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The Theory of k-like Models of Arithmetic
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Abstract A model(M, <, ...) is said to bec-like if cardM = « but for all

ae M, cardxe M : X < a} < «. Inthis paper, we shall study sentences true in
k-like models of arithmetic, especially in the cases whkés singular. In par-
ticular, we identify axiom schemes true in such models which are particularly
‘natural’ from a combinatorial or model-theoretic point of view and investigate
the properties of models of these schemes.

1 Introduction A model (M, <, ...) is k-like iff card M = « but for alla € M,
cardx € M : X < a} < k. Inthis paper, we shall studylike models of arithmetic,
especially in the cases wheis singular. All models here will be nonstandard models
of the form(M, <, 0, 1, +, -, ...) and will satisfy the theory Aq of induction onAq
formulas.

It is well known that (with this base theory giverjlike models of arithmetic
wherex is regular must satisfy Peano arithmetic (PA) and that every complete exten-
sion of PA has &-like model for each uncountable cardinalln fact, we have the
following.

Proposition 1.1 (MacDowell-Specker) Each model M of PA hasa proper elemen-
tary end-extension N with cardinality cardM.

Corollary 1.2 If amodel M of PA has cardinality . < «, then M has a k-like ele-
mentary end-extension N.

For proofs, see for example Kay&l|

On the other hand,=&like model obviously satisfies PA onlykfis regular. This
paper makes a start in understanding the theorylife models for singulak. The
main results here concern model-theoretic properties (in particular with reference to
certain types of extension of models) of certain axiom schemes true in all such mod-
els.

One interesting aspect oflike models is that it is clear that fara strong limit
(meaning: for ali. < «, 2* < k), eachk-like model must satisfy exponentiation. (To
see this, observe that in a model of arithmeti@ # b and nox < b satisfiesx = 22,
then eachx < b gives rise to a unique subsetof : y < a}, that is the set oy for
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which theyth digit in the binary expension ofis 1. It follows that caréix : x < b} <
2cardy:y<a} ) On the other hand, it is not clear whether (in the absense of GCH) there
can bex-like models that do not satisfy exponentiation. A further intriguing aspect
of this problem is that studying-like models leads us to formulate axioms based on
pigeonhole principles and other combinatorial principles clearly related to principles
which have proved so problematic in the study of weak systems of arithmetic and
complexity theory.

There are many other interesting problems left open, some of them due to the
lack of known methods suitable for constructing uncountable models of arithmetic
that donot satisfy full PA. Indeed itis surprising that these issues have been studied so
little, given that the MacDowell-Specker result antlke models have been around
for some time.

The current paper contains a discussion of the key ideas and problems in this
area and a survey of some of the natural axiom schemes one is led to consider when
studyingk-like models. It contains some straightforward results and some model-
theoretic properties of the axiom schemes discussed. Itis intended to be read in con-
junction with the parallel papelB] which contains the proofs of theorems that relate
the schemes discussed here with the usblg) BX,, hierarchy of subsystems of PA.

2 Notation and previously known results  Throughout,L will be a first-order lan-
guage with finitely many functions and relations, extending the usual langiyage

{0,1, +, -, <} of arithmetic. All models will be considered asstructures, which

will be assumed to satisfy at lealshg and also (where necessary) exponentiation.
(Note that some of our results generalize to structures for the language consisting of
the order relation alone, but we will not take trouble to point out those that do.) For
eacha in a model ofl Ag + exp, we define g(a) = a, and 2,1(a) = 2%@,

Wewill use the usual subtheori¢Xx,, andBX, of PA [E] Chapter 10. These are
finitely axiomatized fon > 1 andm > 2. Note thaBX, - | £, - expbut BX1 I/ exp.

We shall often be interested in modelslaf + exp that satisfyBX,, but notl =, for
somen, and we will refer to such as ‘models BiZ,, + exp+ —1 X’ even though exp
is redundant fon > 2.

In the metatheory—ZFC throughout—cardinals are thought of as initial ordi-
nals. Given a modd\l for £, L(M) denotesL expanded by adding a constant sym-
bol for eacha € M. Fora € M, <a denotes{x € M : x < a}, and|a|| denotes
card(<a). I, (M) denotegac M : |a|| < A}, and for aformulap(x) of L(M), (M)
denotegx € M : ¢(x)}. For a model of arithmeti®/ and a subseb C M, we define
infm(S) ={xe M:Vse Sx < s} and sug,(S) ={xe M :3se Sx < s}.

Forn e N, the quantifierd” and3>" denote ‘there exist precisely and ‘there
exist at least’. These are of course first-order.

Many of the results referred to here touch on questions to do with cofinal exten-
sions. Of course, a mod# iscofinal in N (M Ct N)if vVbe NJae M NEb<a
Cofinal extensions are well understood for models of PA (cf. Gaiff@inip partic-
ular because of the Splitting Theorem.

Theorem 2.1 (Gaifman’s Splitting Theorem) For M C N, both models of PA,
thereisaunique K suchthat M C K C¢ N, and this K satisfies M < K.
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A proof of this also appears in Kayg][ Section 7.2. Cofinal extensions are not so
well understood for models of theories weaker than PA, but there are some results in
the literature (cf. Kayed, [4]).

At this point it seems worthwhile to mention three papers that relate to the central
issues connected withtlike models for singulak. The first, of course, is Keisler's
paper[p], where the following is shown.

Theorem 2.2 (Keisler) For any first-order theory T in signature (<, ...), if T has
a «-like model for some strong limit «, then T has a A-like model for all singular A.

Keisler’s paper also contains a useful survey of other results and referencdi&en
models in general.

The second paper is the classic one by Kirby and P@lisi initial segments.
In it (Theorem 7, parts d,e) we find (using my notation defined above, which differs
slightly from Kirby and Paris’s) the following theorem.

Theorem 2.3 (Kirby-Paris) Let M be a countable model of PA, and let | C¢ M be
strong. Then, for any infinite cardinal A, thereisan extension K = M such that | =
supc (1), 1;+(K) =infg (M \ ), and cardl,+ (K)) = 1.

The construction is a beautiful one using indiscernibles. (All that the reader need
know about ‘strong’ initial segments here is that there are arbitrarily large strong cuts
in any countable model of PA.) | was able to modify this construction to show the
existence ofc-like models off1, — Th(PA) that do not satisfy PA, for all singular
« of cofinality w [B]. For a while, it seemed an interesting question whether or not
I1, — Th(PA) is true in all«-like models, but it turns out (see TheorBx20below)
that the answer to this is ‘no’.

Finally, | should mention the beautiful paper by Paris and MIIS[ The main
theorem here is the following.

Theorem 2.4 (Paris-Mills) Let M be a countable model of PA, and let | C¢ M.
Then: (i) if | isclosed under multiplication, thereis N = M with | = 1+ (N) and
inf{llall :a€ N, |a|| > w} =2%; (ii) if | isclosed under exponentiation and « is any
uncountable cardinal, thereis N = M with | = |+ (N) andinf{|al| : a€ N, |a|| >
w} = k.

Unfortunately, PA is used in an essential way here, and there are also serious difficul-
ties extending the result to the uncountable cases, so at the moment it is difficult to
see how this may be used to construct interestitige models. On the other hand,
Theorenl2_4ldoes suggest that, as far as the growth-rate of functions is concerned at
least,x-like models need not be closed under any faster-growing function other than
exponentiation—even i is a singular strong limit—and i is not a strong limit,
closure under multiplication suffices.

3 New results Here, we shall identify various axiom schemes true-like mod-

els, and investigate the model-theoretic properties of these schemes. As a result, we
will obtain an interesting family of subtheories of PA, and we will also indicate vari-
ous inclusions between these theories. Throughout, we shall concentrate on theories
with particularly simple and clear axiomatizations or with particularly striking model-
theoretic properties.
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3.1 CARD, models that look like cardinals The most obvious axiom fat-like
models is the axiom that states that there is no 1-1 map from the model to a proper ini-
tial segment. In terms of second-order logic, this is expressed by the axiom £ARD

VX Va(vYx3dy < a(xy) € X — Iy < aI®?x(x, y) € X).

If this is considered as a true second-order axiom, we have the following.
Proposition 3.1 A model M satisfies CARD iff it is «-like for some «.

The first-order scheme corresponding to this, CARD, is obtained by letting the
second-order variabl¥ range over first-order definable sets (i.e., definabtk pa-
rameters fronM). This scheme is provable in PA, but it appears to be very weak and
certainly does not obviously characterize the first-order theokylidde models.

On the other hand, CARD, like PA, is not axiomatizable by a set of axioms of
limited quantifier complexity. More precisely:

Proposition 3.2  For all n > 0 and all nonstandard M = PA thereis K <5, M
satisfying 1 X1 but not satisfying an instance of CARD for a X,-definable set.

Proof: Leta e M be nonstandard and |&t be the set o&,-definable elements of
M, definable using the parametr Then K <y, M, and so satisfiebx,,_1, andin
fact K does not satisfiB=,,, by work of Paris and Kirby (cf[f], section 10.1). But
for all b € K there ise € N such thatk = 3Ju A(a, b, e, u), wherea is the formula

b=ugASak, (e (u,a) AVv(Sak, (e (v,a)) > v=>U)
(u= (ug, up) being the pairing function). Sau A is X, and
K kE=Vvb3le<adui(a, b, e u),

as required. O

The above argument is taken from Paris and Kirby’s argument that the ridatles
not satisfyBX,,. Note that it shows that the scheme CARL,) of CARD restricted
to Xp-definable sets i§1,,, axiomatized but nok,,,, axiomatized. (We omit the
easy details.)

3.2 GPHP, ageneralized pigeonhole principle  To strengthen the scheme CARD,
consider a sort of ‘generalized pigeonhole principle’, GRHt¥hich is defined to be
the second-order axiom,

vXVadbVc(¥x <bady<a(x,y,c)e X — Iy <ad®®x < b(x, V,c) € X).

Lemma3.3 If Mishascardinal k andRg < A < «, thenthereisb € M with ||b|| >
A

Proof: If ||b|| < A forallbe M, let SC M have cardinality., S0SC M, hence

k=) [bl <A*=1,
beS

acontradiction. O
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Proposition 3.4  Amodel M satisfiesGPHR if and only if it is«-like for somelimit
cardinal «.

Proof: Fora e M whereM is k-like for some nonsuccessor cardinallet A =
lallt < k. Thenwe can findd € M with ||b|| > . HenceM = GPHPB. The converse
is just as easy. O

We feel that the first-order theory GPHP obtained from GRiRhe obvious way is
particularly attractive. It clearly implies CARD, for instance. However, it will turn
out that this theory is still rather weak. For example, one of the results later will imply
(rather more than) the conservation reslp 4 exp=n, | Ag + exp+ GPHP (even
though all axiomatizations of the theory on the right-hand side here are of unbounded
complexity).

3.3 COLL, collection  The next axiom scheme is probably the best known of all. It
is thecollection axiomand has already been referred to. Again, we give the second-
order version first.

VXVa(¥x<ady(x,y) e X— IbV¥x<ady<b(xy e X)

The following result is well-known, and its proof is obvious.
Proposition 3.5 A model M satisfies COLL, iff it is«-like for someregular «.

Modulo | Ag, the first-order version COLL of COLLimplies the first-order theory
GPHP, but for the second-order axioms we have COLGPHPR. The first-order
version CARD of CARD is implied by both COLL and GPHP.

3.4 IPHP, an iterated pigeonholeprinciple Unfortunately, even GPHP is not obvi-
ously strong enough to give the first-order theory-dike models, and we apparently
need still stronger ‘iterated’ pigeonhole principles.

Definition 3.6  Given a sef” of first-order formulas off, X, C € M, anda € M,
we say thatX is (a, 0, I')-large over C when

/\VCE C (Yxe XAy <ap(x y,€) — Iy <ad?®xe Xo(x, Yy, 0)).
pel’

Xis (a,n+ 1, I')-large overC when

/\Vc‘:e C Vxe Xar <ay((xr,C) —
Jel dr <avd{xe X:y¥(x,r,C}is (a n I')-large overCu {d} /-

Wesshall sayX is (a, n)-largeover Cifitis (a, n, I')-large overC wherer is the set
of all L-formulas. Also,X is a-large over C if itis (a, n)-large overC for all n. If
everC is omitted from the notation (as irX'is n-large’) then it is taken to bg.

From this we can derive the first-order axiom scheme IPHP: foralN and all finite
setsI” of formulas inL,

vadb ({x: x < b}is (a, n,I")-large overw).
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Lemma3.7 If Misamodel for £,ae M, X C M has cardinality cardX > |a||,
[istheset of all L-formulas, C € M, and n € N, then X is (a, n, I')-large over C.

Proof: If n = 0 this is immediate, and it > 1,Vxe X3r <ay(x,r) thenX =
U —a X whereX; = {x € X : ¥/(x,r)}, so someX; has cardinality greater thaa]|.
By induction, thisX; is (a, n — 1, I')-large overC for anyC. O

Once again, it is clear that PA proves all axioms of IPHP. It follows that-dike
models satisfy IPHP, since the caseegular is covered by PA, and the case #or
singular is covered by LemmBs3landB 7]

We were unable to show that IPHP is indeed an axiomatization of the theory of
x-like models, but it does have some pleasant model-theoretic properties.

Theorem 3.8 If M isa countable recursively saturated model of IPHP, then for all
a € M thereisa proper elementary extension N = M suchthat {x e M : x < a} =
{x e N: X < a}. Conversely, if M is a model with the property that for all a € M
there is such an extension N, then M = IPHP.

First we need some lemmas.

Lemma3.9 If Misarecursively saturated L-structure, X € M isdefinable, C C
M isfinite, a € M, and X is (a, n, I')-large over C for all n and all finite ", then X
isa-large over C.

Proof: We show by induction om that X is (a, n)-large overC. It isclear to start
with that X is (a, 0)-large overC.
Now suppose&€ € C andvx e X3ar < av(x,r,C). Then

/\(Elr <avd (Y(M,r,¢)is (a, n, I')-large overC U {d}))

n,I
whence
Ir <avd /\ (¥(M.r,¢)is (a n,I')-large overC U {d})
n,I'
by saturation, and the lemma follows. O

Note too thatX (a, n+ 1)-large impliesX is (a, n)-large, since we may tak(r, X)
tober =0

Lemma3.10 If M = IPHPisrecursively saturated anda € M, thenthereisb e M
so that <bisa-large.

Proof: By saturation, and by the last lemma, it suffices to find for eaahd each
finite I" an elemenb such that<b is (a, n, I")-large. This follows immediately from
the axioms. O

Lemma3.11l If M isrecursively saturated, a € M, C € M isfinite, X € M isde-
finable and a-large over C, and £(u, v) € L(C) then either XNVu < a—&(u, M) is
a-large, or for somes < a, XN &(s, M) isa-large.

Proof: By saturation, it suffices that for eache N and each finitd™ C L there is
S < asuch that
Xs=&(s, M)N Xis (a, n, T")-large
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or
Xa=VYu<a—é&(s, M)n Xis (a,n,I)-large
Suppose not. Then

Vxe XAs<a(s<ané(sX)Vv(s=avVvu<a—éu,Xx)]

but noXs (s< a)is (a, n, I')-large. HenceX is not(a, n+ 1, I' U {y/})-large, where
Y is the formula in square brackets above. O

Lemma3.12 If M isrecursively saturated, a € M, C € M isfinite, X € M isde-
finable and a-large over C, and d € M, then X isa-large over CU {d}.

Proof: Just considety(x,r) to be ¥ = 0'. It follows that X is (a, n, I')-large over
C U {d} for all nand all finitel", which suffices by saturation. O

Proof of Theorem28] By Lemmad2_1dthere isb € M such that<b is a-large. Put
Xo = <b, and enumerate all formulagx, y) with two free variables agq(X, y),...,

0i(XY),....
Inductively, givenX; € M, definable an@-large overC;, whereC; is finite, let
Ci,1 be finite, containind;, the parameters froril appearing ira, ¢o, .. ., ¢;, and

any parameters needed to defiie Then findX;, 1 € X; a-large overC;, 1 so that
Xiy1 = XiNgi(M,r)

or
X1 = X NVU < a—g; (M, u)

using Lemmal.11land3.12]

At the end of this construction, consider the the@rgxiomatized by the com-
plete diagram oM, together with the axiomsc'e X;’, where c is a new constant
symbol. It is straightforward to check th@itis a complete theory in the language
L(M) U {c}, T provesc > sfor eachs < a, and that the set of formulas

{y<alU{y#s:s<a}

has no suppor/(y) overT. Thus the omitting types theorem applies and we obtain
our extension as required.

The converse is easy. M < N and<a is preserved under the extension, then
any b for which <b is not preserved will bea-large. Indeed, ik < bandx ¢ M,
then for eacly < aand each formula(x, y) with parameters fronM, N = ¢(X, y)
implies M = 322z ¢(z, y), for otherwisex would be definable oveM and hence
would be inM. If there are nt € M for which <b is not preserved by the extension
M < N, thenN is an elementary end-extensionMf and so both satisfy PA, hence
IPHP. O

3.5 IPHP., amodification of IPHP If, in Theoren.8 we also wantN > M we
proceed in a similar way but want to also omit the type

{x>b:be M}
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In the proof of the theorem this means, given a definablendg(x, y) (which may
have parameters frofdl or C) we want to find a definable subskt of the form

XiNVy—¢(M,y)
or
XiN3y <bg(M,y)

for someb € M. We modify the definition of the last section tX is (a,n+ 1, T')-
larges overC iff

/\Vée c Vxe X3ar <ay(xr,C) —
Jel Ir <avd{xe X:y¥(xr,C)}is(a, n, I')-largeé overC U {d}

andXis (a, n, I')-larg€ overC iff

/\ Ve e C {xe X:Vy—y(x, Yy, 0} is (a, n, I')-larges overCv
db{xe X:3Ay < by(x,y,C)}is (a, n I')-larges overCU{b} /-

yell

Xis (a, n, 0)-larges overCiffitis (a, n, 0)-large overC. The modification of The-
orem3.8lis then the following.

Theorem 3.13 Let M be countable and recursively saturated and satisfy the theory
IPHP. Then for all a € M thereis N >« M suchthat {xe M: x <a} ={xe N:
X < a}. Conversely, if for all a € M thereissuch an N, then M = IPHP.

In fact, this strengthened pigeonhole principle is still part of the theokylibe mod-
els.

Theorem 3.14 If M is«-like for someinfinite cardinal «, then M = IPHP.

Proof: The case ot regular is covered by PA and the Splitting Theorem. Letef
A, upposea € M, and without loss of generality suppof&| > A. Letb € M with
IIbll > |lal|, and suppos&X < <b has cardinality> ||al|. Now supposen(X, y) is a
formula with parameters frorivl. We show that either

Y ={xe X:Vy—p(X, Y}
or
Xe={Xe X:Vy<co(X Y}

for somec € M has cardinality greater thga||. But if this is false then choosing a
cofinal sequence (i < 1) in M, we have

X=X, uY

<X

so cardX < Aljal = |a]. =



K-LIKE MODELS 555

3.6 INDISC, indiscernibles The two main lemmas KeisldB]} used to prove The-
oremZZare the following.

Lemma 3.15 (Keisler) Suppose K isan L*-structurewith alinear order <, where
LT is an expansion of £, and K has the property that the reduct of any L*-
substructure of K to £ iselementary in K as L-structures (for example, it might be
that L1 = Lgxand K = Tsk(£)), and suppose that K has elements ¢jj for i < A =
cf(k) <k and j < ki < k wherex =), _, «; satisfying

a. cj<cyforali<kori=kandj<|
b. 7(Ci,j,, ..., Cinjy) < Gijallig, ja,...,0n, jn, 0, JWithiq, ... in <

for all L*-terms 7 in the arguments shown, and
C. T(Ciyjys -+ -5 Cinjn) < Cij = T(Ciyjys -+ Cinjn) = T(Ciglys - -+ Cigly)

forall T, 7, Twithi <ig,...,ina@nd (Ci,j,, - -, Cinj.)s (Ciyly» - - - » Girl,,) DOthincreasing,
and all £*-terms t which here may contain elements ¢, for k < i. Then the L*-
substructure of K generated by the cjj is a «-like substructure of K elementary for
L.

Strictly, Keisler worked with the full Skolemized language, but the lemma is true by
the same proof, and here we are interested only inCthieeory of such models, so it
makes no difference.

The other lemma of Keisler's uses partition properties to get mddets the
form required for LemmB&_15]

Lemma 3.16 (Keisler) Let M be a L-structure linearly ordered by some < in L.
Suppose M is u-like, where 1 isa strong limit. Then the set of sentences (a), (b) and
(c) in LemmaB.15lin new constants cij (i < A, j < «i) isconsistent with Th(M).

Theoren2.2follows by applying LemmE.16to the Skolemization of a-like model
M, and applying the compactness theorem and Le@malto get ax-like model
elementary equivalent thl.

Notice that, for theories of arithmetic, we can conclude that the existence of in-
discernibles as in the last two lemmas implies that the model is closed under expo-
nentiation. This follows from Keisler’s theorem and remarks already made, but it is
easy to obtain a direct proof too.

Itis certainly possible—indeed, straightforward—to abstract directly from these
lemmas of Keisler's a list of first-order sentences that axiomatizeh¢heory
INDISC of «-like models of arithmetic for strong limit cardinats but by doing so
we would not be going very far beyond what is already clear from Lenfgridgand
and so we probably wouldn’t learn much.

On the other hand, we can obtain an interesting and elegantly axiomatized first-
order theory IB+ exp which implies that of-like models for singulak. To under-
stand the next definition, recall that by the usual truth predicates in arithrh&tic,
andBX,,; are finitely axiomatized for ath > 1.

Definition 3.17 The theory IB is axiomatized bBX; together with the sentences
IEn — an_;,_l

forallne N
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Clearly, PA- IB. However, we may ignore models of PA when trying to prove first-
order consequences of IB, as the next lemma shows.

Lemma3.18 |If oisafirst-order sentence true in each model of BX,, + =1 X, for
eachn>1,thenIB I o.

Proof: LetM [k IB. Then eithetM = BX,, + =1 X, for somen, henceM = o, or

M & PA. In this second case, we may assume (by taking an elementary extension)
thatM is nonstandard. Lete M\ N, andtaken € N large compared to the complex-

ity of o. Then by a standard construction due to Paris and KEgrid Lessarlg]

(see Kayelf], Section 10.2) = I"(M, a) <5, , Mandl = BZp+—1%,,s0l Eo

andM = o. O

The next lemma also follows from the standard construction of modeBXnpf +
—1X, and results due to Paris, Kirby and Lessan bt (M, a).

Lemma3.19 ForallneN, IZ,+ IB isII,p-conservative over | X,. Smilarly,
IB + expisIl,-conservativeover | X, + exp and BX ;1 + IB (+exp) isconservative
over BX 1 (+exp) for sentences of theformo v T whereo and r are I, and Xy 2
sentences respectively.

Proof: Letae M = | X, + ¢(a) be recursively saturated, whepas I1,,.1. Con-
siderl = I™1(M, a) <5, M ([3], Theorem 10.7). Theh = BXp 1 + =1 Zp 1 +
¢(a) (B, Theorem 10.10), hence IB VX —¢(X), as required. The case fdB%,. 1

is similar except iftM = BX,,1 then (B], Theorem 10.8) we have in addition that
I"1(M, a) = M2 — Th(M, @), 0 if both—o and—t are true inM then they are
true in1™1(M, a) also. O

The main theorem in the companion paper to this &fésthe following.

Theorem 3.20 Let « be singular. The theory IB + exp proves all sentences true
in all x-like models. In particular, it proves the theory of «-like models for singular
strong limit cardinals «.

Note that these results mean that the theomlfe models for singulak has rather
low ‘consistency strength’ and that all the theories considered in this paper are actu-
ally TT,-conservative overAg + exp.

3.7 TREEIND, tree-indiscernibles This section describes an attempt to abstract
the important features behind the construction in ThedZefi) and is included to
suggest avenues for future work.

Here, ‘tree’ means a full binary tree of height equal to some ordindlha is,
the trees we are considering are sets of functipns {r: 8 — {0, 1} : 8 < «}. This
set has #ength function len(t) = 8, wherer: 8 — {0, 1}, and two successor functions
S(r) =t 0andS; (7)) =17 1.

We sayo is a successor of 7 if T = o | B whereg = lent < leno. More gen-
erally, o is a successor df if each element of the tuple= 4, ..., t, has the same
length B, eachoi in 6 = o4, ..., on, has the same length > B, ando; is a successor
of 7 for eachi.

Definition 3.21 A set of tree-indiscernibles (of lengthe) in amodelM is a sefx; :
T € T,} € M suchthat (i) foreacl < «, lent =leno = Bandr # o impliesx; # X,,
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and (i)T=11,...,Tn, 6 =01, ..., onWith len(z;) = gforalli, len(o;) = y > gall
iands > "¢, if 6 is a successor afthen

M 'Zw(xflv""xfn) <:> (p(xo']_v’~~7xo'n)'

This definition admits the usual variations: ‘tree-indiscerniblegqr. . ., ¢’ means
we are only interested in indiscernibility for those formulas listed, and ‘@veneans
that parametera from the setA are allowed in the formulag.

Paris and Mills[[J] constructed a special kind of indiscernible set of this form.

Theorem 3.22 Let M = PA be countable and nonstandard, and let | C. M be
closed under multiplication. Thenthereisafamily of tree-indiscernibles{x; : T € T,}
cofinal in | such that

for all Skolemtermst thereisa; > | in M suchthatforall T =174, ..., T, With
len(zj) = B > "t and successor 6 = a1, ..., on Of Twithlen(aj) =y > g all
i either

t(XT]_a M Xrn) = t(xﬂla MR Xa’n)
or
t(Xeys ooy X)) > &

This, together with a compactness argument, gives part of their main result, stated as
Theorenf2.4|(i) above.

It would seem that this could be made to give a useful way of buildiige
models that do not satisfy exp (albeit, ones which do satisfy a strong enough pi-
geonhole principle to make the combinatorics in Paris and Mills’ work go through),
but there are still many serious problems in getting the analogues of (b) and (c) in
LemmalB3.15to work, and so making progress in this direction would appear to be
rather difficult.

4 Summary and open problems  In SectiorlBlabove, we identified several axiom
schemes in the languadg with implications

IB + exp= INDISC = IPHP = IPHP= GPHP= CARD. (€3]

All of these schemes are consequences of PA, but by Propdgitthrone of these
schemes is finitely axiomatized, or indeed axiomatized by sentences of bounded
quantifier complexity. (Strictly, the scheme INDISC was not written down, but it ax-
iomatizes precisely the theory eflike models for singular strong limits; that this
theory is recursively axiomatized and an axiomatization can in principle be written
down follows directly from Keisler’s results.)

Of course, by Theorefd.2dand LemmdB.19we have the following (which as
we have seen is simple in the ‘strongest’ case ofHBxp, but seems much more
interesting in the other cases).

Theorem 4.1 For all n € N, and for eachtheory T in (), T + | £ + expis I »-
conservative over | X, +exp and T + BX,, 1 + expisconservative over BX,, 1 +
expfor sentences of the form o v T where o and t are I, » and X, » Sentences re-
spectively.

The main family of open problems is the following.
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Prablem 4.2 Do any of the implications irit) reverse?
In particular,

Problem 4.3 Is IB + exp an axiomatization of the theory af-like models for sin-
gular stong limit cardinals?

A positive solution to this last problem would be a particularly elegant way of de-
scribing the theory of suck-like models.

There are many other more technical problems with some bearing on these ques-
tions concerning the model-theoretic constructions we have used here. For example,
can the extension constructed in Theol&8be cofinal? (This is essentially the same
as asking whether the implication IPHP=> IPHP reverses.)

Similarly, we can ask whether the extension methods in Sed@idisd3.5kcan
be iterated through uncountable cardinalities.

Concerning these iterations, there are even some interesting problems at the
countable level. Firstly, can the extensibnhbe chosen to be countable and recur-
sively saturated? This would seem to be a natural way to iterate the construction, but
note too that ifa is nonstandard, then S8 = SSyN, so if M and N were recur-
sively saturated and countable, they would be isomorphic. Thus this first question
can be regarded as asking about elementary submod&ls dhis raises a second
possibility: can the extensioN be isomorphic tavl over the set <a? In other words,
can(M, X)x<a = (N, X)x.a With <a={Xe M:x <a} ={xe N: x < a} and the
isomorphism being identity oaa? However, note that by the usual trick with binary
representations of numbers less th&nsRichN can only be a proper extension Idf
if 22 exists inM, so exponentiation may again turn out to be important here.

The last family of problems concerns where and when and how the hypothesis
that the model is closed under exponentiation can be omitted from the arguments.
Certainly, the problem of constructirglike models takes a different flavor altogether
if kis nota strong limitand GCH is false. However, none of IB, IRHIPHP, GPHP,
and CARD obviously imply exp, and all of these (except IB) are obviously true in all
«-like models. The methods used by Paris and Mills in proving Thef&dipart (i)

(see for example Sectid@ilabove) seem particularly relevant for these issues, but
the area is still largely unexplored.
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