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Abstract  Alchourron, Gardenfors and Makinson have developed and inves-
tigated a set of rationality postulates which appear to capture much of what s re-
quired of any rational system of theory revision. This set of postulates describes
aclass of revision functions, however it does not provide a constructive way of
defining such a function. There are two principal constructions of revision func-
tions, namely an epistemic entrenchment and a system of spheres. We refer to
their approach as the AGM paradigm. We provide a new constructive modeling
for a revision function based omice preorder on models, and furthermore we
give explicit conditions under which a nice preorder on models, an epistemic
entrenchment, and a system of spheres yielddh® revision function. More-

over, we provide an identity which captures the relationship between revision
functions andipdate operators (as defined by Katsuno and Mendelzon).

1 Introduction Theory revision models the way we change our beliefs in response
to the intrusion of various forms of new information, for instance the way we might
revise our beliefs in the light of information which contradicts previously accepted
beliefs.

Alchourron, Gardenfors and Makinsof], [2], [3] have developed and investi-
gated a set of rationality postulates which appear to capture much of what is required
of any rational system of theory revision. We refer to their approach as the AGM
paradigm. This set of postulates embodiesghaciple of minimal change, and de-
scribes a class of revision functions, although it does not provide a constructive way
of defining such a function. Within the AGM paradigm there are two principal con-
structions of revision functions, namely an epistemic entrenchment @k [B] and
asystem of spheres as [H]]

Katsuno and Mendelzof®] provide a model-theoretic characterization of revi-
sion functions for finitary propositional languages. Their representation result relies
on the finiteness property which allows an interpretation to be construed as a formula.

Grove [] used a syntactic representation based on maximal consistent exten-
sions, or equivalently consistent complete theories, without the restrictiof§. of [
Katsuno and Mendelzol&] note that due to the one-to-one correspondence between
consistent complete theories and interpretations in the finitary propositional case,
their representation result is derivable from the work of Grd&je [Furthermore,
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the one-to-one correspondence between consistent complete theories and interpreta-
tions does not require the finiteness property, and therefore in the propositional case
Grove’s results have a semantic counterpart. However this one-to-one correspon-
dence does not hold for the more general first order case, and a model-theoretic char-
acterization for this case has not hitherto been established.

We provide a generalized model-theoretic construction of revision without pro-
positional restrictions where a consistent complete theory may possess more than one
model, and we call our semantic construction a nice preorder on models (in $gction
we show how our nice preorder on models is related aod@&nfors and Makinson’s
[4] nice preferential model structures).

Katsuno and Mendelzoif] formally describe the difference between revision
and update. According to them an update is used to model epistemic changes due
to changes in the world, while on the other hand, revision is used to model epistemic
changes initiated by the acquisition of new information about a static world. They in-
troduced a set of postulates for an update operator on finitary propositional theories.
We extend their set of postulates so that an update operator may be used on arbitrary
first order theories, and we provide an identity which captures the fundamental rela-
tionship between revision and update within the AGM paradigm.

The purpose of this paper is threefold; first to extend the postulates for update,
and provide a connection between update and revision, thereby firmly incorporating
update into the AGM paradigm. Second, to provide a hew construction for revision,
namely a nice preorder on models. Third, to provide explicit conditions under which
anice preorder on models, an epistemic entrenchment, and a system of spheres rep-
resent thesame revision function.

It is well known that a contraction function can also be defined by a revision
function using the Harper Identity, and we provide an identity that defines an update
operator in terms of revision functions. Consequently, the framework we develop for
revision also supports belief change based on contraction and update operations.

For completeness and to establish our notation we outline the AGM paradigm
in Sectior2] and describe how a revision function is related to an update operator. In
Section®land4] we describe two well known constructions of a revision function,
namely an epistemic entrenchment ordering and a system of spheres, respectively. In
Sectiors] we describe a nice preorder on models and show how such a structure can
be used to construct a revision function. In Sedidwe provide explicit conditions
under which an epistemic entrenchment ordering, a system of spheres, and a nice pre-
order on models render the same revision function. A discussion of our results and
future work is given in Sectidi]

2 The AGM paradigm Let L be a language which contains a complete set of
Boolean connectives. We will denote sentences by lower case Greek letters. We
assumeL is governed by a logic that is identified with its consequence relation
The relation- is assumed to satisfy the following conditions (B[

(a) If ¢is a truth-functional tautology, thén ¢.

(b) If = ¢ — ¥ andt ¢, thenk ¢ (modus ponens).

(c) s consistent, thati$? 1, where L denotes the inconsistent theory.
(d) + satisfies the deduction theorem.
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(e) +is compact.

Our results can be applied to any logic satisfying these properties, however we
are principally interested in first order logic. The set of all logical consequences of a
setT C L, thatis{e: T - ¢}, isdenoted byCn(T). A theory of L is any subset ol
closed undef-. A consistent theory of L is any theory ofL that does not contain both
@ and—¢, for any sentence of L. A complete theory of £ is any theory ofL such
that for any sentencgg of L, the theory containg or —¢. We shall denote by , the
set of all consistent complete theories/@fand by%X , the set of all theories of.

Finally for a set of sentenc&, we defne [A] to bethe set of all consistent complete
theories ofL containingA. If A is inconsistent then we defin&] = &, while if

A = @ then |[A] = ©,. For a sentence € L, weshall use ¢] as an abbreviation of
[{e}].

Epistemic states are belief sets which are usually partial or incomplete descrip-
tions of the world. In the AGM paradigm di], [2] [[3] belief sets are taken to be
theories, and changes of belief are regarded as transformations on theories. There
are three types of AGM transformations: expansion, contraction and revision. These
transformations allow us to model changes of belief based oprtheiple of mini-
mal change. Expansion is the simplest change, and it is most effectively employed
in modeling the incorporation of beliefs that are consistent with the current set of be-
liefs. Theexpansion of a theoryT with respect to a sentenge denoted as'l'(j, is
defined to be the logical closure ®fandg, thatisT, = Cn(T U {¢}).

In contradistinction, contraction and revision are nonunique operations and can-
not be represented using logical or set theoretical notions alone, but rather are con-
strained by a set of rationality postulates. Itis these rationality postulates that attempt
to embody the principle of minimal change.

A contraction of T with respect tap, denoted byT , involves the removal of a
set of sentences from so thaty is no longer implied. Formally, a contraction oper-
ator~ is any function fromK; x L to K, mapping(T, ¢) to T, which satisfies the
following postulates, for any, ¥ € L and anyT € X :

() T, e K.

() T, CT.

(C3) IfpgTthenT, =T.

(T4) Ififpthenp ¢ T .

(75) If p € T, thenT C (T,)}.

(76) If Fp=ythenT, = Ty

N T,NT, ST,y

8 Ifpég Tony thenT(;W cT,.

A revision attempts to transform a theory “as little as possible” in order to in-
corporate a new sentence, possibly inconsistent with the theory. Formally, a revision
operator* is any function fromX, x L to K, mapping(T, ¢) to T, which satisfies
the following postulates, for any, ¢ € L and anyT € X :

(*1) T, € Ke.

(*2) p e Ty,

(*3) T, cT,.
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(*4) If ~p ¢ T thenT C T},
(*5) T, = Lifand only if = —¢.
(*6) If F o=y thenTy =Ty,
(7) Tony € (T}

(*8) If ~y ¢ T} then(Tj;)g S e

We relate contraction and revision by means ofltiea |dentity, T; = (T:¢)+,
which defines a revision in terms of a contraction, and conversely by means of the
Harper Identity, T; =TN T’L(p, which defines a contraction in terms of a revision.
Consequently, contraction and revision are interdefinable.

Katsuno and Mendelzof] introduced an update operator on finitary proposi-
tional theories as a mechanism for modifying a theory in response to changes in the
world. We extend their set of postulates so that an update operator may be used on
arbitrary first order theories (another difference is discussed at the end of $gction

Formally, an update operat8ris any function fromX; x £ to K, mapping
(T, ) to Tf; which satisfies the following postulates, for apyyr € £ and anyT €

K.
(°1) T € Ky
(°2) g e TS.
(®3) If p € TthenTS =T.
%
(°4) TS = Liff T orgis inconsistent.
(°5) If - g =y thenTd =T,
(°6) To.y S (T
(°7) If T is complete andhy ¢ T then(Tg)‘l; - TjA

(°8) If T is consistent theffy = (M. K-

v

The identity below captures the association between updates and revisions, and
was christened the Winslett Identity due to its close association with an identity in-
troduced by Winslet{2].

if T 1

. o _ | NkemK;
Winslett Identity T, :{ J_KE[T] ‘ otherwise

TheoreniZ.Tland Theorer? 2lbelow show that for every revision function
the function® defined from* by the Winslett Identity is an update operator, and con-
versely, for every update operatorthere exists a revision functionsatisfying the
Winslett Identity. Consequently the update operator dwells within the realm of the
AGM paradigm.

Theorem 2.1 Let * be a revision function. Then the function ¢ defined from * and
the Wind ett Identity is an update operator.

Proof: Weshow thaf’ satisfies the postulate31)—(®8). Postulates{1)—(°®5) fol-
low directly from the postulates 1)—(*8) for revision.

For (°6), if T is inconsistent, ther®@) trivially holds. Assume therefore that
T is consistent. Then by the Winslett Identity we have ﬂ‘@}w = ke Koy
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Moreover by {7) we have that for everl{ € [T], K;;N/, C Cn(K7 U {y}), and there-
fore(Mkerm Kiay S Mkerm CNKE UV € Cn((Mkepm K§) U {v}H. Combining
the above we derive tha‘[gw - Cn((ﬂKe[T] K3) U {y}), and since by the Winslett
dentity, Ny K = T, wehave thafly, |, € Cn(TS U {y}).

For (°7), assume thaf is complete and-y ¢ Tjj. From the Winslett Identity
we derive thafl is consistent and‘g = T5. Then—y ¢ T} and consequently by
(*8),Cn(TLU{y}) C T Moreover, sinceT is consistent and complete, by the

NN
Winslett Identity again it follows thaf®, , = T* . Combining the above we derive

Ay T oAy

thatCn(Tg U{y}) € To, .
Finally for (°8), letT be a consistent theory df. From the Winslett Identity it
follows that for any consistent complete thedgyof £, K7 = Kg. Therefore, again

from the Winslett Identity we have,$ = Mo K = Nkem K-

Theorem 2.2  Let © be an update operator. Then there exists a revision function *
fromwhich © is derived via the Winslett Identity.

Proof: We shall first prove that when focusing on consistent complete thedties,
satisfies the postulatesl()—(*8) for revision.

Let K be an arbitrary consistent complete theory andvlet be any two sen-
tences ofL. Postulates’(1), (*2), (*5), (“6), (*7), and {8), follow directly from 1),
(©2), (°4), (°5), (°6), and £7), respectively. Consider nowd). If ¢ ¢ K then since
K is complete;~¢ € K and therefor&€n(K U {¢}) = L D Kg. If on the other hand
¢ € Kthenby 3),K$ = K = Cn(K U{g}). Therefore in both case$3) is satisfied.
Finally for (*4) assume thaty ¢ K. Then sinceK is completegp € K and therefore
by (°3), K = K = Cn(K U {¢}), from which we derive that@) is satisfied.

From the above it follows that there exists a revision functisuch that for
every consistent complete thedfyof £ and every sentengee L, Kfj = K7. Given
such a revision functiohit is not hard to see th&tis derived from via the Winslett
Identity.

Henceforth we consider revisions, but in view of the Harper Identity and the
Winslett Identity our results are easily extended to both contractions and updates; see
Williams [[LT] for details.

As noted earlier the postulates for revision merely describe the class of revision
functions however they do not provide a constructive way of defining such a function.
In Section&land4lwe describe two well known constructions of a revision function,
namely an epistemic entrenchment ordering afIn[B]l, and a system of spheres
as in B]. Then in Sectioflwe introduce our own construction, a nice preorder on
models which is closely related to a system of spheres.

3 Epistemicentrenchment orderings An epistemic entrenchment is an ordering of

the sentences in the language which attempts to capture the importance of a sentence
in the face of change as (][ [[3]. Given a theoryT of £, anepistemic entrenchment

related to T is any binary relatiorx on £ satisfying the following postulates:

(EE1) For everyp, v, &€ L, if ¢ <y andyr < Etheng < &.
(EE2) Foranyp, v € L, if ¢ - ¢ thengp < .
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(EE3) Forallg, v e T, o <pAyoOry <opAy.
(EE4) WhenT # L, ¢ ¢ Tifand only if ¢ < v for all ¥ € L.
(EED5) If ¢y < ¢ forall ¢ € L, thent ¢.

It can be shown from these postulates that an epistemic entrenchment is a total pre-
order of the sentences ifv

An epistemic entrenchmeet related to a theor represents the relative epis-
temic importance of the various beliefskh The epistemic importance of a belief in
K determines its fate wheld is revised. Loosely speaking, for any two sentenges
andyr such thaty < v, whenever a choice exists between givingagnd giving upys
the former will be surrendered in order to minimize the epistemic loss. Formally the
idea of epistemic entrenchment determining the result of belief revision is captured
by the following condition:

(E*) ¢ e T if and only if either—¢ < —¢ v ¢ ort= =g

TheorenfB. Thelow shows that the family of functions over theories constructed
from epistemic entrenchments by means of) (i precisely the class of functions
satisfying the AGM postulates for revision. Theornilfollows directly from the
work of Gardenfors and Makinsol&], [2].

Theorem 3.1 (Gardenfors and Makinsofg]) ~ Let T beatheory of £. For everyre-
vision function * there exists an epistemic entrenchment < related to T such that (E*)
istrue for every ¢, v € L. Conversely, for every epistemic entrenchment < related
to T, there exists a revision function * such that (E*) istrue for every ¢, v € L.

4 Systems of spheres The construction of a revision function using a system of a
spheres is not based on the sentences in the language as in the case of an epistemic
entrenchment but rather on the set of consistent complete theories, and is due to the
work of Grove [f].

A system of spheres S centered on [T], is any collection of subsets &, the
elements of which we cafpheres, that satisfies the following conditions:

(S1) Sis totally ordered by set inclusion.

(S2) [T]is the C-minimum element of.

(S3) O is theC-maximum element o8.

($4) Forevery sentenag, if there is any sphere faintersecting ¢], then there
is a smallest sphere @intersecting ¢].

For a system of spheré&sand a consistent sentenges L, defineCs(¢) to be
the smallest sphere i@ intersecting ¢], and definefs(¢) to be the intersection of
[¢] with the smallest sphere i& having a common element with], i.e., fs(¢) =
[¢] N Cs(e).

A system of sphereS centered onT] is depicted in Figurfl] which has been
adapted from[f]. Theorenf4.1lbelow, due to Grovdg], shows that the following
condition(S") can be used to construct a revision function from a system of spheres.

« | Nis(e) if ¢ is consistent
&) T, = { 1 otherwise
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Figure 1: A System of Spher&scentered onT]

Theorem 4.1 (Grove B])  Let T be a theory of £. For every revision function *
there exists a system of spheres S centered on [ T] such that (S*) istruefor every ¢ €
L. Conversely, for every system of spheres S centered on [T], there exists a revision
function * such that (S") istruefor every ¢ € L.

We can associate an epistemic entrenchment ordering on sentences, and a system
of spheres based on consistent complete theories, with a revision function and vice
versa. Itis upon these results that our work builds, and we give a new construction
for revision, based on certain orderings on models, and provide explicit translations
among these constructions such thatsree revision is obtained.

5 Nicepreorderson models So far we have described and recast well known con-
structions. In this section we extend the construction of Katsuno and MendElzon |
which is based on finite propositional interpretations, to a more general case which
includes first order. First however we need to introduce some notation.

Let M, be any set of models of such that every consistent complete theory
has a model ifM;. For every nonempty subs8tof M define as Th(S) the set of
sentences that are valid in every mode§in.e., Th.(S) = {¢ € L: M = ¢ for every
M e S} If S= &, define Th,(S) = L, the inconsistent theory. Clearly, for every
nonempty collectiorsof models, Th (S) is a consistent theory. For a set of sentences
A, we define Mod A) to be the set of models it/ for which every sentence in
is valid, i.e., ModA) = {M € M.: M [= ¢ for eachg € A}. If A = & we define
Mod(A) = M,, while if A is inconsistent MogA) = &.

For a theoryT of £, we define anice preorder on M, starting from Mod(T) to
be any preordek on M satisfying the following conditions.

(M1) ForallM, M’ € M, eitherM < M’ or M’ < M.
(M2) ForallM, M, M" € M, if M <M andM’ < M” thenM < M”.
(M3) For every consistent sentengeMod({¢}) has ax-minimal element.
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(M4) If T is consistent, a modél € M, is minimal in A, if and only if M €
Mod(T).

where for any subseB of ., an dementM of B is minimal in B if and only if
M’ < M entailsM < M’ for everyM’ € B. For any subseB of M, define as minB)
to be the set of minimal elementsBwith respect to<. If B= &, then minB) = @.

Gardenfors and Makinsoffi] use a “nice preferential model structure,” and it
can be seen thaf\,, =, < ) is a nice preferential model structure.

The condition (M) below shows how a revision function can be constructed us-
ing a nice preorder on models, and the two theorems that follow prove that the class
of revision functions so constructed correspond precisely to the class that satisfy the
AGM postulates.

(M*) T, = Tho(min(Mod({¢}))).

Theorem 5.1 Let T beatheory of L. For every revision function * there exists a
nice preorder < on M, starting fromMod(T) such that (M*) istruefor every ¢ € L.

Proof: Let* be an arbitrary revision function and Bbe a system of spheres cen-
tered on ] that is associated withby means of $). We will prove Theorenb.1]
by constructing a nice preordes starting from ModT) such that for all consistent
pe L, fs(p) ={K € ®,: K =Th ({M}) for someM € min(Mod({¢}))}. Clearly
such a nice preordex would satisfy condition (M).

We construct< from S as follows. For allM, M’ € M., M < M’ iff every
sphere inS that contains Th({M’}), also contains Th({M}). It is not hard to ver-
ify that < so constructed, has all the desired properties, i.e. it satisfies (M1) — (M4)
and moreover for any consistante L, fs(¢) = {K € ®.: K = Th,({M}) for some
M € min(Mod({¢}))}.

Theorem 5.2 Let T beatheory of L. For every nice preorder < on M, starting
fromMod(T), thereexistsarevision function * such that (M*) istruefor every ¢ € L.

Proof: Let =< be anice preorder starting from M@M) and let* be the function gen-
erated fromx by means of (M). We show that satisfies the postulateslj—(*8) for
revision (our proof is essentially a reconstruction in the present context of Grove’s
proof of Theorem 1 inf], and it is included mainly for completeness).

Let ¢ be an arbitrary formula of. If ¢ is inconsistent then by (K}, T is also
inconsistent and all eight postulates for revision are trivially satisfied. Assume there-
fore thaty is consistent.

Postulates*), (*2) and {5) trivially follow from (M*). For (*3), if —¢ €
T then Tg = 1 and (3) is trivially true. Assume therefore thatp ¢ T. Then
Mod(T) N Mod({¢}) # @ and therefore by (M4), miMod({¢})) = Mod(T) N
Mod({¢}), which again implies thatj; = Th,(min(Mod({¢}))) = Th,(Mod(T) N
Mod({¢})) = T;ﬁ as desired. The above argument also proy4ék (

For (*6), observe that if- ¢ = ¢ then Mod{¢}) = Mod({v/}) and therefore
min(Mod({g})) = min(Mod({y/})).

For (*7), if = € T} then (7) trivially holds. Assume therefore thatyr ¢ T7.

Then minMod({¢})) N Mod({y}) # @, and hence mitMod({¢})) N Mod({y}) =
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min(Mod({¢}) N Mod({v/})) = min(Mod({p A v¥})). This again by (M) entails that

*

ony = (T;)J as desired. The above argument also pro@k (

=<

A

(%)

S <

Figure 2: A revision function and its associated constructive modelings

Theorems3.1[4.1)[5.1] andl5.2|show that we can associate an epistemic en-
trenchment, a system of spheres, and a nice preorder on models with a revision func-
tion, and vice versa, as illustrated in Figlak

We saythat M is injective, as in Makinson [B], if and only if Mod(K) is a sin-
gleton for everyK € O .

As noted in the introduction, it is straightforward to extend Grove'’s results to
atotal preorder on models whenev@f; is injective. However, Theorefa.1]and
Theorene.2Ho not require injectiveness. Therefore the results hold for more general
cases than those that can be immediately derived from Grove’s systems of spheres,
in particular they hold for first order logic where a consistent complete theory may
possess more than one model.

Makinson B]l observes that injectiveness is required for update as defined by
Katsuno and Mendelzoff], and we note that the update operator defined in Section
2 isalso subject to this requirement.

There are two major differences between the update operators defined in Sec-
tionl2] and the ones introduced by Katsuno and Mendelson (henceforth KM updates).
The first obvious difference is that the updates of se@lpply to arbitrary theories,
while the KM updates apply to sentences of a finitary propositional language. The
second and perhaps more important difference between the two kinds of updates is
related to the preorders on models that they induce. More precisely, a nice preorder
is a certairtotal preorder on models, and inspection of the Winslett Identity reveals
that an update operator that satisfig$)-(®8), when applied to a theory can be
associated with a family of such orderings, one for every consistent complete theory
containingT. In contrast, a KM update is associated with a family of cerpairtial
preorders on models, in particular they satisfy (M2) — (M4). Consequently, when con-
fined to finitary propositional languages, the updates of Selelame a subfamily of
the KM updates. This loss of generality is compensated by the connection we were
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able to establish between the updates of Se@land revision functions. Indeed,
it is precisely the property of the updates of Secito inducetotal preorders on
models that makes the connection with revision functions possible. This connection
is an important one, not only because it relates two of the most fundamental theory
change operators, but it allows one to develop a constructive model for the updates of
SectiorRlbased orepistemic entrenchments, which in principle have better compu-
tational properties than preorders on models, and consequently make updates more
amenable to implementation. The idea of using epistemic entrenchment to imple-
ment updates in the context of Reasoning about Action is discussed in Pﬁnpas [
We note that for finitary propositional languages, the subfamily of KM updates that
induce total preorders on models was also identified by Katsuno and Mendelson in
[ by means of a postulate named (U9) to be added to the original postulates for KM
updates numbered (U1)— (U8).

We now turn to conditions under which an epistemic entrenchment, a system of
spheres and a nice preorder represenssh@ revision function.

6 Explicit translations Theorenlg.1lbelow provides the relationship between an
epistemic entrenchment ordering and a system of spheres.[IRbfirpvides a re-
lated condition for contraction which concerns the relationship between transitively
relational selection functions (cfL], [[2]) and epistemic entrenchment orderings.

Theorem 6.1 Let T beatheory of L. If < isan epistemic entrenchment related
to T, and Sis a system of spheres centered on [T], then < and S represent the same
revision function by means of conditions (E*) and (S*) respectively, if and only if the
following condition is satisfied.

(ES) For every consistent ¢, ¥ € L such that ¥ ¢ and t v, ¢ < ¢ if and only
if Cs(—¢) € Cs(—¢).

Proof: Let < be an epistemic entrenchment related t@ndS a s/stem of spheres
centered onT]. We first show that (5) is anecessary condition in order fer and
Sto represent the same revision function.

Assume thak andSrepresent the same revision functiofby means of (E)
and §") respectively), and lep, v be two consistent sentencesfrsucht/ ¢, I/ .
Assume thatp < . Then by (EE1)—(EES3) it follows that < ¢ A v, which again
implies thaty v (¢ A ¥) < ¢ A . Then by (E) we derive thaty ¢ Tiwvﬁw//' and
therefore by $*) we have thatfs(—¢ v =) N [—¢] # @. This again entails that
Cs(—¢) C Cs(—y). Conversely, assume th@g(—¢) € Cs(—y). Then by §) it
is not hard to see that ¢ T -y and therefore by (B, ¢ vV (9 A ¥) < @ A OF
equivalently,p < ¢ A Y. Then sincep A ¥ = ¥, by (EE1)—(EE2) we derive that
=

Next we prove that (B) is dso sufficient for< andSto represent the same re-
vision function. Assume that @ issatisfied and lep be a consistent sentenceof
such that/ ¢. It suffices to show that forany € L, —¢ Vv ¢ < =g iff ¥ & fs(@).
Let ¢ be an arbitrary sentence af Assume that-¢ v ¢ < —¢. Clearly then from
(EE1)—(EED5), it follows thal/ v. If = =y theny & (1) fs(e) trivially holds (notice
that sincep is consistenf) fs(¢) is a consistent theory). Assume therefore thad
consistent. Then fromg Vv ¢ < —¢ and (ES) we derive thaiCs(p A =) C Cs(g),
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which again implies thafs(¢) N[—y] # @ and therefore/ & () fs(¢). Conversely,
assume that/ ¢ () fs(¢). Then clearlyt/ ¢. If on the other handi- —v, then
F (—¢ Vv ) = ¢, and therefore~g v ¥ < =g trivially holds. Assume therefore
thaty is consistent. Frony ¢ () fs(e) it follows that fs(¢) N[—v¥] # @ and con-
sequenthCs(p A =) C Cs(g). Then (ES) implies that—¢ v ¥ < —e.

The next result provides the condition relating a system of spheres and a nice
preorder on models.

Theorem 6.2 Let T beatheory of L. If Sisa system of spheres centered on [T]
and < isa nice preorder on M, starting from Mod(T), then S and < represent the
same revision function by means of conditions (S*) and (M*) respectively, if and only
if the following condition is satisfied:

(SM) For every consistent ¢, v € L suchthat b ¢ and b ¢, Cs(¢) € Cs(v) if
and only if for some M € Mod({¢}), M < M’ for every M’ € Mod({v/}).

Proof: LetSbe a system of spheres centered ©hgnd < anice preorder oriV,
starting from ModT). Wefirst prove that §M) is a necessary condition f&and <
to represent the same revision function.

Assume therefore th& and < represent the same revision function Then
clearly, for any consistent sentenge L, () fs(&§) = Thy(min(Mod({£}))). Sup-
pose now thatp, ¢ are two consistent sentences.ofsuch that/ ¢ andt# ¢, and
Cs(p) € Cs(y). Itisnot hard to verify tha€s(¢) = Cs(e Vv ¥), which again implies
that [p] N fs(¢ v ¥) # @, and therefore~¢ ¢ () fs(¢ Vv ¥). Then from( fs(¢ v
¥) = Thy(min(Mod({¢ Vv ¥}))) we have that-¢ ¢ Th(min(Mod({¢ V ¥}))),
and consequently (since M@ Vv ¥}) = Mod({¢}) U Mod({v})), Mod({¢}) N
min(Mod({¢}) UMod({v/})) # @. This again entails that for soni € Mod({¢}),
M < M/, for all M’ € Mod({v/}).

Conversely, assume that i are two consistent sentencesofuch that/ ¢
andt/ v, and for someM € Mod({¢}), M < M/, forall M’ € Mod({y/}). Theniitis
not hard to see thaty ¢ Th,(min(Mod({¢ v ¥/}))), and given tha{") fs(¢ vV ¥) =
Th,(min(Mod({¢ Vv v¥1}))), we have that-¢ ¢ () fs(¢ Vv ¥). This again entails that
Cs(p) € Cs(y) as desired.

Finally, we show that$M) is a sufficient condition foiS and < to represent
the same revision function. Assume therefore hiahd=< satisfy SM). Moreover
let S' be a system of spheres representing the same revision functien &ken,
from the first part of the proof it follows th& and< satisfy SM). From the above
assumptions we derive that for any consisteniy € £ such that/ ¢ andt/ v,
Cs(p) € Cs(y) iff Cg(¢) € Cgq(¥). This again entails th&d andS' represent the
same revision function, which by the definition $fis the revision function repre-
sented by<.

Finally, the following theorem, which is a consequence of Thelidthnd The-
oreml6.2] provides the condition that captures the connection between an epistemic
entrenchment and a nice preorder on models such that they construct the same revi-
sion function.

Theorem 6.3 Let T beatheoryof L. If <isan epistemic entrenchment related to
T and < isanice preorder on models starting fromMod(T), then < and < represent
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the same revision function by means of conditions (E*) and (M*) respectively if and
only if the following condition is satisfied:

(EM) For every consistent ¢, v € L suchthat ¥ ¢ and t/ v, ¢ < v if and only
if for some M € Mod({—¢}), M < M’ for every M’ € Mod({—v/}).

(ES) &) (EM)
A(S*/' * ‘w‘
S < > =
(SM)

Figure 3: Interrelationships among Constructive Modelings for Revision Functions

Intuitively, this theorem says that if is more entrenched than then some
model of—¢ is more plausible, than every model-efy. Indeed, interpretings as
an ordering of disbelief on models as [t0], we obtain by (M4) for instance that the
models that are minimal with respectzxoare those not disbelieved at all. Moreover,
the “closer” a model is to the minimal ones, the less disbelieved this model is. In view
of the (EM) condition, ifys is more entrenched tham then we are more willing to
give up our belief inp in preference ta/, because a model whegds not true seems
less disbelieved then models whefds not true. This interpretation engenders an
interesting view of epistemic entrenchment.

Results discussed herein are summarized in F@lndnich illustrates the three
constructions associated with a revision and the interrelationships among them.

7 Discussion We have formalized the relationship between revision functions and
update operators within the AGM paradigm, and we have described a new construc-
tion for a revision function, namely a nice preorder on models.

Wehave developed a unified view of a nice preorder on models, an epistemic en-
trenchment ordering, and a system of spheres, by providing explicit and perspicuous
conditions under which all three constructions yield the same revision function.

In view of the relationship between revision and contraction, via the Levi lden-
tity, and the relationship between revision and update, via the Winslett Identity, the
nice preorder on models provides a construction for both contraction and update func-
tions.

In future work we will explore analogous constructions of revision functions
based on partial preorders on senteces/models, and the consequences of placing re-
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strictions, such as well-orderedness and finiteness, on the various underlying prefer-
ence relations.
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