorems," pp. 821-865 in Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977.Zbl 0443.03001 MR 56:15351 3
[9] Solovay, R., "Provability interpretations of modal logic," Israel Journal of Mathematics, vol. 25 (1976), pp. 287-304. Zbl 0352.02019MR 56:15369 4
[10] Visser, A., "Interpretability logic," pp. 175-209 in Mathematical Logic, edited by P. Petkov, Plenum Press, New York, 1990.ZZb 0793.03064MR 93k:03022 1
[11] Zambella, D., "On the proofs of arithmetical completeness of interpretability logic," Notre Dame Journal of Formal Logic, vol. 33 (1992), pp. 542-551. Zbl 0788.03027 MR 93k:03022 4,4,4

Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389
email: giorgi@gradient.cis.upenn.edu

