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Decidability of Fluted Logic with Identity

WILLIAM C. PURDY

Abstract  Fluted logic is the restriction of pure predicate logic to formulas
in which variables play no essential role. Although fluted logic is significantly
weaker than pure predicate logic, it is of interest because it seems closely to
parallel natural logic, the logic that is conducted in natural language. It has
been known since 1969 that if conjunction in fluted formulas is restricted to
subformulas of equal arity, satisfiability isdecidable. However, the decidability
of sublogics lying between this restricted (homogeneous) fluted logic and full
predicate logic remained unknown. In 1994 it was shown that the satisfiability
of fluted formulas without restriction is decidable, thus reducing the unknown
region significantly. This paper further reduces the unknown region. It shows
that fluted logic with the logical identity isdecidable. Sincethe reflection func-
tor can be defined in fluted logic with identity, it follows that fluted logic with
the reflection functor also lies within the region of decidability. Relevance to
natural logic isincreased since the identity permits definition of singular pred-
icates, which can represent anaphoric pronouns.

1 Introduction Fluted logic istherestriction of pure predicatelogic to formulasin
which variables play no essential role. Although fluted logic is significantly weaker
than pure predicate logic, it is of interest because it seemsto closely paralel natural
logic, the logic that is conducted in natural 1anguage.

Historically, fluted | ogic arose asabyproduct of Quine's Predicate Functor Logic
(PFL), asyntactic variant of pure predicate logic. See, for example, Quine [E], [10],
[T1], [IZ]. PFL consists of predicate symbols, and alethic and combinatory functors.
Thealethic functors 3, —, and A correspond directly to the operations denoted by the
same symbols in predicate logic. The combinatory functors inv, Inv, pad, and ref
replacethevariablesof predicatelogic, and so clearly delineate therolesthat variables
play in predicatelogic. Thelogical identity relation is sometimesincluded among the
predicate symbols. If the combinatory functors are eliminated, the logic that results
is called fluted logic.

It has been known since 1969 that if conjunction in fluted formulasis restricted
to subformulas of equal arity, satisfiability is decidable (Quine [9], Noah [5]). How-
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ever, the decidability of sublogics lying between this restricted (so-called homoge-
neous) fluted logic and full PFL remained unknown. In 1994 it was shown that the
satisfiability of fluted formulas without restriction is decidable (cf. Purdy [[Z]). This
reduced the unknown region significantly. This paper further reduces the unknown
region. It shows that fluted logic with the logical identity is decidable. Since the re-
flection functor ref can be defined in fluted logic with identity, it follows that fluted
logic with the reflection functor also lies within the region of decidability.

The identity relation greatly increases the relevance of fluted logic to natural
logic because it permits definition of unary singular predicates, which can be used
to represent anaphoric pronouns. It is wellknown that anaphora play an important
rolein natural logic. In particular, E-type pronouns provide i ntersentence coindexing
(cf. Purdy [[6]) similar to that provided by Skolem constants in clausal logic.

This paper employs Hintikka's theory of constituents (or distributive normal
forms). According to this theory, any formulais equivalent to a disjunction of con-
stituents, which can be computed effectively from that formula. Therefore, the ques-
tion of satisfiability of a formula reduces to the question of satisfiability of a con-
stituent. This reduction is advantageous because constituents are such highly struc-
tured formulas. One can prove statements about constituents that would not be fea-
sible to prove about arbitrary formulas. The general proof strategy followed in this
paper isthat established in [[7]. But the details of the proofs are changed and the level
of complexity of the proofsisincreased significantly by the presence of the identity
relation.

2 Preliminaries This paper assumes the usual definition of the pure predicate cal-
culuswith the logical identity relation. Typically the set of predicate symbolswill be
thosethat occur in somegiven finite set of formulasor premises. Thefinite set of pred-
icate symbols will be referred to as the lexicon. | isthe identity relation. Let L bea
lexiconand R e L. Thenar (R) denotesthe arity of R. Definear (L) := max{ar (R) :
Re L}.

A standard result from predicate calculus is the following.

Theorem 2.1 (The Principle of Monotonicity) Let 6 be a subformula, not in the
scope of —, that occurs as a conjunct in formula ¢. Then ¢’ can be inferred from
¢, where ¢’ is obtained from ¢ by deleting 6.

Proof: SeeAndrews ﬂ_’l_.] , Theorem 2105, Substitutivity of Implication. Notethat the
empty conjunction is defined to be equivalent to T (verum). O

Aninterpretation I of alexicon L consistsof aset D, thedomain of 7, and amapping
that assigns to | the diagonal relation on D, and to each R € L a subset of D¥ (R,
The notions of satisfaction and truth are the standard ones. If ¢ isaformulaover L
with free variables among {Xu, ..., X}, and ¢ is satisfied in I by the assignment to
variables {X; — aj}1<j<x, wewritea;...a = ¢. If ag = --- = g = a, we write
ak = ¢. If pisasentenceand ¢ istruein I, wewrite I = ¢.

3 Flutedformulas Let L beafinite set of predicate symbols containing theidentity
relation |. Let Xy := {Xq, ..., Xm} bean ordered set of mvariableswherem> 0. An
atomic fluted formula of L over Xy iS RXm_nt1.--Xm, Where Re L and ar(R) =
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n < m. The set of all atomic fluted formulas of L over Xy, will be denoted Af (Xm).
Define Af_(Xg) :=={T}.
A fluted formula of L over Xy, is defined inductively.

1. Anatomic fluted formulaof L over Xy, isafluted formulaof L over Xp,.

2. If g isafluted formula of L over Xm, 1, then IXm, 19 and VX, 1¢ are fluted
formulas of L over Xpm.

3. If ¢ and ¢ are fluted formulas of L over Xm, then o A Y, @ V ¥, ¢ — ¥, and
—¢ are fluted formulas of L over Xpm.

The fluted formulas just defined will be referred to as standard fluted formulas. In
addition, any alphabetic variant of a standard fluted formulais defined to be a fluted
formula. Two formulas are al phabetic variants of one another if they differ only inan
inessential renaming of variables (see Enderton [[2], pp. 118-120 for a precise defini-
tion). No other formulais afluted formula.

The fluted formulas of L form a proper subset of the formulas of the pure pred-
icate calculus with predicate symbols L. The semantics of the fluted formulas of L
coincides with the usual semantics of the pure predicate calculus. In connection with
standard fluted formulas, abc. . . = ¢ will alwaysmean that ¢ issatisfied (intheinter-
pretation given by the context) by theassignment to variables {x; — a, X, — b, X3 >
c,...L

It might be noted in passing that in the predicate cal culus restricted to fluted for-
mulas, it is possible to dispense with variables entirely, since the arity and position
of apredicate symbol completely determine the sequence of variablesthat follow the
predicate symbol. However, variableswill be retained to make the presentation more
explicit.

4 Fluted constituents A conjunctioninwhichfor each p € Af_ (Xq) either por —p
(but not both) occursasaconjunct will be called aminimal conjunctionover Af (Xmn)
(because it isan atom in the Boolean | attice generated by Af| (Xm)). Thearity ar (0)
of aminimal conjunction is defined to be the maximum of the arities of the predicate
symbols occurring in 6. The set of minimal conjunctions over Af; (Xm) will be de-
noted A Af_ (Xm) (cf. Rantala[[13]). Notethat if AAf_(Xm) =1{01,...,6,},andgis
any quantifier-free formulaover Af_(Xny), then

1. =6 A 0j) fori # |,
2. 61v---vH,and
3. either 6, — ¢, 0r 6 > —p,forl <i<|,

are tautologies (see [13)).

Let P be the positive integers, and P* the set of finite strings over P. String con-
catenation is denoted by juxtaposition. The empty string ise. Ifiq,...,ih € P, and
a=1iy...in,thenfork < n, (k: ) :=1i;...ig isthe k-prefix of «.

A subset 7 € P* isatree domain if

1l ¢ee7,and

2. ifai € T,wherex € P* andi € P, then
@ ajeTfor0< j<i,and
(b) xeT.
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Definetheheight of & € 7, h(a) :=thelength of string . For al «, 8 € P*,i € P, if
aif € 7 then «ip isadescendant of « and « isan ancestor of «iB. Moreover, ai isan
immediate descendant of o and « isanimmediate ancestor of «i. Definew («) :=the
number of immediate descendants of «. Thus«l, «2, ..., aw(x) arethe immediate
descendants of «. If w(a) =0, then « isterminal in 7. If al termina elements of
T have the same height, then 7 is balanced. In thiscase, h(7) := h(a), wherea is
any terminal elementin 7. If 0 < h(a) < h(7), then« isinternal in 7.

An element « together with al of its descendants is defined to be the subtree
rooted on «, and is denoted («]. An element « together with all of itsimmediate de-
scendants will be called the elementary subtree rooted on «. An element « together
with all of its ancestorsis defined to be the path from ¢ to «, and is denoted [«).

Let 7 be abaanced tree domain. A labeled tree domain ‘7| is defined to be T
with aformula 6, € A AfL(Xp)) associated with each o € 7. The labeled subtree
of 7, rooted on o will be denoted (6,]. The labeled path in 4, from ¢ to « will be
denoted [0,,). The subtree (6,] is given the following interpretation.

1. If « isterminal, then (6,] denotesd,.
2. If « is nonterminal with height k, then (6,] denotes 6, A IXk;1(041] A -+ A
EI)(k—i-l(eotw(ot)] AN VXk—i—l((e(xl] VeV (Gaw(a)])-

The formula denoted by (6,] is afluted constituent of L of height h(7) — h(«) over
the variables X ). If h(a) = 0, the formula denoted by (6,] is a constituent sen-
tence.

The path [6,) denotes O, A O1:4 A O A--+ Aby. If 6, = =T, then 7| istrivial.
If 7 isnontrivial, 6, can usually be elided. Notice that for paths of nonzero length,
[6.) is not afluted formula, but rather a conjunction of fluted formulas, each over a
different set of variables. Nonetheless, it will be possible, and convenient, to consider
paths together with fluted formulas.

In the remainder of this paper, all tree domains will be nontrivial labeled bal-
anced tree domains. Moreover, (6,] and [6,) will not be distinguished from the for-
mulas they denote. Constituents and subconstituents will be considered as sets, as
contrasted with multisets. Therefore the assumption that there are no occurrences of
repeated constituents or subconstituents will be tacit in the discussion that follows.
Finally, constituents that differ only in the left-to-right order in an elementary sub-
tree will not be distinguished.

If ¢ isaconstituent or path, then define:

1. =M is ¢ with the last k variables eliminated;
2. ¢y is with thefirst k variables eliminated.

Here elimination of a variable is accomplished by removing all atomic formulasin
which that variable occurs, aswell as the quantifier, if any, associated with that vari-
able.

If ¢ isafluted formula (including tree and path), containing only occurrences
of variables x, .. ., X in that order, then o' := ¢{x; — X4, ..., Xk — X_141} iSthe
standardization of ¢.

Fluted constituents are Hintikka constituents of the second kind (cf. [13]) re-
stricted to fluted formulas. The proofs of the main results in [L3] are indifferent to
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the precise nature of the atomic formulas. The proofs go through unchanged if atomic
fluted formul as repl ace atomi ¢ formul as of the pure predicate calculus. Therefore, the
main resultsfor Hintikka constituents hold for fluted constituents. The following the-
orems extend the results for atomic constituents given at the beginning of this section
to congtituentsin general.

Theorem 4.1 (The Fundamental Property of Constituents) (i) If ¢ and ¢ arefluted
constituents of L of height k over thevariables X, and ¢ # ¥, then ¢ A ¥ isinconsis-
tent. (ii) The disiunction of all fluted constituents of L of height k over the variables
X islogically valid.

Proof: See|[[13], Theorem 3.10. O

Theorem 4.2 Let ¢ be a standard fluted formula of L containing variables Xp,,
where variables X, C X, are free. Then ¢ islogically equivalent to a digunction
of fluted constituents of height m — k over Xy.

Proof: See[[13], Theorem 4.1. O

According to the Fundamental Property of Constituents, constituents of the same
height over the same variables, considered as formulas, are either identical or incon-
sistent. It is aso easy to see that paths of the same height over the same variables,
considered as formulas, are either identical or inconsistent. Thisisformalized by the
following theorem.

Theorem 4.3 (The Fundamental Property of Paths) If ¢ and ¢ are paths of the
same height from ¢ of a constituent sentence and ¢ # v, then ¢ A ¥ isinconsistent.

Itisacorollary thatif o, B € 7 atthesameheight,anda; ... ax = [0,) anda; ... ax =
[0p), then[6,) = [0p).
A weight function on tree domainsis defined as follows.
1. If 6,j contains a positive occurrence of |, then wgt («j) := wgt (a) + 1.
2. Otherwise, wgt(«j) := 0.

5 Trivial inconsistency If 7| isaconstituent sentence, there are certain trivial syn-
tactic propertiesthat, if present, suffice to conclude that 7, isinconsistent. They are
specified in the following lemma.

Lemmab.l Aconstituent sentence 7 isinconsistent if either of the following con-
ditions failsto hold.

1 For0<k<h(7): 7™M = (7"
2. For all internal « € 7, thereexistsexactly one j suchthat 1 < j < w(«) and
wgt () > 0. Moreover, for this j:

(Ba)=hiaj)twgt@p])| = [Ow)—he) twgt@))’> and

t -1 t
((9011' ] [—h(a))+wgt(aj)] ) = ((901] {—h](c{)-i-wgt (@j)] ).

3. Either for all internal @« € 7, w(a) > 1, or for all nontermimal o € 7,
w(a) = 1.
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Proof: (i) By the Principle of Monotonicity, 7. — 7™ and 71 — (7)™
Hence 7, — (T A (7i[_ip)"). Moreover, 717 and (7| )" are constituent sen-
tences of the same height. It follows from the Fundamental Property of Constituents
that either 77 and (7;;_y) " areidentical or 7; isinconsistent.

(i) First supposethat for someinternal « at height k, for every j suchthatl < j <
w(a), 6,j contains anegative occurrence of 1. Then by the Principle of Monotonicity,
Ax VX1 XXk 1, Which contradicts the semantics of the identity relation.

Next supposethat for someinternal « at height k, thereexisti, j suchthat 1 <i #
j < w(@), and 6,; and 6, both contain positive occurrences of |. By the Principle
of Monotonicity, 3X; ... 3X(IXit1(0ai] A IX+1(6ej]). The semantics of the iden-
tity relation dictate that in any model of 7, for someay,...,ax € D:a;...aa =
(Bai] A (64j]. Then by the Fundamental Property of Constituents, i = j, a contradic-
tion.

Finally supposethat wgt(ej) = | > 0and ([0u)[—k-1+1))T # ([6u)[—k1)T. The
semantics of the identity relation dictate that in any model of 7, for some a € D,
a E ([0u))[k-1+7) " and @ = ([6s)[—k1p)T. But by the Fundamental Property of
Paths, thisimplies that ([0uj)[—k-1.41)" = ([Ba)[—ks+1))T, @ contradiction. The proof
for subtreesis similar.

(i) Suppose that w(«) = 1 for some internal « at height k. Assume that
wgt () > 0 (otherwise, condition (2) fails). Then by the Principle of Monotonicity,
IX VX1 1 | XXk 1. The semantics of the identity relation dictate that in any model of
T, card(D) = 1. If now h(B) =1 < h(7) and w(B) > 1, then by the Principle
of Monotonicity, 3x; ... 3X (IX+1(01] A IX4+1(0p2]). But then by the Fundamen-
tal Property of Constituents, (641] = (2], a contradiction. A constituent in which
w(a) = 1for al nonterminal « isavine. This concludesthe proof of thelemma. [

A constituent sentence for which one of the conditions of Lemmal5.1Failsis said to
be trivially inconsistent (cf. Hintikka [B]E], which deal with trivial inconsistency in
predicatelogic.). Thusaconstituent sentenceisinconsistent if itistrivially inconsis-
tent. The principal objective of this paper isto establish the converse of Lemmal5.1]
viz., aconstituent sentence isinconsistent only if it istrivially inconsistent.
Condition (1) of Lemmal5.1]can be expressed in several equivalent forms.

Lemmab.2 Let 7. be a constituent sentence. Then the following conditions are
equivalent.

1. Foro<k<h(7): ‘IL["‘] = (T’
2. For anya € T, for all k suchthat 0 < k < h(«), there exists y € T such that

[6,) = (6u)-k)', and
(G 1< j<w) = (Bl 1< <w@)

3. Forany«a € 7, thereexists y € 7 such that

[0,) = ()1 and
(G 1< j<wo)) = Byl 1<j<w@).
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4. For anynonterminal « € 7, for all ksuchthat 0 < k < h(«), thereexistsy € 7,
such that

[6,) = ([8u)x)", and
6, :1<i<wm = (G 1< ] <wl@).
Proof. Itiseasy to seethat (1) and (2) are equivalent, and that (2) implies both (3)
and (4). Therefore it sufficesto prove that (3) implies (2) and (4) implies (2).
(3) = (2). Supposethat (3) holds. Inductively assumethat for any @ € 7, there exists
y € T such that
[6,) = ([(6u)-ksa", and
(O 1< j<w®) = (el 112 ] < w(@).
By (3), there exists § € 7" such that
[6s) = (61", and
(O 1< j<w®) = (Gl 1< j<wi).

Hence

[05) = (0" = ()i D=, and

(O 1< j<w®) = ((OleHT 1< j<wy)
= {((Oulimie DT 1< j < w@),
which yields the desired result.
(4) = (2). Suppose that (4) holds. Then for any «, there exists y such that
[0,) = ()K", and
o) 1<ji<w®)} = {[(Bupi)' 1= ] < w(@)}.

It will sufficeto prove that for such « and y,

[0,) = ([8a)1—ig) " implies (0,179 = ((@uli—i)".

Defined := h(7) — h(a), the depth of «, and proceed by induction on d. For the
basis, let d = 0. Then

[6,) = ([6)_k) | implies 6, = (1) " implies (6,1 = ((G.]1_) "
For the induction step, let d > 0. By the induction hypothesis,
(0,17 1< j<w)) = (Goili) 11 < j < w(@)).

Moreover, 6, = (8,;—)". Hence (6,117 = ((64]-iy)T. This completesthe proof of
the lemma. O

When wgt(aj) = h(aj) — 1, condition (2) of Lemmal5-Tltakes the following form.

(B’ = [6a), and
(Boilie’ = 0],
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6 Simple fluted constituents A fluted constituent sentence 7, is ssimple if for all
aeT,

1. ar(9,) = h(x), and
2. 1<i< j=<w(a)impliesy # 4.

A constituent that fail sto satisfy (2) will be said to have occurrences of equal siblings.

A simple constituent sentence possesses aregularity that eliminates the need for
consideration of anumber of special cases when reasoning about it. If 7| isasimple
constituent sentence, then it follows that no two distinct paths denote the same for-
mula. Therefore, any two distinct paths of the same height from ¢ are inconsistent.
The objective of this section is to show that it is possible to restrict our attention to
simple constituent sentences.

Lemma6.l Let 7. beafluted constituent sentence. Then there exists a fluted con-
stituent sentence 7/, such that

L LCU

2. foralla e 7" : ar(9,) = h(a)

3. 71, istrivially inconsistent iff 7 is
4. I/ — 1.

Proof:  The proof is by induction on the number of 8 € 7 such that ar () < h(B).
The basisis vacuous. For theinduction step, let ar (6g) < h(B), and let g have mini-
mal height among such elements. Since h(p) isminimal, ar (6g) = h(g) — 1. Let Q
be a new predicate symbol of arity h(8), and define L’ := L U {Q}. 7/, is obtained
from 7, asfollows.

1. If h(a) < h(B), then 6, is unchanged.
2. If h(a) = h(p), then substitute 6, A QXp---Xq for 6,, where p = h(a) —
h(B) +1and q = h(x).
Now itisobviousthat7, istrivialy inconsistent iff 7 is. Moreover, by the Principle
of Monotonicity, 7, — 7. This completes the proof. O

If 7, isviewed asaformulaover thelexicon L', then 7, isaconstituent of 7 . If 7/,
is consistent, Q will be interpreted as the universal predicate of arity h(B).

Lemma6.2 Let7, beafluted constituent sentencethat isnot trivially inconsistent,
and that has occurrences of equal siblings. Let m be the minimum height of such oc-
currences. Then there exists a fluted constituent sentence 7/, such that

1. LCl

2. the number of occurrences of equal siblings at height min 7/, isless than the
number of occurrences of equal siblings at height min 7,

3. 7/, isnot trivially inconsistent

4. 7/, — T..

Proof: Inview of Lemmal6.1]it can be assumed that for all « € 7 ar (6,) = h(«).
Let B e T beanelement at height m— 1suchthat 1 <i < j < w(p) and g = 6g;. TO
simplify notation, suppose that 641 = 0o = - - - = O, Wherel < w(B). Leth(7)) =
h.
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The proof proceeds by constructing 7/, inductively in the order of height k. First

new predicates are introduced to partition 6y (= 6g2 = --- = ) into | digoint ex-
pressions. Thisispossiblesince (631], . . ., (6] aredistinct constituents, and so pair-

wise inconsistent. Then the remainder of 7, is modified to yield a constituent of L’
that is a constituent of 7., and moreover is not trivially inconsistent.

When m > 1, the construction of [[Z], Lemma 5 suffices because in this case,
01, 0p2, - . ., Bg Must contain an occurrenceof — 1. Thismakesit unnecessary to treat
| specially. The construction ensures satisfaction of condition (1) of Lemmal5.1] Itis
then easy to show that condition (2) is satisfied aswell. But when m = 1, the construc-
tion becomes more complex, requiring introduction of constituents (subtrees) during
the construction of 7} that have no counterpart in 7, . These subtrees will be called
exceptional subtrees. Since the proof must allow m > 1, the more complex construc-
tion must be used.

Let Qq, ..., Q benew predicate symbols of arity m, where2~1 <1 < 2", and
definel’ :=LU{Qq,..., Q). Let p1, ..., p beany distinct minimal conjunctions
over {Qq,..., Q. If p=0o1A--- Ao, whereforl <i <r,oi = Qj oroi = —Q;j,
then let pXp. .. Xq abbreviate o1Xp... Xg A -+ A 0rXp...Xg. Inthe construction of
7!,, ¥ will be the result corresponding to height k. Z"™ will be the result at the
conclusion of the construction.

Let ¢ be aconstituent of the lexicon L". The following operations are defined.

P is ¢ with al occurrences of Q. .. ., Q; deleted.

<pﬁ is ¢ with all occurrences of | deleted.

cpu is ¢ with all occurrences of exceptional subtrees deleted.

<pb” is @ with al occurrences of Qq, ..., Q; deleted at height n and above.

(pu” is ¢ with al occurrences of exceptional subtrees deleted at height n and
above.

o~ v DhPE

The proof that ‘Z‘L(,h) satisfies the lemmais by induction. The induction hypoth-
esisis
1. 7'¥ isnot trivially inconsistent, up to height k. That is, in 7%
(@) for each o € T® such that h(a) < k, thereexist y € T® such that
h(y) = h() -1, ad
[6,) = ([6u)-y' and
(O™ 1< fswm)) = (@l 1<) <w@):

(b) foreacha € T® suchthat 0 < h(a) < k, there exists exactly one j such
that 1 < j < w(w) and wgt(aj) > 0. Moreover, for this j:

([eaj)[—h(aj)-‘rwgt(aj)])T = ([Ga)[—h(a)+wgt(aj)])Ta and
-1 bk kT
(CH = L LD

_ t
(Oai)[_h(aj)+wgt @)

2. (L)) =70
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()
In 7”7,

(@41 M = (6,1 and

-1 bhyghyt - t
((((ea]th](a)ergt(aj)]) )E) = ((Qa]Lh](angt(aj)])’

and so it follows from (1) of theinduction hypothesisthat 7" isnot trivially incon-
sistent. Moreover, since ((7,)")? is obtained from 7, by deleting conjuncts of
the form pX, . . . Xg, and conjunctive (exceptional) subtrees, then by the Principle of
Monotonicity, it follows from (2) of the induction hypothesisthat 7, — 7.

For the basis step, let k = m. Then Z,™ is obtained from 7} asfollows,

1. For 1 <i <|I, substitute 6 A piXy ... Xm for 6.
2. Forl <i < w(p), substitute Og; A p1X1. .. Xm for Og;.
3. For all other elements i at height m, substitute 6,; A p1X1 ... Xm for 6.

The basis step has introduced a partition of [641), making [0g1 A p1X1... Xm), ...
[0 A piXa...%m) distinctin Z™. (1) of the induction hypothesis holds since ‘ZT_
is not trivially inconsistent. Obviously, ((7,/™)”)% = 7;. Therefore the induction
hypothesis holds for the basis step.

For the induction step, let m < k < h. The induction step modifies the tree
7%V to yield atree 7, that is not trivially inconsistent, up to height k. The con-
struction considers in turn each « € 7Y such that h(e) = k — 1. By (1) of the
induction hypothesis,

1. for each o € T*= such that h(a) = k — 1, there exist y € T*=1 such that
h(y) = k-2, and

[6,) = ([6o)-1)" and

_p) Ok=1)
(Ol i1 sw@) = {<<<0y,-][—11)b(k N 1w

[-1] .
= J] A< jswiy)A

((6,j] isnot exceptional ) }

2. foreach § € 7®=D suchthat h(8) = k — 2, there exists exactly one j such that
1< j=<w() andwgt(8j) > 0. Moreover, for this j:

(05D 1-heiprwgrei])T = (0)[hes)twgesiy) > an
b(k—l))u(k—l))T.

.
(Ol hisprugran)’ = O Ry ugecony)
It sufficesto prove that:
1. for each o € T such that h(a) = k, there exist y € 7% such that h(y) =
k-1, and
[0,) = ([(6u)- 1]>* and

. -1 .
(Ol lsi<w@) = (@) A<j<wim)A
((8,j] isnot exceptional ) }
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2. for each § € T® such that h(§) = k — 1, there exists exactly one j such that
1< j=<w() andwgt(d)) > 0. Moreover, for this j:

(05D =hsiy+wgtep) T = (0)[=h@)+ugtsipy) > and
. T [-1] bky fkyt
(Osil-niyrwgran)) = O] k) ugrisin) T,

The induction step will be facilitated if the following cases are considered.

1. k=m+1

(@ m=1
(b) m> 1

2. k>m+1
Tosimplify notation, let 6, = eﬁj A PXp—1...Xk—1. L& (84i A pXp ... %] denote
the subtree obtained from (6] by substitution of 6,; A pXp . .. X for 6y, (651-] denote
the subtree obtained from (6,,;] by substitution of 921- for 6,;, and (egi A= X 1 X A

PXp . .. X¢] denote the subtree obtained from (6] by substitution of efi A= X1 X A
pXp ... X for 6,i, and similarly for paths.

Casel: (k=m+1) Thiscasedeadswiththe stepimmediately following the ba-
sis step of the construction. Note that no exceptional subtrees exist at height < m.
Exceptional subtrees exist at height > monly if the induction step immediately fol-
lowing the basis step introduces exceptional subtrees.

Subcasel: (m=1) Herear(p) =1,and y =¢. Define (ai, j)forl <i < w(a)
and1 < j < w(e) asfollows.

118 (017Y = (Buil -1 ' @ ([0ei A PX2) (e +ugtain)|
= ([Ba) (@) +ugt@iny) ' then (ad, j) = 1.

2. If (9?][_11 = ((Bil;-1) " and ([Oui A PX2)[—h(ai)+ugt i)’
# ([0a)[-h(@)+wgt @) then (ai, ) = 2.

3. Otherwise (ai, j) :=0.

Notice that for each i, there exist j such that («i, j) = 1. Thisisseen asfollows. By
(1a) of the induction hypothesis, for eachi, (9?][*1] = ((Bil[-17)" for one or more |
suchthat 1 < j < w(e). If wgt(ai) = 0, it follows immediately that («i, j) = 1 for
each such j. Supposethat wgt («i) > 0. Since 7 isnot trivially inconsistent, thisi is
unique, and moreover, ([6,i)—1)" = [62) and ((Bui][—1)" = (821171, Henceif pxy
occursin 6y, then ([0, A ,0X2)[,1])T =[04), and so («i, j) = Lfor j = «. Alsonatice
that («ai, j) = 2for some j only if wgt (ai) = 1.

Replace the subtrees {(0,] : 1 < i < w(w)} with the subtrees {(0,i A pX2] :
(ai, ) = 1} U {(6% A =IXy%p A pX] © (ai, ) = 2}. OF these subtrees, those in the
second set and only those are defined to be exceptional. Since the number of sub-
trees lying above o may increase in number as aresult of this replacement, it may be
necessary to reindex the tree domain.
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Whenall o € 7™ at height m have been considered, the resultis Z,"™. Now
for each «i at height m+ 1, there exist j at height m such that

(((6;] 2P DB — (g1

Hence
1. for each «i at height m+ 1, there exist j at height m such that

[0) = ([6u)_1)"and
{(Oairl il <w@)) = (@79 A<g=w(i) A
((Pjq] is not exceptional )}

Further, from the definition of («i, j),

2. for each « at height m, there exists exactly onei suchthat 1 < i < w(«) and
wgt (ai) > 0. Moreover, for thisi:

([gai)[_l])‘r = [6y), and
((Qozi][—l])T = (((Qa][—l])b(ml))u(m_;_l).

Thus the induction hypothesis holds.
SQubcase2: (m> 1) Define (ai,yj)forl<i<w(x)andl < < w(y) asfol-
lows.

11 @100 = ((Buili-1)", then (e, yj) = 1.

2. Otherwise (ai, yj) :=0.

By (1a) of the induction hypothesis, for each i, there exist one or more j such that
(ad, y)) = 1.

Replacethe subtrees {(6,i] : 1 <i < w(x)} with subtrees{(yi A pX2. .. Xma1] -
(ai, vj) = 1}. None of the new subtrees is exceptional. The operation -2MD js re-
dundant and is retained only for uniformity with the other cases. As before, it may
be necessary to reindex the tree domain. When al o € 7™ at height m have been
considered, the result is Z,(™. Now for each ai at height m+ 1, there exist yj at

height m such that (((eyj][*ll)b(m*”)u(ml) = ((fuil-1)T. Hence

1. for each «i a height m+ 1, there exist yj at height m such that

[0,) = ([fui)-1)" and
{(@airdi-) i L<r <w@)) = (@Y L<g<wEi)A
((Byjq] is not exceptional )}

It remains to prove condition (2), that is,

2. for each o at height m, there exists exactly onei suchthat 1 <i < w(«) and

wgt (i) > 0. Moreover, for thisi:

([eai)[—h(ai)+wgt(ai)])T = ([ea)[—h(a)—&—wgt(ai)])-r’ and

((Cail e+ wgr@) = ((((Ga]H](angt(ai)])b(mﬂ))mm“))T.
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That there exists exactly onei suchthat 1 < i < w(«) and wgt(«i) > 0 followsfrom
the assumption that 7, is not trivially inconsistent and the observation that the con-
struction preserves this uniqueness. To complete the proof of condition (2), first sup-
pose that wgt(ai) = h(ai) — 1. Then wgt(e) = h(a) — 1. Let§ = (m—1) : «. By
the induction hypothesis, in 7™,

([6)-)" = 1[6s), and
(Bolie)t = (8] T)Pmyim,
Thus
(Ol 1< i< w@) = {(Ox]7HP™IM: 1< | <w(©)).

Therefore, § isthe (or one of the)  whose existence is asserted by the induction hy-
pothesis. Asaresult, in 7™, for each ai a height m+ 1, there exist 8 at height

msuch that (((6sj]0- )P MDY EMD — (9,11t Since wyt (ai) > 0, the 5 asso-
ciated with ai must be «. Hence

([Qoti)[—l])Jr = [Qa)’ and
((90,i][_;|_])Jr = (((Qa][—l])b(m+l))ﬂ(m+1)‘

Next supposethat 0 < wgt(ai) < h(ai) — 1. Under thissupposition, wgt(y)) =
wgt (). Sincein ™™, [6,) = ([6ai)-17)", it follows that

([0a)[—h(@i)+wgt@) | = Ty =heri)+wgtrp)) -
By the induction hypothesis,
T t
[0y Di-herp+wgtvin) = 0 [-he)+wgevin]) -
Since[6,) = ([6x)[-17)", it follows that
([Bei ) @iyt wgt @) = [Be)[hia)+wgtein]) -

Thisisthefirst equation of condition (2).
Since 7| isnot trivially inconsistent,

(el =ptairugtia) DT = O 4w
It follows from the first equation above that
(eai[fh(ai)ergt(ai)])T = (Qa[fh(a)ergt(ai)])T-
Therefore,

(il +wgrein) | = (Ol gy cgriay)” ™ ™),

This is the second equation of condition (2). This completes the proof of condition
(2). Thusthe induction hypothesis holds.
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Case2: (k> m+ 1) Thiscasedeas with the induction steps subsequent to the
first. Notice that if pXp_1...Xc_1 Occursin 6,, then px,_>. .. X occurs in both
(Our—1) " and 6,,.

Define (ai, yj) asfollows.

1. If (6,] isnot exceptional and (Q)b,j][—ll = ((Qai][—l])Ta then (ai, yj) = 1.
2. If (6] is exceptional and (e)bf][—ll = ((egi][_l])t then (ai, yj) = 2.
3. Otherwise (ai, yj) :=0.
By (1a) of the induction hypothesis, for each i, there exist one or more j such that

(ad, v)) = 1.
Replacethe subtrees{(6,i] : 1 <i < w(a)} withthesubtrees {(0,i A pXp. .. %] :

(i, yj) = 1} U {(495i A =X 1 X A pXp ... X] - (ai, y)) = 2}. Of these subtrees,
those in the second set and only those are defined to be exceptional. As before, it
may be necessary to reindex the tree domain.

When all o € 7D at height k — 1 have been considered, the result is 7.

Now for each i at height k, thereexist yj at height k — 1 such that (((6,;]1-)Pk) Tk =
((Bai]—1)". Hence

1. for each «i at height k, there exist yj at height k — 1 such that

[6,)) = ([Bui)i-1) and

{(Bairli—) T 11 <1 < w(ai) (@Y A <a<wii) A
((Byjqg] is not exceptional )}

It remains to prove condition (2), that is,

2. for each @ at height k — 1, there exists exactly onei suchthat 1 <i < w(«) and
wgt (i) > 0. Moreover, for thisi:

([Oai) [-h@iyrwgt@]) = [Oa)h@) +ugti) > and
(Ol -hoirug@) | = (Ol s vy,

The remainder of the proof for Case 2 is similar to that for Subcase 2.

Observe that in every case, ((Z,¥)*)% = ;. Therefore the induction hypothesis
holdsfor theinduction step. Finally, define 7/, := 7. Thiscompletesthe proof. [l

If 71 isviewed asaformulaover thelexicon L', then 7/, isaconstituent of 7. Inan
interpretation of 7', the p1, ..., p; will beinterpreted as subsets of D™ that separate
the subset that interprets 6y into | digoint parts such that each part satisfies one of
theexistential claimsonég,. Such separationisalwayspossiblesince (6g1], ..., (4]
are distinct constituents, and so pairwise not simultaneously satisfiable. That is, for
any assignment to the free variables of these constituents, no element of the domain
can bear witness for more than one of them.
Together these lemmas yield the following theorem.

Theorem 6.3 Let 7| be a fluted constituent sentence that is not trivially inconsis-
tent. Then there exists a simple fluted constituent sentence 7/, such that
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LLCL
2. 7/, isnot trivially inconsistent
3. 7/ — 1.

Proof: Inview of Lemmal6.1]it can be assumed that for all « € 7 ar (6,) = h(«).
If 7. isavine, thereis nothing to prove, so suppose that 7, isnot avine. 7/, is con-
structed inductively. The construction begins with 7, . Each step employs the con-
struction of Lemmal6.2] Inductively, suppose that n steps have been performed, and
that misthe minimum height at which there are occurrences of equal siblings. Then
after step (n+ 1), there are fewer occurrences of equal siblings at height mthan after
step n. Each step reduces the number of occurrences of equal siblings at the mini-
mum height of such occurrences. When this number reaches zero, it increases the
minimum height of such occurrences. Although some steps may increase the total
number of occurrences of equal siblings, the construction acts to restrict these occur-
rencesto greater and greater heights, until they only can occur at height h, where they
areeliminated entirely by the assumption that Z’, contains no occurrences of repeated
constituents. This completes the proof of the theorem. O

7 Satisfiability of fluted constituents  According to Theorem [4.2] every fluted for-
mulaisequivalent to adisunction of fluted constituents of thelexicon of that formula
providing they are of sufficient height. Therefore, the question of satisfiability of a
fluted formula reduces to the question of satisfiability of a fluted constituent. This
involves construction of interpretations of constituents. First some general facts rel-
evant to interpretations of constituents will be established.

Let 7. beafluted constituent sentence of L with the identity relation. Suppose
that 4, isnot trivially inconsistent. Define the domain associated with 7 to be

Di={a,: (@€ T)A (a+#¢e)}.

T itsalf without the root element ¢ would serveaswell, but D will be used to enhance
readability.
Define ~ initially (it will later be extended) to be the least equivalence relation
on D such that
Ay ~ &g if wgt(aj) > 0.

~ is extended to sequences of elements of D asfollows.

Qup .- 8y ~ Ay, ..., iff [ =mandforl<i<l:a, ~a,

The following lemma gives some properties of ~ as defined initialy.

Lemma7.1 Let 7. bea fluted constituent sentence of L with the identity relation
such that 7, isnot trivially inconsistent. Let o € 7.

1. a, ~ a4j impliesi = j.
2. a, ~ a;s for some unique terminal element § € 7.

3. a, ~ a, impliesthat « and y are lineally related, i.e., either « is a prefix of y
or y isaprefix of a.
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4. Ifayy ... ~am,...a,andaisaprefixof y, thenay, ~---~a, ~---~a,
wgt(y) = h(y) =, wgt(e) > h(@) — 1, and ([6;)-mi1) " = [(Oa) 141"

Proof: (1), (2), and (3) follow directly from the definitions of trivial inconsistency,
wgt, and ~. Thefirst three assertions of (4), viz., that a., ~ --- ~a, ~ --- ~ @,
wgt(y) = h(y) — I, and wgt(a) > h(a) — |, follow from the definitions of wgt and
~. For the last assertion of (4), observe that in general ([0:)—q)" = ([Be)-)'
implies ([6:)[—q-1)" = ([fe)—r—g)" for 0 < t < h(¢) — g. This, together with
the assumption that 7| is not trivially inconsistent, yields ([Gy)[,h(y)wgt(a)ﬂ])* =
([ea)[—h(a)+wgt(a)+l])T- But h(V) - wgt(a) =m and h(Ol) - wgt(a) = I; SO
(O (=mr1) " = ([0a)[-1+1))". This completes the proof of the lemma. O

An interpretation with domain D/ ~ satisfying 7, requires definition of a mapping
such that

1. T {0}
2. I~ {(aa:.:aeD/~}
3. R R c (D/~)@® foreach Re L.

It will suffice to define a mapping of [6,) for each o € 7 that satisfies the following
properties.

1. Theimage of [6,) isasubset of D@,
2. Ifag, ...a =[0,) and[6,) = [0, where1 < | < h(a),
thenag, ...ag_, =1[6,).
3. Ifag,...ag = [6.) and [6,) = ([0)-1)T, where1 < | < h(w),
thenag ., ...a5 E=[0)).
4. Ifag ...ap =[6y) andag, ...a ~ as, ...as,thenas, ... as, = [04).
5. Ifag ...ag =[6,) adag, ...a5 =[6,), thena = y.

(D—(3) ensurethat the mapping respectsthe definition of path from &; (4) imposesthe
semantics of the identity relation, and (5) ensures that the mapping respects the Fun-
damental Property of Paths and the Fundamental Property of Constituents. A map-
ping satisfying (1)—(5) is well-defined. Moreover, it induces a well-defined mapping
from L into the structure with domain D/ ~. Thislatter mapping defines an interpre-
tationin D/ ~.

The following theorem, which provides a decision procedure for the question of
satisfiability of constituents, isthe main result of the paper.

Theorem 7.2 Afluted constituent sentencewith theidentity relationisunsatisfiable
iff it istrivially inconsistent.

Proof: The ‘if’ direction is given by Lemmal[5.1] The ‘only-if’ direction will be
proved in its contrapositive form. Let 7, be afluted constituent sentence of height
h that is not trivially inconsistent. In view of Theorem [6.3] it can be assumed with-
out loss of generality that 7. is simple. It will be shown that 7| is satisfiable in an
interpretation I with domain D, and whose mapping satisfies the five conditions enu-
merated above. Two claimswill be proved.

Claim 7.3 Aninterpretation I of L can be constructed with the property that if
isnonterminal at height k, and ag, . .. ag, = [6.), then
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1. for 1< j<w(a):3ageD:ag ...a5a5 = [0u)), and
2. Vage D:ag, ...aga5 = [041) V-V [Oguia)-

Claim 7.4 Inaninterpretation I of L with the property of Claim[Z3]if h(«) = k
and ag, ...ag, =[6.),thenag, ...ag = (6]

The theorem follows from these claims since, letting I be the interpretation of
Clam[Z3]wehave I |=[6,), because 7} isnontrivial, and so by Claim[Z.4] I = (6,],
i.e, I =7, . Proofs of the claims are now given.

Proof of Claim[Z3] For the proof of thisclaim, it will be helpful to invoke geomet-
ric intuition by viewing [6,), where h(a) = k, as a subspace in the k-dimensional
space with coordinate axes Xq, X, ..., Xk. On this view, the tuple (ag,, ..., ag,),
which will be written ag, . .. ag,, is apoint in the k-dimensional space. The state-
ment ag, ...ag, € [0,) isdefined to be equivalent to ag, ... ag, = [6u). A1 .. Ay
alsoisapoint in the k-dimensional space. Points of thislatter form, aswell as points
of theform a;.,...a, (1 < i < K), and points ~-equivaent to them, will be called
standard points. In the usual way, a subspace of k-dimensional space becomes a sub-
space of (k+ 1)-dimensional space by cylindrification or ringing along the (k + 1)-st
coordinate.

The mapping of I isdefined in three parts. Each part is ordered by height. The
first part of the mapping is given asfollows. For each « € 7, define

1 ay...8, = [0y, andfor 1 <i < h(e) : & ...a, = [6,), where [6,) =
(O —isa ™.
This definition is then extended just so that it is closed under ~. It is easy to see that
the definition satisfies conditions (1)—(3). Also condition (4) issatisfied by the closure
under ~. It remainsto show that condition (5) is satisfied. Supposethat a., ... a8, =
[60,), where [0,) = ([Ha)[_|+1])T, and &, ...a8, = [6;). Then there exists § and m
such that @y ... 8 ~ ams ... 85, 8ms .- -8 = [0;), and [6;) = ([6s)-me1)". BY
LemmalZ LW, ([65)_m1) " = ([6u)[_111) . Hence[6,) =[6,), and since 7} issim-
ple, ¢ = y. Thus condition (5) is satisfied. This concludes the first part of the map-
ping. Following this part, every standard point is committed.
The second part of the mapping is defined next, ordered by height. Let h(x) =
k > 0. We extend the interpretation of the [6,;) asfollows. For each g € 7, if

1 &s...a5 = [0a),

2. @s...3588 = [04j)[-1, and

3. itisnotthecasethat 1 < | # j < w(@), amg...a:a, ~ &s...asag, and
ame - - - 8cay = [0ul),

then define

1. ais...a588 = [0a)), and
2. for1<1<h(8) —i:aitys--.. aag k= [6ys), where[0ys) = ([Oa )

If wgt(aj) > 0, then extend the equivalence relation ~ just so that a; ~ ag. Then
extend this definition of the second part as well as the definition of the first part
just so it is closed under ~. The definition ensures that conditions (1)—(3) are sat-
isfied, and closure under ~ ensures that condition (4) is satisfied. It remains to
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show that condition (5) is satisfied. Suppose that a5 ..asag = [6,s), where
[6,s) = ([6aj)[—1)T, and further that &1y - . . 858 = [0z1). It must be shown that
¢t = ys. According to the definition of the second part of the mapping, there must ex-
ist e, v, p, r, m, and nsuchthat amyny:y. - - - 8,8 = [0:1), Where[0) = (0,0 -,
and amynyy - - - Ay ~ Agiqys - - - AsAg. Thereasoning relativeto thefirst part of the
mapping yields ([6,)—n) T = ([6u)-)T. Thetis, [6;) = [6,). Since 7 issimple,
¢ =y. Buta, ~ ag, and so by the definition of the second part of the mapping, t = s.
That is, ¢t = ys. Thus condition (5) is satisfied.

Thisconcludesthe second part of the mapping. Now every point ~-equivalent to
oneof theform a;, . . . a,ag iscommitted, where « isnonterminal and 1 < i < h(a).

The intent of the first two parts of the mapping is to ensure that at every
point @ ...a,, if & ...a, = [6,), then: (i) for every [6,;) there is some ag
such that a;. ... a8 = [0,j), and (ii) for every ag, there is some [6,) such that
Qi - .- Ao = [gyj)-

The third and final part of the mapping is now defined, ordered by height. Let
h(a) = k > 1. Theinterpretation of the [6,;) is extended asfollows. Let ag, ... ag,
be anonstandard point such that ag, ... ag, = [6,). Foreach g e T,

1. if ag ~ agc and wgt () > 0, then define ag, . .. ag ag = [04));
2. if =(ag ~ agx) and wgt (aj) = O, then

(@) ifagy ... a8 =[6q), thendefineag, ... ag ag = [04));
(b) if agy ... a.8p¢ = [00)), thendefineag, ... ag a8, = [0q)).

This definition is extended just so that it is ~-closed. Satisfaction of conditions (1)—
() isinherited from the first and second parts. Since the definition is ~-closed, con-
dition (4) is satisfied. That condition (5) is satisfied is easy to prove by an inductive
argument based on the order of the definition.

Theintent isthat thethird part inherit from thefirst and second partsthe property
that for every [6,j) thereissome ag suchthat ag, . .. ag ag = [6.j), and aso that for
every ag, thereissome[6,j) suchthat ag, . .. ag ag = [04). Followingthisfinal part,
every point iscommitted. This concludes the definition of the mapping.

It remainsto show that thisinterpretation has the property claimed for it, viz., if
a isnonterminal at height k, and ag, . .. ag, = [6,), then

1L forl<j<w(w):JageD:ag...agas k= [by), and
2. YageD:ag ...ag8 =[041) V-V [Oaua))-

The proof is by induction on k.

For the basis step, k = 0. By the first part of the definition, for 1 < j < w(e),
aj = [0j). Therefore, item (1) of Claim[Z.3lholds. Since 7; is not trivially incon-
sistent, for al g € 7, there is some j such that [6}) = ([Gﬁ)[_h(5)+1])T. Hence by
the first part of the definition of the mapping, ag |= [6j). Thusitem (2) of Clam[z.3]
holds.

For the induction step, k > 0. The proof is subdivided into three cases.

Casel: ag
w(@),

.ag, ~ A1q...8,. By thefirst part of the definition, for 1 < j <

J

Ay .- B8qj = [04)-
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Therefore, item (1) of Claim[Z.3]holds. From the definition of the second part of the
mapping, if
Ay - - B8g = ([Bup1)
then either already
g - - - Q0B = [Ou),

for somel suchthat 1 < | < w(w), or we define

Al - .. e = [0q)-

By the induction hypothesis, item (2) holds for ap., ...a, = ([90,)[_1])*, and hence
item (2) also holdsfor ag. ... a8, = [6a)-

Case2 ag, ...a5 ~ a;...as for somes € 7. From Case 1, Claim[Z.3]holds for
ays...a5 = [0s5). Since 7 isnot trivialy inconsistent, there exists y € 7" such that

1. [6,) = ([0s)[=i+1)T, and

2.4[6,) 1< j<w®) = {([s)-ixT 1 1< j < w(®)).
Since 7, issimple, y isunique. Hence y = «. By the first and second parts of the
definition, therefore, Claim[Z3lholds for a5 . . . a5 = 6, aso.

Case3: ay, ...as isnongandard. Claim[Z3lfollows from thethird part of the def-
inition and Case 1.

In every case, then, Claim[Z.3]holds. This concludes the proof of Claim[Z.3] O

Proof of Claim[Z.4]  This proof is by induction on the depth d = h — k, where k is
the height of « € 7. Theinduction hypothesisisthat Claim[Z4lholdsfor all elements
with depth < d.

For the basis step, d = 0, 6, isat height h. Here (6,] = 6, by definition, and so
the induction hypothesisistrivialy true.

For theinduction step, d > 0, 6, isat height k = h —d. Suppose ag, ...a, =
[6,). Since I is assumed to have the property of Claim[Z3]

L forl<j<w(a):JageD:ag...aga5 =[b),and

2. Vage D:ag, ...agag =[041) V- -V [Oqw)-
By the induction hypothesis, if ag, ...agag = [04j), then ag, ... ag ag = (G4l
Therefore,

lforl<j<w(a):dageD:ag...a5a5 = (6], and

2. YageD:ag ...ag a8 = (Ou1] V-V (Baw()]-

Thus ag, ...ag, = (6,], and the induction hypothesis holds at height k. This con-
cludes the proof of Claim[Z.4] and of the theorem. O

O

If ¢ isafluted formula, Theorem[4.2]states that ¢ is equivalent to the disjunction of
its constituents. Moreover, the proof of Theorem|[4.2 brovides an effective method of
transforming ¢ into the disunction of its constituents. Obviously ¢ is satisfiable iff
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one of its constituents is satisfiable. Theorem [Z.2]states that a constituent is satisfi-
ableiff itisnot trivially inconsistent. Trivial inconsistency can be decided by afinite
number of tests on the syntax of the constituent. Theoremsli.2land[Z 2khereforeyield
the following conclusion.

Theorem 7.5 The satisfiability of a fluted formula with the identity relation is de-
cidable.

8 Discussion The sublogics lying between fluted logic (FL) and first-order logic
with identity (FOLI) can be represented by alattice isomorphic to the Boolean lattice
with five generators. It is wellknown that the upper bound (FOLI) lies in the unde-
cidable region. In [[7] the lower bound (FL) is shown to lie in the decidable region.
This paper is part of alarger effort to establish the exact boundary between decidable
and undecidable in the interior of the lattice. It shows that fluted logic extended by
adding the identity relation is decidable. There are two corollaries to this result.

First, addition of the reflection functor to fluted logic with identity is conserva-
tive, hence decidable. The reflection functor ref can be defined in FL with identity as
follows. If 6 isafluted formula over X1, then (ref 0) isafluted formula over X.
Let Q be apredicate symbol of arity k having no previous occurrence, and let

@ =Xy ... VX (QXq ... Xk < IXpa1 (I Xk X1 A ).
Then any interpretation I satisfying ¢ will interpret Q and 6 such that
ai...ae (ref 0)iffa;...aa €0 iffa;...a e Q.

Thus Q, as defined by the fluted sentence ¢, islogicaly equivaent to (ref 6). There-
fore FL with identity and the reflection functor is a conservative extension of FL with
identity, hence decidable. It followsthat FL with the reflection functor is also decid-
able.

Second, addition of unary singular predicatesto fluted logic with identity is con-
servative, hence decidable. Unary singular predicates can be defined in fluted logic
with identity asfollows. Let

Q= E|X1(SX1 /\VXZ(SXZ —> |X1X2)).

Then in any interpretation satisfying ¢, the interpretation of Sis a singleton set. It
follows that FL with unary singular predicatesis also decidable.

Anaphoric pronouns can be represented by unary singular predicates. As ob-
served in Section[L] anaphoric pronouns play an important role in natural logic, sim-
ilar to that of Skolem constants in clausal logic. But this topic will not be pursued
further here. Rather it will be deferred to a subsequent paper.
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