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An Open Formalism
against Incompleteness

FRANCESC TOMAS

Abstract  An open formalism for arithmetic is presented based on first-
order logic supplemented by avery strictly controlled constructive form of the
omega-rule. Thisformalism (which contains Peano Arithmetic) isproved (non-
constructively, of course) to be complete. Besides this main formalism, two
other complete open formalisms are presented, in which the only inferencerule
is modus ponens. Any closure of any theorem of the main formalism is athe-
orem of each of these other two. This fact is proved constructively for the
stronger of them and nonconstructively for theweaker one. Thereis, though, an
interesting counterpart: the consistency of the weaker formalism can be proved
finitarily.

1 Introduction Vaguely stated, we understand that an open formalism differsfrom
what is usually called aformal system or axiomatic theory in that it is not demanded
that the collection of its axioms be decidabl e, or generated by amechanical process or
something of the sort, so that an open formalism for arithmetic will beinvulnerableto
Godel’s proof of incompleteness or other such proofs, such asthe onethat is based on
the incompl eteness of the halting problem (see Ebbinghaus [E], Chapter V, §6). Asa
matter of fact, Godel’s method becomes a procedure, among others, in the description
of the collection of axioms of the formalism (or formalisms) to be defined. The cen-
tral idea, in the definition of the formalism, isto describe the collection of its axioms
by means of a constructive and very strictly controlled form of the w-rule and of the
notion of “segment” to be introduced. To this purpose transfinite ordinals or related
devices are needed. About the w-rule and its usesin the foundations of arithmetic see
Feferman [[6] and the more recent Ignjatovic and their references.

In the present introduction the open formalism OA; is described and its com-
pleteness is proved nonconstructively. The constructive proof that OA; contains
Peano Arithmetic is carried on in Section 2 where a subformalism OA of OA; isde-
scribed in which advantageis taken of the perfect notation and clear constructiveness
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of theordinas < ¢p. In Sections 3, 4, and 5, besides proving that OA contains Peano
Arithmetic, it isillustrated how, as said before, Godel’s and related methods can be
used to introduce in OA axioms that are not theorems of Peano Arithmetic.

There is an appendix where complete formalisms OA’ and OAY are defined in
which modus ponens is the only inference rule. The consistency of OA7 is proved
constructively. Its completeness makes it as strong as OA; (and, consequently,
stronger than Peano Arithmetic), in some nonconstructive sense.

We now proceed to define OA;. Previousto it we need to describe a collection
or class C of constructive totally ordered countable sets without infinite descent.

Definition 1.1  Each member of C will be provided by a procedure that

1. definesaset o and a decidable (by the same procedure) total order < onit;

2. has the means to prove, for any given decreasing sequence a; > a, > --- of
elements of o, that the sequence isfinite;

3. itscorrectness (i.e., of the procedure) is proved constructively without having
recourse to the excluded third for infinite sets.

The possibility of thinking of correct procedures whose correctness we do not know
how to prove constructively will beillustrated in Section 4.3 and in the appendix (end
of Section[A.T).

We now have the following definition.
Definition 1.2 OA; isafirst-order theory with equality in which thereis only one
individual constant O and the functional symbols are +, -, and ’. Its collection of
nonlogical axioms and the notion of segment are described as follows.

(a1) Theset B of basic axioms of OA, consists of the following.

X = Xp == (X = X3 == X2 = X3),
_ N
X1 = Xop = X] = X,

—0 =X,

Xp = Xo == X1 = X,
X1+ 0= Xy,

X1+ X = (Xg + X2)',
X1~0=O,

X1+ (X5) = (X1 - X2) + Xq.

(by) A segment T of OA; consists of amember o of the class C and a procedure
that defines a function jt from o to the set of formulas of OA; of the form
Vx A(x) (for any variable x) and provides, for each § € o, aproof of

BU{jT(y):y€or, y <8 F Al (M)

for each natural n, where it is understood that Vx A(;T(x) = j1(8) (and where
0is0, 1is0, and so on). The set AX(T) of nonlogical axioms of T is then
defined as

AX(T) =BU{jr(y) :y €or, y € o1}
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The procedure that consists of the definition of j+ and provides the demanded
proofs must be correct, of course. It is demanded, moreover, that its correct-
ness be proved constructively, as has already been demanded of the procedure
that defined o1 and satisfied (1), (2), and (3) of Definition [[.2] This demand
of constructivity of the proof of the correctness of the whole procedure hasthe
clear intention of staying in accordance with Hilbert's program.

(c1) Thecollection AX(OA,) of nonlogical axioms of OA; consists of all the ax-
iomsof al its segments T

AX(0Ay) = J AX(M).

where the union runs over al the sesgments T of OA;.

Thisdescribesthe open formalism OA ;. Weshall write T = Aor OA; - Atoindicate
that A isderived from AX(T) (and the logical axioms) or from AX(OA;) (and the
logical axioms), respectively, and say in such cases that A is atheorem of T or of
OA]_.

The schemaof induction, absent in B, will appear asaschemaof axiomsin some
segment. Thiswill be proved in Section[3] where it is shown that Peano Arithmetic
is contained in a segment of OA and, consequently, of OA; (see Section[2).

We now proceed to prove, nonconstructively, the completeness of OA . We de-
finethe sum of afinite or infinite sequence of segments, T4, T», ..., of OA4, denoted

T=T1+To+---
by setting

or = (o1, x {IPH U (o1, x{2HU---,
()< @, ifi<j, orifi=jandy<$§

Ty, =1, (¥)

Clearly, T is asegment of OA4, the callection of procedures for the T; providing a
procedure for their sum and the collection of constructive correctness proofs provid-
ing a constructive correctness proof for the sum.

By taking o1, = @ fori > nthe apparently infinite sum reducesto thefinite sum
T1+4---+ Th. Aseach theorem of OA, depends only of a finite number of axioms
we see, by considering in each case the segments in which these axioms arise, that
each theorem of OA; isatheorem of one of its segments.

Observation 1.3  If OA; + Athen T - Afor some segment T of OA;.
Observation1.4 If T+ Aifori=1,2,...,then
Ti+To+---FA fori=12...,

where the sequence of values of i may be finite or infinite.
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As a simple consequence we see that OA is consistent if and only if each one of
its segments is consistent. This last assertion can be proved nonconstructively very
easily by showingthat (N, +, -, ') isamodel of each segment (with the natural inter-
pretations of the operations). The proof of thisfact depends of the noninfinite-descent
condition 2 of Definition[L.T]

We now have (nonconstructively, of course) the following theorem.

Theorem 1.5 OA iscomplete.

Proof: Let usconsider the closed formulas of OA, and say that Aissimpler than B
if the number of presences of symbolsv, A, =, 3, or V (not counting the presences
of =) islesser in Athanin B. Suppose now, on the contrary, that OA; isincomplete.
This means there are undecidable closed formulas. Suppose A is one of the simplest
of them. As any two formulas C and —C are decidable or undecidable at the same
time we may suppose that A isnot of the form —B. We also see easily that A, being
simplest undecidable, isnot of theforms Bv C, BA C, or B=— C. Finally, Aisnot
of theform a = b for constant terms a and b because al such formulas are decidable,
sothat Amust beof theform 3IxB(x) or VXC(x). But, as3xB(x) and Vx—B(x) areun-
decidable or decidable at the same time, we may always supposethat Aisof theform
VYXC(x). Wenow observethat C(n) isdecidablefor each natural n because each C(n)
issimpler than VxC(x). Moreover, wemust have OA 1 - C(n) for each n because oth-
erwise we would have OA ;1 = —=C(n) for some n, and then OA 1 = =VxC(X), against
the undecidability of YxC(x). Due to the previous observations, if the segments S,
aresuchthat S, = C(n) for each n, then we consider the segment

S=%+S+---
and will have
Sk C(n) foral natura n.

We now define the object (not asegment) P consisting of op = {&} (amonic set) and
jp(@) = YXC(x). Then we consider the object S + P, for which, as in a previous
definition,

osip = (os x {1}) U (op x {2}),

(y,1) < (2,2) for every y € os, (y,1) < (8,1) whenever y < §, jsip((y, 1)) =
js(y) and js, p((2,2)) = jp(2). We assert that the complex S+ P is a segment of
OA ;. To be convinced of it we need only to see that there is a procedure to prove
S+ C(n) for each n and that the correctness of this procedure is proved construc-
tively. But such a procedure is nothing else than the collection of the proofs of the
Sy C(n) and, as the correctness of each of these proofs is constructively proved,
the correctness of the collection of proofsis also constructively proved. Thus, S+ P
being asegment of OA, YXC(x) isanaxiom of it, against the hypothesis. Thisproves
that OA is not incompl ete. O
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2 Theopen arithmetic OA  For the description of the notion of segment of OA the
ordinals less than ¢g are required. Asiswell known, Gentzen made use of these or-
dinalsin his proof of the consistency of arithmetic. But they have also been useful
in the description of formalismsin which, asin the present one, an aleviation of in-
completeness theorems was aimed at. In this line Turing [19] and Feferman [5] may
be mentioned. We shall open this section with an exposé on ordinals < ¢g, follow-
ing Gentzen [B]], Section 4.4. About ordinalsin general Suppes [17]] and Takeuti [18]
may be consulted.

We introduce recursively, simultaneoudly, the definition of the set S of ordinals
< ¢g and of therelation < onit. The equality will be the identity.

1. §=1{0};not0<O0.
2. Letussupposetheset S andtherelation < onit have been defined for anatural
r. Wethen define S ;1 asthe set consisting on 0 and all the expressions

wa1+wa2+,”+a)ﬂln

inwhich the aj aremembersof S suchthat oy > a2 > --- > an. Wedefing, in
S’+1!

wa1+,“+wan<wﬂl+”‘+wﬂm

if wehave, forsome j <n, m,that oj = g forali < jandaj < gj; orif m>n

and we have o; = gj foral i < n. Weaso define0 < y forevery y € S41

different from 0 itself.

It is clear, by induction onr, that S € S 4, that the definition of < in S

coincidesin § with the one givenfor it, that < isirreflexive transitive and that

wecan decidefor every two different elementsof S, 1, whethera < gor 8 < a.
3. Finaly, wedefine S=US

Sis, as said before, the set of ordinals < ¢g. In the previous definition the signs 0,
w, and + are devoid of any significance, the sign + between expressions is only a
concatenation and there is no question of associativity. We shall use the notations or
identifications 1 = 0%, 2 = w® + 0°, and s0 ON; w = w?!, 20w = w' + w?!, and so on.
Theordinal 1and all ordinalsof theform - - - 4+ 1 will be called the successors. All the
other elements of Swill be the limit ordinals. According to thisO isalimit ordinal.
We may agreethat 0+1 denotes 1, in order to be abl e to describe the successor ordinals
as all those of theform --- + 1. We have n < w for every finite ordinal n; and w is
less than any other transfinite ordinal. We observe that for any successor g + 1 there
isauniquelimit ordinal y suchthat y < 8+ 1 < y + w.

In fact we shall make use of the (proper?) subset S of the elements y € Sfor
which the set of successor ordinals < y belongs to C (see Definition[L1). Thisisa
technical trick. Inthefirst placeit will help to make clear that OA isasubformalism
of OA1; and, onthe other hand, all the concrete membersof Sof whichwe shall make
usewill obviously belong to S. In thisway we avoid the problem of having to know
if S'is, orisnot, aproper subset of S.

Before entering into the definition of OA we still need something else: we shall
recall some constructive proof of the countability of each S,. If, in the definition of
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the S,, we take the empty set @ instead of O we see, for each n > 0, that the elements
of S,.1 may be viewed as the combinations with repetition, or multisets, of S,. In-
deed, in thefirst place the element @ of S, isthe empty multiset of S, and, given
0"t 4 -+ % € Sy, Weidentify it with the multiset consisting of the elements
a1, ..., o, respecting their multiplicities. Conversely, given any nonempty multi-
set, consisting of By, ... , Br, we order these elements so that S,(1) > -+ > By for
some permutation ¢ and then identify it with the ordinal wfe® + ... 4+ w0 € S, 4.
We can then accept inductively that for each positive n we can go on constructing a
list g, of, ... of @l theelementsof S,. For S the list reducesto @.

Definition 2.1  OA is afirst-order theory with equality with the same language of
OA;. Its collection of nonlogical axioms and the notion of segment are defined as
follows.

() Theset of basic axiomsof OA isthe same B listedin (a;) of Definition 1.2 of
OA;.

(b) A segment S of OA consists of an element of S, denoted A (S), the length of
S, and a procedure that defines afunction js from the set of successor ordinals
< A(S) tothe set of formulas of OA of theform YxA(X) and provides, for each
B+ 1< x(S), aproof of

BU{js(y+1) :y+1=<p} A3 (M

for each natural n, where we understand that VXA? 1 (X)) = js(B+1). Theset
of axioms of Sisthen

AX(S) = BU{js(G+1):8+1<xr(S)}.
(c) Thecollection AX(OA) of axiomsof OA consistsof | J AX(S), for Srunning
over al the segments of OA.

The same demand of constructivity in the correctness proofs made before for OA is
made now for OA. The same notations, S+ A, and so forth, used for OA; will be
used for OA.

Proposition 2.2  OA isa subformalismof OA;.
Infact, each segment S of OA istrivialy interpreted asthe segment T of OA; defined
by

or={f+1:B+1=1(9)},

with the order < inherited from S and with jt = js. That o1 belongs to the collec-
tion C of Section 1 isaconsequence of the observations made at the beginning of the
present section.

Proposition 2.3 Each finite collection of axioms (theorems) of OA is a subset of
the set of axioms (theorems) of one of its segments.

For the (constructive) proof, and in order to avoid the sums of segments used in Sec-
tion 1, the following device may be used. Given two segments of OA, S, and T, we
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definetheir fusion, denoted ST, asfollows, supposing A (S) < A(T) (and the symmet-
rical case can be treated in asimilar way).

Wefirst definethelength A(ST) of ST: A(ST) = A(T) if A(T) isalimit ordinal,
orif A(T) =8+ nand A(S) <, whered islimit and n finite. A(ST) =8+n+m
if M(T) =6+ nand A(S) =8 + m, where § islimit and n and m are finite. Now, for
eachlimitordinal « < A(T) weconsider thelistsof valuesof jsand jt intheordinals
a + sfor sfinite;

js(e+1), js@+2),...

jTl@+1), jt(a+2),...

in which it may happen that both are infinite or that the second is infinite but not the
first, or that both are finite and the first not longer than the second. We then take as
valuesof jsr(a+9s)fors=1,2,... dternately the members of thefirst and the sec-
ond lists, continuing only with the second if and when the first is exhausted. Once
this has been done it is clear how the procedures of 2. 1(b) for S and for T furnish a
procedure for ST. Itisalso clear that AX(ST) = AX(S) U AX(T).

This ends the definition of the fusion of two segments. Given three segments
we can definethefusion STU as (ST)U, and so forth, for any finite collection of seg-
ments. So that every finite collection of axioms of OA is clearly a subset of the set
of axioms of some segment. Consequently, for every finite collection of theorems of
OA we can find a segment of which all of them are theorems.

3 A segment P of OA: Peano Arithmetic In this section and the following one we
shall rely on Mendelson whenever we need to refer to aformal presentation of
Peano Arithmetic. For any A(X) let us consider the formula

VX[A0) A VX (A(X) = A(X)) = AX)].

For each n we shall have

B A0) AVX(A(X) = A(X)) = A(NO). (3.1
The way to proveit is obviously the following: let us suppose
A0) A VX (AX) = A(X)). (3.2

For n = 0 we have A(0). Suppose now A(S) proved with the hypothesis (3.2). We
have, from (3.2), A(S) = A(s+ 1), from which we obtain A(s+ 1). We havein
thisway, for each n, aproof of A(n) from (3.2). Astheinference rule generalization
has not been used we have a proof of (3.1) for each n.

If we enumerate the formulas A(X),

A1(X), A2(X), ...
we define a segment P of length w by putting
jp(m) = YX[An(0) A VX (Am(X) == Am(X)) == Am(X)] (3.3

and take asaproof of Ay (0) AVX(Am(X) = An(X)) = An(M) fromBU{jp(k) :
k < m} for each n the one we have just described, which makes use only of B. This
segment P is, clearly, first-order Peano Arithmetic since the second member of (3.3)
is equivalent to the axiom of induction for Ay, in the usual form (see [13]).
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4 Godel’sincompleteness method as a way of introducing axiomsin OA

4.1 Let usconsider the segment P described before. From it a new segment P’ of
length @ + 1 will be defined. The results we shall now recall are taken from [IE
pp. 143 and following. We have a primitive recursive binary relation W, (u, y) in N
and aformula Wi (X1, Xo) with the following properties:

(@ if Wik, kp) then P+ Wy (ky, ko);
(b) if not W1 (kq, ko) then P = =W (Kq, ko);
(c) Wq(u,y) if and only if u isthe Godel number of aformula A(x;) that
contains the free variable x; and y is the Godel number of a proof of
A(0) inP.
We now consider the formula

VX2 =Wy (Xg, X2). (4.1.0
Let m be the Godel number of thisformula and let us consider
Vo =Wy (M, X2). (4.1.2)
A procedure will be provided to prove
P+ =W, (m, b) for each natura b. (4.1.3)

As the characteristic function of W4 (u, y) is primitive recursive we can decide, for
each b, whether W, (m, b) or not. We have the two following cases.

Casel1: If not Wq(m, b) then P - =W, (M, b), according to (4.1.b); and (4.1.3) is
proved for thisb.

Case2: If W.(m, b) then, by (4.1.c) and because misthe Godel number of (4.1.1),
b is the Godel number of a proof of Yx, =W (M, X») in P. We can reproduce that
proof and, by specializing x, to b we obtain a proof of (4.1.3) for this b.

Sothat, by defining L\ (P) =w+1, jp(B+1) = jp(B+ 1) forevery B+ 1 < w and
jp(w+ 1) = Vx =Wy (M, X»), we have the segment P’ in which (4.1.2) isan axiom,
while neither (4.1.2) nor its negation are theorems of P (Proposition 3.31 of [13]). It
isin this sense that Godel’s method becomes a method to introduce axioms of OA.

The procedure just described may be repeated starting from P’ instead of P, if
Wi (X1, Xo) issubstituted by the corresponding formula, and so on. A systematization
of the process would give anew segment P” of length 2w. From thislast segment we
can begin again, and so forth. Of course, the choice of different gddelizations would
give different segments.

4.2  Todescribeanother kind of segment let usbegin, for some godelization g, with
JyP(y, g(A) = A, (4.2.1)

where Pf(y, z) corresponds to a primitive recursive relation Pf(u, v) such that
Pf(u, v) if and only if uisthe Godel number of a proof in P of the formula of Godel
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number v. We may suppose that y does not appear in A and then (4.2.1) isequiva ent
to

vy (=Pf(y,g(A) v A) (4.2.2)
and we can prove easily that
P+ —Pf(b, g(A)) v Afor every natura b.

(Theway to proveit is: if not Pf(b, g(A)), then P =Pf (b, g(A)); if Pf(b, g(A))
then we reproduce the proof of Godel number b, which isa proof of A, and we have
PHA)

We can then construct, from P, a segment U of length w + 1 in which (4.2.2)
is an axiom. We can aso iterate the process, like in Section 4.1. Formula4.2.1 is
the reflection principle for A. It depends, of course, on the particular godelization.
About the reflection principles see Feferman [[Z]. The effects of interpreting (4.2.1)
as the box of modal logic are investigated in Boolos [[1], Chapter 3. Lob proved that
for al sentences A if (4.2.1) isatheorem of P then A isalso atheorem of P (seethe
same [[1]] or Smorinski [15]).

4.3  Another exampleisthe following. Let us consider the set
K = {x: xisthe Godel number of a proof of =0 = 0in P}.

K is diophantine (recursively enumerable), so that we can find a polynomia P e
Z[X, Y1, ..., ¥t] such that

x € K iff there exist naturals y; such that P(x, y;) =0

(see Jones [11] or Davis|[3], about diophantine sets). Asthe coefficientsof P areinte-
gersthere are, clearly, terms U (z) and V (z) of the language of P, in which no other
variablesthan zy, . . . , z appear, suchthat if P(b;) iszero (respectively, not zero) then
U(bi) = V(by) (respectively, =U (b)) = V(b)) is atheorem of P. To simplify, let us
denote therelation U(z) = V(z) by R(z), so that we have

if P(bj) =0, then P+ R(by); (4.3.1)

if not P(bj) =0, then P+ —R(by). (4.3.2)
There is aprocedure to prove
P+ =R(bo, ..., b) for each (b;) € N'*1. (%)

We shall discuss that simple procedure later, in order to insist in the demand that its
correctness be proved finitarily. Now, supposing (x) proved, we shall see how to con-
struct asegment T of length (t + 1)w + 1 havingVz ... Vzy—R(z, ... , ) asan ax-
iom. We begin by defining jt(64+ 1) = jp(8+ 1) for § + 1 < w. Wethen enumerate
the t-tuples of naturals:

(bil, ey bit), (bil’ cee bit)’ e
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For the first one we have, from (x), that for each by,

BU{jr(6+1):81 < w+1) - —R(bo,b},,... bl ).
We then define jt(w + 1) =Vzo—-R(zo,q1, . ,bi’t). In asimilar way we make

jT(@+2) =V2=R(Z. 02 ... . B2 ),

and so on, and shall have that j+ (8§ + 1) is defined for every § + 1 < 2w and that
Vzo— (29, by, ... , by) isan axiom of the segment defined until now (of length 2w) for
every t-tuple of naturals (b, ..., by).

We now enumerate the t — 1-tuples of naturals,

(B35, ... 03, (03, ..., 050, ...
and define

jT(20+1) =V21¥2o—~R(20, 21, b} 1, ... , b )

f_or i = 12... and aobtain a segment of length 3w in which YzVZy —R(zy, 71,

b,, ..., by) isanaxiom for each t — 1-tuple of naturals (b, ... , by).
Continuing in this way we arrive to a segment of length (t + 1)w in which

Vzi1,...,¥2%—R(z, ..., z-1,bp)
isan axiom for each b;. We then define
jr(t+Do+1) =Vz,... ,V2—R(z, ... , z)

and the construction will be finished.

Let us now return to the proof of (x). It would be inadmissible to rely on some
proof of the consistency of P and say: asP isconsistent thereisno proof of =0 =0in
it, so that for every (bj) wehavenot P(b;) = 0 and, accordingto (4.3.2), P+ —R(by).
Thisproof of the correctness would not befinitary (unlessthe consistency proof were
finitary). The finitary proof of (x) would be as follows.

For each (bj) we decide whether P(bj) = 0 or not in N. If not, then we have
P+ —=R(by), by (4.3.2). If the answer is yes, then there is a proof of P - —0 = 0 of
Godel number by which we can reproduce. Then from thisand P = 0 = 0 we can
prove anything, in particular (x).

5 About the Paris-Harrington theorem Parisand others obtained sometrue arith-
metical statements which are interesting in themselves and not provable in Peano
Arithmetic. One of them is the theorem of Paris and Harrington (see Paris and Har-
rington [14], Smorinski [[I6], Graham, Rothschild, and Spencer [9] and their refer-
ences). It isasserted in [[14] that this theorem, originally combinatorial (expressed as
Ve, r, kIM(M = (k)f)) isaso expressiblein the language of first-order Peano Arith-
metic. But it turns out that it is not provable there (see [14]). If Q(e) isthe arithmeti-
ca formulation of vr, KIM (M = (Kk)7) it is also asserted that

P+ Q(é) for each natural e (5.1
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(whereas, asremarked before, Yx Q(x) isnot provablein P). Let us consider the pro-
cedure that proves (5.1) for each e. If its correctness is provable constructively or
finitarily, then we have OA F Yx Q(x). The author has no reason to doubt that it is so
but, not being familiar with the subject, is not able at this moment to assure that such
correctnessis indeed constructively provable.

Other ways of proving the incompleteness of Peano Arithmetic are discussed in
Kotlarski [[2].

Appendix A constructively consistent open formalism for arithmetic

A.1l Theintermediateformalism OA; Let usremember that wearerelyingon [IE
for the general presentation of arithmetic, sothat v, A, and 3 are defined symbolsand
modus ponens and generalization are the only inference rules of OA;. The “inter-
mediate” open formalism OA to be described now differs from the formalism OA;
described in Section 1.2 in the following ways (1, 2, and 3).

1. All the formulas susceptible of being axioms or theorems of OA] will be
closed. Following rigorously the terminology of [[L3] we could then say that
therelevant formulasof OA’ arethe closed well-formed formulas of first-order
arithmetic, shortened as cwf. If Aisawell-formed formulaof OA; inwhich
al the variables that have a free presence belong to the set {Xq, ..., Xn} we
say that Vxq,...,Vx, Aisaclosure of A. We say that the closure is strict
if al the variables of the set do have a free presence in A. For instance,
VXVY X+ Y=Y+ X, VXYWZ X+ Y=Y+ X, and VWX X+ y =y + X areclo-
suresof X+ y = y+ X, and thefirst and third are strict ones. If al the variables
appearing freein Aarexy, ... , Xs and have their first free appearancesin Ain
precisely this order, then we say that Vx, ... , VXs Aisthe natura closure of
A, and denoteit A. If Ais closed we understand that A = A. Thefirst of the
three closures in the previous example is the natural one.

2. Thelogical (basic) axioms of OA are the natural closures of all the logical
(basic) axioms of OA;. The set of basic axioms of OA7 will be denoted B'.

3. The generalization ruleis not an inference rule of OA’ (it does not even make
much senseinit, according to 1). Modus ponensisthenitsonly inferencerule.
Itsexact formin OA’1 is: whenever A, B, and C arecwf weinfer Bfrom A —
Band A.

Our aim isto prove that OA has essentially the same deductive power of OA;. To
this end we need to discuss a device already used in Section 4.3. It is, in generd, in
the context of OA7, the following.

A.11 Device If,inacertainsegment T of OA/ we have, for acertain well-formed
A(Xg, ..., %), that A(Ny, ..., Ny)isatheoremof T for every R-tupleof naturals (n;),
then we take

t={B+1:8+1eS,B+1<(r—Dow+1},
with the order inherited from S, and

¢ = (o1 x{0h U (r x {1})),
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with (x,1) < (y, ) ifi < j,orifi=jandx < y.
We then consider any permutationi of {1,...,r} and alist

(ng,....nH, (M3,....n), ... (A.1.1)

of al the r-tuples of naturals and define a new segment U in the following way. We
first put

oy =2¢ jul(e,0)) = jr(a) foral a € o7.

We then define the values j1+((B,1)) for 8 € t as follows. We first substitute nij(l)
by X1y in al the members of the list (A.1.1), then suppress the members that repeat
previous ones, and then renumerate the upper indices, obtaining a new list

(N3, Xy, > B, (M2, X1y, e 5 TR, . (A.1.2)
and define
ju((1, 1) =YX AL, ..., Xi1)s - -+ > 1)

ju(2, 1) = V%) AM2, ..., X1y, ... »TI2)

In al the members of the new list (A.1.2) we now substitute nij(z) by Xi(2), suppress
all the membersthat repeat previous ones and then renumerateit, thus obtaining (sup-
posing, to simplify the notation, that i (1) <i(2)) anew list

(D, oo s Xi(Dys e e s Xi2)s oo > ), (M2, X2y e s Xi@)s o, NE), ... (ALL3)
and define
jul@+1,1) =YX VXi@) AL, ..., X1, Xi@)s - > )
jult@=+1,2)) = VX2 V%) A2, ..., Xicdys -« > Xi@)s - - » TP

By iterating the process we arrive finally to
Julr =D +1,1) =YXy, ..., VX)) AXg, ..., %)

Itisclear that U is asegment of OA. This describes the device.

Proposition A.1  The natural closure of every theorem of OA; is a theorem of
OA].
1

Proof: The proof will be constructive. As every well-formed formula is interde-
duciblein OA; with any of itsclosures, thenit isclear that the proposition will enable
usto think of OA] as a presentation of OA; having modus ponens as sole inference
rule.
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The proof will consist in describing the way, given any segment S of OA4, of
constructing asegment S’ of OA’ having among its theorems the natural closures of
all the theorems of S.

We begin, given S, by considering any g € os and the segment S_ 4 defined by

os,={y:iye€os yv<pBh

Js., being the restriction of jsto os_,. We write alist of all the logical and basic
axiomsof S_g (thesameasfor S). Asos_, belongsto C (remember Definition 1.1) we
can makealist of all itselementsand then alist of al the axioms js(y) fory € os_, .
From these two lists we can make alist of all the axioms of S_ g and then alist

AN (A.1.4)

such that

(i) it containsall the theorems of S_g,
(ii) eachmember of thelistisanaxiom (logical or nonlogical) of S_ 4 or isobtained
from previous members by generalization or by modus ponens.

We then consider thelist
AN (A.15)

of the natural closures of the previous one.

In preparation for the construction of the associated segment S’ let us advance
that for each g € o, and related to thelist (A.1.5), acertain sequence ag 1, ag2, . . .
of ordinals that are O or of the form tw + 1, for natura t, will be defined, as well as
the corresponding

i ={y+1l:iy+1eS y+1=<agi}.
We shall also define an o, of the form tw + 1, and
go={y+1liy+1leS y+1=<ag,}.
The order in these sets isthe restriction of the ordersin S. We then will define
Bg= (1,1 x {1} U (tg2 x {2 U---U (18,6 X {®}) x {B}

withtheorder definedas ((8,1), 8) < ((n, j), B)ifi < j,orifi = jand§ < n (where
i and j represent naturals or w).
For the future segment S’ of OA7 we shall have

oy = U Bg

BeS

where, for 81 € g and 87 € y,,, wehave §; < 82 if B < yinog, orif B =y and
81 < 82in Bg. Itisaready clear that og will belong to C. We define, to begin with
the description of S/,

s (((apw, ®), B)) = js(B) (A.16)
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for each 8, where g, is, of course, the last or greatest element of 74 .
More concretely, what shall be doneis, for each 8 € os, the following.

B.1  Todefinetheag; and 74 ; and the not yet defined jg (y) for y € Bg,
in accordance, of course, with (by) of Definition[T.2] and to prove
that every member of the list (A.1.5) is a theorem of the segment

S’<ﬂ,, where the notation g’ = ((ag,«, ®), B) is used, defined by

oy, = {y:yeos,y <P},

Is Y being the restriction of jg to og o

Bl 1f jg(((ap,w ®), B)) = js(B) = VX B(x), to prove that B(n) isa
theorem of S_, for each natural n.

Once thisis done it will have been proved that S’ is a segment of OA’ in which the
natura closure of every theorem of Sisatheorem. Inthisprocessit isvery important
to note the following

NoteA.2 Theaccomplishmentsof 3.1 and 3.1l for each 8 € o5 will be completely
independent of the same actions for every other such g; they will depend only on
S. Infact, in each of these accomplishments only the basic and logical axioms and
those of theform js(y) for y < B will be used, apart from those of theform jg (8) for
8§ € Bp that may appear in the same process. Thiswill avoid completely any recourse
to transfinite induction and maintain the proof completely constructive.

To accomplish 3.1 we run through the lists (A.1.4) and (A.1.5) performing the steps
described as follows.
For positive i, theith step takes 7 j and the values of j5(y) for

y el J@sjx (i) x (B)
j<i

as aready given and supposes that it has been proved, by means of al the logical
and basic axioms of S' (the natural closures of those of S), the axioms jg () for y as

before and the axioms js (((as..» )8)) for § < B (see (A.16)), that all the AY for
j <iaretheoremsof S'. We then want to define 74 ; and the corresponding values of
js, inorder to make appear A{S as atheorem. We have three cases to consider.

Case 1. A{3 isanaxiomof S_g. Inthiscasewetakeag; =0, sothat 75} = @. And

E isatheorem of S_, because then it is either alogical or basic axiom of OA] or,
according to (A.1.6), it isan axiom of it of the form

jS((((ay,w» Cl)), J/))
for some y < B.

Case2: Al is obtained by modus ponens from previous members A and Af =

A? = A’. By induction hypothesest and A = Al are theorems proved by
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means of the said axioms. SUppose Xy, . . . , X arethe variables appearing freein A’lf.
Then, with the obvious notation,

Ay, .. ) = APy, ... T and AP, T

are theorems (proved with the same means) and, by the device A.1.1, we may define
ag ., (infact equal to (r — )w + 1) and the values of jg(((8,1)B)) for § € g in

order to have A asthe axiom js (g, 1), B)).

Case 3. Aiﬂ is obtained by generalization from a previous member of thelist. This
caseiseasier to deal with than the previous one.

We must now accomplish 3.11. Let us suppose

js(B) = VyC(x1,..., %) and js(B) = VxB(x),

where the x; are al the variables that have free presencesin C(x;) and the variables
X, Yy may, or not, coincide with one another or with some x;. To concretize, we shall
suppose X is X1 and y is X,. The proof corresponding to any other possibility will be
amore or lesstrivial variant of the one that shall be given now.

According to thefirst identity, now written as

is(B) = VX2 C(X),

the formula C(xq, Ny, ... , X;) is, for each natural n,, atheorem that must appear in
(A.1.4), so that every C(n;) must also appear in the list, for al (n;). And, once ac-
complished 3.1, they must also be theorems of S'_((1,,),5). Now, by using the same
device A.1.1, we can define 7, and the values of jg in 75, X {®}) x {B}, so that
we obtain

is(((@pw, @), B)) = js(B),

as wanted.

Note A.3 (About the consistency of OA7)  Clearly, we may provethat OA’ iscon-
sistent by showing that (N, +, -, /) isamodel of it. But let uslook more closely at
this consistency problem, considering that the only inference rule of OA’ is modus
ponens.

Weadmitin OA/, aspossibleaxiomsor theorems, only cwf; and, following 3,
weonly makeuseof -, —, and V asundefined logical symbols. We say that acwf of
OA/ isirreducibleif it isnot of theforms—Aor A= B. Theirreducible formulas
of OA’ arethen the cwf that are atomic or of the form Yx A. All the cwf of OA] are
then obtained from the irreducible ones by means of repeated use of — and =—>. We
now recall that the theorems of OA are obtained from AX(OA/) by iterated use of
modus ponens and that every theorem requires for its proof only afinite set of those
axioms. We may also remember that any such finite set of axiomsisasubset of the set
of axioms of some segment of OA’. Itisthen clear that OA] isconsistent if and only
if thereisaway, for any finite collection of its axioms, of assigning truth values T or
F to every member of thefinite set of irreducible formulas from which all the axioms
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of the set are built by means of — and = in such away that the logical valuation
induced by these valuesin the finite set of axioms under consideration have value T
inall itsmembers. Aswe know that OA is consistent, we know in consequence that
this procedure does exist: we can find by trial an adequate set of values T or F for the
irreducible cwf from which afinite set of axiomsis built because thereisonly afinite
number of possibilities in assigning these values. But, of course, the proof that this
procedure is correct is not finitary: it depends on the original nonfinitary semantical
proof of the consistency of OA. Had we not this proof at hand we could not be sure
thereis, in every case, a satisfactory assignment of values T, F to be found by trial.

The situation just described exemplifies anew the general phenomenon: there are cor-
rect procedures whose correctness is not proved finitarily. This is the kind of phe-
nomenon that forced the demand of constructivity in the proofs of the correctness
made in Definitions[L.2{b;) and 2.1(b). O

A.2 The congtructively consistent open formalism OA7

A.21 Theformaism OA7 has, asOA;, OA, or OA], thelanguage of afirst-order
theory, with the constant 0 and the functional symbols +, -, and ’. Here, following
[13], we take =, =, and V as the only primitive logical symboals.

A.22 Theonlyinferencerule, asin OA’, will be modus ponensintheform‘Bis
inferred from Aand A= B, for any cwf Aand B'.

A.2.3 Thelogical axiomswill not be the sameasfor afirst-order theory. They will
be:

0] A=— (B= A), for any cwf A, B;

(i) (A= (B=—=C))— (A= B) = (A= (C)), for any cwf
A, B, C;

(i) (=-B= —-A) = ((wB= A) = B), for any cwf Aand B;

(iv)  u=u, for any constant term u;

(V) U=v= (I =t = t] =1t3), for any constant terms u, v, ty, to,
whenever, for eachi, t* is obtained from t; by substituting some pres-
ence of u by v, or inversely, or by leaving t; unchanged.

A.24  Thearithmetical axiomswill be the following (vi) —(xi), for any natural n,
Ny, No:

(vi) -0=",;

(vii) ny=n, = Ny ="y;
(viii) My +0=ny;

(ix) N+ = M+
) n-0=0;

(xi) Ny - M, = (Mg - Mp) + Ny
If we denote the sets of logical and arithmetical axioms of OA by B’ and by By,
then we define the set B” of initial axioms of OA7 as

B" =B U BY.
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A.25 We define the collection AX(OAY) of al axioms of OAY as follows, by
means of the notion of segment, analogously to (b;) of Definition[T.2] A segment
U of OA7 consists of a member oy of the class C (see Section 1) and a procedure
that defines afunction jy from oy to the set of cwfs of OA7 of the form Vx A(x) or
—Vx B(X) and provides, for each § € oy, aproof of

B'U{ju(») 1y €ou, y <8} A (M)
for each natural n, if ¥x Agj(x) = ju(8); and aproof of
B"U{juy) 1y €ou. v < 8} = =A (M)
for some natural n, if =¥x AY(x) = ju(8). We then define
AX(U) = B"U{ju(y) v eoau}

It isdemanded, as always, that the correctness of the whole procedure be proved con-
structively. The collection of all the axioms of OA’ isthen

AX(0AY) = | AX(),

where the union runs over al the segments U of OAY. We include explicitly the log-
ical axiomsin AX(OAY) because, unlike for OA7, they are not the natural closures
of all the usual logical axioms of first-order logic. We now have the following propo-
sition.

Proposition A.4  OAT isconsistent.

Proof:  The proof will be constructive. Aswe did in previous considerations about
the consistency of OA/, in (A.1.3), we say that the irreducible cwf are the atomic
constant ones and those of the form Vx A. All the other cwf are built from them by
means of — and =—. Given any finite collection of axioms we may consider the fi-
nite collection of all their irreducible “components’ (from which the axioms of the
collection are built using only — and =). If we can exhibit an assignation of truth
values T, F, to theseirreducible componentsin such away that thelogical valuations
agreeing with it have value T in al the members of the given collection of axioms,
then wewill have proved that this collection is consistent. If we can do this operation
for any such collection we will have proved the consistency of OA’. Thisis what
will be done, constructively.

We first observe: if afinite set D of axioms of OA’ does not have as members
two flagrantly contradictory formulas such as Vx A(x) and —Vx A(X) then we can as-
sign the value T to each Vx B(x) in D and the value F to each VzC(z) whose nega-
tion belongs to D; and there is no difficulty in assigning appropriate truth values to
the components fo the members of D of the forms (iv) to (xi).

It will be sufficient to show that no finite set D of axioms of OA/ can contain
two formulasV(x) A(x) and =Vy A(y). To begin with, it is easy to seethat any finite
set of axioms of OA is contained in the set AX(U) for some segment U. In fact,
thereisaleast § € oy suchthat D C {jy(y) : ¥ < 8}. Now, if we had VX A(x) € D
and —=Vy A(y) € D wewould have anatural m and some §’ € oy, 8’ < 8, such that

B"U{ju(y):yecoy,y=<é&t+ A(m
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and the same for —A(m). If now D’ were afinite set of axioms of U such that D’
A(m), D'F—=A(mM)and D' € B'U{jy(y):y € ou, y €'}, then, by the previous ob-
servation, D’ would have to contain two formulas such as Vv A’ (v) and its negation.
The iteration of this observation would then produce an impossible infinite descent
in oy. U

We also have the following proposition.
Proposition A.5 OA7 iscomplete.

Proof: The proof is nonconstructive. The same proof of Theorem[L.5hpplies here
and it is now slightly simpler because we are taking —, =, and V as the only unde-
fined logical symbols. O

Finally, we have this proposition.
Proposition A.6  OA] contains (nonconstructively) OA/.

Proof:  For the proof we need first to observe that any proof in OA] gives a proof
in OA because the first formalism is not stronger than the second (it is, at first sight,
weaker). We now consider any cwf A and suppose OA] - A. As OA] iscomplete,
either A or its negation A’ is atheorem of OA] (where we understand that Ais — A’
or A'is—A). If wehad OA] - A’ wewould have OA] - A’, by our first observation,
against the consistency of OA. So that we must have OA] - A, asexpected. [

Corollary A.7  Every closure of every theoremof OA; isatheoremof OAY.
Proof: Thisisaconsegquence of the previous proposition and Proposition O

Remark A.8 If, in the proof of Proposition [A_6] we write thoroughly OA; in the
place of OA, we obtain adirect proof of the corollary, without needing to make use
of the intermediate formalism OA].

A.2.6 OAf andHilbert'sprogram The proof that OA] contains OA doesnot pro-
vide any effective way of repeating in OA’/, and by the only means of the finitary or
constructive manipulations alowed in it, a proof that may have been givenin OA’;
so that any conviction that OA’ can develop arithmetic as satisfactorily as OA] must,
perhaps, rely on empirical grounds. We may, for example, try to provein OA’ what
has been proved in SectionsZTJE-2]and[4.3lfor OA. Inany case, OA/—having been
proved (constructively) to be consistent and (nonconstructively) to be complete—
might perhaps be considered at least a partial fulfilment of Hilbert's program, if we
admitted in that program alogical instrument other than the usual first-order logic.
Let us remember that the admission of some form of the w-rule was suggested, al-
though vaguely, by Hilbert himself.

Acknowledgments The present paper dealt, in its original form, only with the formalism
OA, defined here in Section 2 (see also Sections 3 and 4). On behalf of completeness, the
referee suggested the use of constructive ordinals (see [£]) instead of just ordinals < €g. The
suggestion evolved into the consideration of the class C and the formalism OA; (see Defini-
tion[LI) and the completeness of the latter followed almost trivially. The Appendix, which
dealt originally with aformalism related to OA wasrewritten, with afirst part dealing with the
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“intermediate” formalism OA, related to OA;; and the completeness result made possible
the second part, dealing with the already mentioned complete and constructively consistent
OA/.
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