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An Open Formalism
against Incompleteness

FRANCESC TOMÀS

Abstract An open formalism for arithmetic is presented based on first-
order logic supplemented by a very strictly controlled constructive form of the
omega-rule. This formalism (which contains Peano Arithmetic) is proved (non-
constructively, of course) to be complete. Besides this main formalism, two
other complete open formalisms are presented, in which the only inference rule
is modus ponens. Any closure of any theorem of the main formalism is a the-
orem of each of these other two. This fact is proved constructively for the
stronger of them and nonconstructively for the weaker one. There is, though, an
interesting counterpart: the consistency of the weaker formalism can be proved
finitarily.

1 Introduction Vaguely stated, we understand that an open formalism differs from
what is usually called a formal system or axiomatic theory in that it is not demanded
that the collection of its axioms be decidable, or generated by a mechanical process or
something of the sort, so that an open formalism for arithmetic will be invulnerable to
Gödel’s proof of incompleteness or other such proofs, such as the one that is based on
the incompleteness of the halting problem (see Ebbinghaus [4], Chapter V, §6). As a
matter of fact, Gödel’s method becomes a procedure, among others, in the description
of the collection of axioms of the formalism (or formalisms) to be defined. The cen-
tral idea, in the definition of the formalism, is to describe the collection of its axioms
by means of a constructive and very strictly controlled form of the ω-rule and of the
notion of “segment” to be introduced. To this purpose transfinite ordinals or related
devices are needed. About the ω-rule and its uses in the foundations of arithmetic see
Feferman [6] and the more recent Ignjatović [10] and their references.

In the present introduction the open formalism OA1 is described and its com-
pleteness is proved nonconstructively. The constructive proof that OA1 contains
Peano Arithmetic is carried on in Section 2 where a subformalism OA of OA1 is de-
scribed in which advantage is taken of the perfect notation and clear constructiveness
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of the ordinals < ε0. In Sections 3, 4, and 5, besides proving that OA contains Peano
Arithmetic, it is illustrated how, as said before, Gödel’s and related methods can be
used to introduce in OA axioms that are not theorems of Peano Arithmetic.

There is an appendix where complete formalisms OA′
1 and OA′′

1 are defined in
which modus ponens is the only inference rule. The consistency of OA′′

1 is proved
constructively. Its completeness makes it as strong as OA1 (and, consequently,
stronger than Peano Arithmetic), in some nonconstructive sense.

We now proceed to define OA1. Previous to it we need to describe a collection
or class C of constructive totally ordered countable sets without infinite descent.

Definition 1.1 Each member of C will be provided by a procedure that

1. defines a set σ and a decidable (by the same procedure) total order < on it;

2. has the means to prove, for any given decreasing sequence a1 > a2 > · · · of
elements of σ, that the sequence is finite;

3. its correctness (i.e., of the procedure) is proved constructively without having
recourse to the excluded third for infinite sets.

The possibility of thinking of correct procedures whose correctness we do not know
how to prove constructively will be illustrated in Section 4.3 and in the appendix (end
of Section A.1).

We now have the following definition.

Definition 1.2 OA1 is a first-order theory with equality in which there is only one
individual constant 0 and the functional symbols are +, · , and ′ . Its collection of
nonlogical axioms and the notion of segment are described as follows.

(a1) The set B of basic axioms of OA1 consists of the following.

x1 = x2 =⇒ (x1 = x3 =⇒ x2 = x3),

x1 = x2 =⇒ x′
1 = x′

2,

¬0 = x′
1,

x′
1 = x′

2 =⇒ x1 = x2,

x1 + 0 = x1,

x1 + x′
2 = (x1 + x2)

′,
x1 · 0 = 0,

x1 · (x′
2) = (x1 · x2) + x1.

(b1) A segment T of OA1 consists of a member σT of the class C and a procedure
that defines a function jT from σT to the set of formulas of OA1 of the form
∀x A(x) (for any variable x) and provides, for each δ ∈ σT, a proof of

B ∪ { jT(γ) : γ ∈ σT, γ < δ} � AT
δ (n)

for each natural n, where it is understood that ∀x AT
δ (x) = jT(δ) (and where

0 is 0, 1 is 0′, and so on). The set AX(T) of nonlogical axioms of T is then
defined as

AX(T) = B ∪ { jT(γ) : γ ∈ σT, γ ∈ σT}
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The procedure that consists of the definition of jT and provides the demanded
proofs must be correct, of course. It is demanded, moreover, that its correct-
ness be proved constructively, as has already been demanded of the procedure
that defined σT and satisfied (1), (2), and (3) of Definition 1.2. This demand
of constructivity of the proof of the correctness of the whole procedure has the
clear intention of staying in accordance with Hilbert’s program.

(c1) The collection AX(OA1) of nonlogical axioms of OA1 consists of all the ax-
ioms of all its segments T:

AX(OA1) =
⋃

AX(T),

where the union runs over all the segments T of OA1.

This describes the open formalism OA1. We shall write T � A or OA1 � A to indicate
that A is derived from AX(T) (and the logical axioms) or from AX(OA1) (and the
logical axioms), respectively, and say in such cases that A is a theorem of T or of
OA1.

The schema of induction, absent in B, will appear as a schema of axioms in some
segment. This will be proved in Section 3, where it is shown that Peano Arithmetic
is contained in a segment of OA and, consequently, of OA1 (see Section 2).

We now proceed to prove, nonconstructively, the completeness of OA1. We de-
fine the sum of a finite or infinite sequence of segments, T1, T2, . . . , of OA1, denoted

T = T1 + T2 + · · ·

by setting

σT = (σT1 × {1}) ∪ (σT2 × {2}) ∪ · · · ,

(γ, i) < (δ, j) if i < j, or if i = j and γ < δ

jT(γ, i) = jTi (γ)

Clearly, T is a segment of OA1, the collection of procedures for the Ti providing a
procedure for their sum and the collection of constructive correctness proofs provid-
ing a constructive correctness proof for the sum.

By taking σTi = ∅ for i > n the apparently infinite sum reduces to the finite sum
T1 + · · · + Tn. As each theorem of OA1 depends only of a finite number of axioms
we see, by considering in each case the segments in which these axioms arise, that
each theorem of OA1 is a theorem of one of its segments.

Observation 1.3 If OA1 � A then T � A for some segment T of OA1.

Observation 1.4 If Ti � Ai for i = 1, 2, . . . , then

T1 + T2 + · · · � Ai for i = 1, 2, . . . ,

where the sequence of values of i may be finite or infinite.
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As a simple consequence we see that OA1 is consistent if and only if each one of
its segments is consistent. This last assertion can be proved nonconstructively very
easily by showing that (N,+, · , ′ ) is a model of each segment (with the natural inter-
pretations of the operations). The proof of this fact depends of the noninfinite-descent
condition 2 of Definition 1.1.

We now have (nonconstructively, of course) the following theorem.

Theorem 1.5 OA1 is complete.

Proof: Let us consider the closed formulas of OA1 and say that A is simpler than B
if the number of presences of symbols ∨,∧,=⇒,∃, or ∀ (not counting the presences
of ¬) is lesser in A than in B. Suppose now, on the contrary, that OA1 is incomplete.
This means there are undecidable closed formulas. Suppose A is one of the simplest
of them. As any two formulas C and ¬C are decidable or undecidable at the same
time we may suppose that A is not of the form ¬B. We also see easily that A, being
simplest undecidable, is not of the forms B ∨ C, B ∧ C, or B =⇒ C. Finally, A is not
of the form a = b for constant terms a and b because all such formulas are decidable,
so that A must be of the form ∃xB(x) or ∀xC(x). But, as ∃xB(x) and ∀x¬B(x) are un-
decidable or decidable at the same time, we may always suppose that A is of the form
∀xC(x). We now observe that C(n) is decidable for each natural n because each C(n)

is simpler than ∀xC(x). Moreover, we must have OA1 � C(n) for each n because oth-
erwise we would have OA1 � ¬C(n) for some n, and then OA1 � ¬∀xC(x), against
the undecidability of ∀xC(x). Due to the previous observations, if the segments Sn

are such that Sn � C(n) for each n, then we consider the segment

S = S0 + S1 + · · ·

and will have

S � C(n) for all natural n.

We now define the object (not a segment) P consisting of σP = {∅} (a monic set) and
jP(∅) = ∀xC(x). Then we consider the object S + P, for which, as in a previous
definition,

σS+P = (σS × {1}) ∪ (σP × {2}),

(γ, 1) < (∅, 2) for every γ ∈ σS, (γ, 1) < (δ, 1) whenever γ < δ, jS+P((γ, 1)) =
jS(γ) and jS+P((∅, 2)) = jP(∅). We assert that the complex S + P is a segment of
OA1. To be convinced of it we need only to see that there is a procedure to prove
S � C(n) for each n and that the correctness of this procedure is proved construc-
tively. But such a procedure is nothing else than the collection of the proofs of the
Sn � C(n) and, as the correctness of each of these proofs is constructively proved,
the correctness of the collection of proofs is also constructively proved. Thus, S + P
being a segment of OA1, ∀xC(x) is an axiom of it, against the hypothesis. This proves
that OA1 is not incomplete. �
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2 The open arithmetic OA For the description of the notion of segment of OA the
ordinals less than ε0 are required. As is well known, Gentzen made use of these or-
dinals in his proof of the consistency of arithmetic. But they have also been useful
in the description of formalisms in which, as in the present one, an alleviation of in-
completeness theorems was aimed at. In this line Turing [19] and Feferman [5] may
be mentioned. We shall open this section with an exposé on ordinals < ε0, follow-
ing Gentzen [8], Section 4.4. About ordinals in general Suppes [17] and Takeuti [18]
may be consulted.

We introduce recursively, simultaneously, the definition of the set S of ordinals
< ε0 and of the relation < on it. The equality will be the identity.

1. S0 = {0}; not 0 < 0.

2. Let us suppose the set Sr and the relation < on it have been defined for a natural
r. We then define Sr+1 as the set consisting on 0 and all the expressions

ωα1 + ωα2 + · · · + ωαn

in which the αi are members of Sr such that α1 ≥ α2 ≥ · · · ≥ αn. We define, in
Sr+1,

ωα1 + · · · + ωαn < ωβ1 + · · · + ωβm

if we have, for some j ≤ n, m, that αi = βi for all i < j and α j < β j; or if m > n
and we have αi = βi for all i ≤ n. We also define 0 < γ for every γ ∈ Sr+1

different from 0 itself.
It is clear, by induction on r, that Sr ⊆ Sr+1, that the definition of < in Sr+1

coincides in Sr with the one given for it, that < is irreflexive transitive and that
we can decide for every two different elements of Sr+1, whether α< β or β< α.

3. Finally, we define S = ∪Si

S is, as said before, the set of ordinals < ε0. In the previous definition the signs 0,
ω, and + are devoid of any significance, the sign + between expressions is only a
concatenation and there is no question of associativity. We shall use the notations or
identifications 1 ≡ ω0, 2 ≡ ω0 + ω0, and so on; ω ≡ ω1, 2ω ≡ ω1 + ω1, and so on.
The ordinal 1 and all ordinals of the form · · ·+ 1 will be called the successors. All the
other elements of S will be the limit ordinals. According to this 0 is a limit ordinal.
We may agree that 0+1 denotes 1, in order to be able to describe the successor ordinals
as all those of the form · · · + 1. We have n < ω for every finite ordinal n; and ω is
less than any other transfinite ordinal. We observe that for any successor β + 1 there
is a unique limit ordinal γ such that γ < β + 1 < γ + ω.

In fact we shall make use of the (proper?) subset S′ of the elements γ ∈ S for
which the set of successor ordinals ≤ γ belongs to C (see Definition 1.1). This is a
technical trick. In the first place it will help to make clear that OA is a subformalism
of OA1; and, on the other hand, all the concrete members of S of which we shall make
use will obviously belong to S′. In this way we avoid the problem of having to know
if S′ is, or is not, a proper subset of S.

Before entering into the definition of OA we still need something else: we shall
recall some constructive proof of the countability of each Sn. If, in the definition of
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the Sn, we take the empty set ∅ instead of 0 we see, for each n ≥ 0, that the elements
of Sn+1 may be viewed as the combinations with repetition, or multisets, of Sn. In-
deed, in the first place the element ∅ of Sn+1 is the empty multiset of Sn and, given
ωα1 + · · · + ωαr ∈ Sn+1, we identify it with the multiset consisting of the elements
α1, . . . , αr, respecting their multiplicities. Conversely, given any nonempty multi-
set, consisting of β1, . . . , βr, we order these elements so that βϕ(1) ≥ · · · ≥ βϕ(t) for
some permutation ϕ and then identify it with the ordinal ωβϕ(1) + · · · + ωβϕ(t) ∈ Sn+1.
We can then accept inductively that for each positive n we can go on constructing a
list αn

0, α
n
1, . . . of all the elements of Sn. For S0 the list reduces to ∅.

Definition 2.1 OA is a first-order theory with equality with the same language of
OA1. Its collection of nonlogical axioms and the notion of segment are defined as
follows.

(a) The set of basic axioms of OA is the same B listed in (a1) of Definition 1.2 of
OA1.

(b) A segment S of OA consists of an element of S′, denoted λ(S), the length of
S, and a procedure that defines a function jS from the set of successor ordinals
≤ λ(S) to the set of formulas of OA of the form ∀xA(x) and provides, for each
β + 1 ≤ λ(S), a proof of

B ∪ { jS(γ + 1) : γ + 1 ≤ β} � AS
β+1(n)

for each natural n, where we understand that ∀xAS
β+1(x) = jS(β + 1). The set

of axioms of S is then

AX(S) = B ∪ { jS(δ + 1) : δ + 1 ≤ λ(S)}.

(c) The collection AX(OA) of axioms of OA consists of
⋃

AX(S), for S running
over all the segments of OA.

The same demand of constructivity in the correctness proofs made before for OA1 is
made now for OA. The same notations, S � A, and so forth, used for OA1 will be
used for OA.

Proposition 2.2 OA is a subformalism of OA1.

In fact, each segment S of OA is trivially interpreted as the segment T of OA1 defined
by

σT = {β + 1 : β + 1 ≤ λ(S)},

with the order < inherited from S′ and with jT = jS. That σT belongs to the collec-
tion C of Section 1 is a consequence of the observations made at the beginning of the
present section.

Proposition 2.3 Each finite collection of axioms (theorems) of OA is a subset of
the set of axioms (theorems) of one of its segments.

For the (constructive) proof, and in order to avoid the sums of segments used in Sec-
tion 1, the following device may be used. Given two segments of OA, S, and T, we
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define their fusion, denoted ST, as follows, supposing λ(S) ≤ λ(T) (and the symmet-
rical case can be treated in a similar way).

We first define the length λ(ST) of ST: λ(ST) = λ(T) if λ(T) is a limit ordinal,
or if λ(T) = δ + n and λ(S) ≤ δ, where δ is limit and n finite. λ(ST) = δ + n + m
if λ(T) = δ + n and λ(S) = δ + m, where δ is limit and n and m are finite. Now, for
each limit ordinal α ≤ λ(T) we consider the lists of values of jS and jT in the ordinals
α + s for s finite:

jS(α + 1), jS(α + 2), . . .

jT(α + 1), jT(α + 2), . . .

in which it may happen that both are infinite or that the second is infinite but not the
first, or that both are finite and the first not longer than the second. We then take as
values of jST(α + s) for s = 1, 2, . . . alternately the members of the first and the sec-
ond lists, continuing only with the second if and when the first is exhausted. Once
this has been done it is clear how the procedures of 2.1(b) for S and for T furnish a
procedure for ST. It is also clear that AX(ST) = AX(S) ∪ AX(T).

This ends the definition of the fusion of two segments. Given three segments
we can define the fusion STU as (ST)U, and so forth, for any finite collection of seg-
ments. So that every finite collection of axioms of OA is clearly a subset of the set
of axioms of some segment. Consequently, for every finite collection of theorems of
OA we can find a segment of which all of them are theorems.

3 A segment P of OA: Peano Arithmetic In this section and the following one we
shall rely on Mendelson [13] whenever we need to refer to a formal presentation of
Peano Arithmetic. For any A(x) let us consider the formula

∀x [A(0) ∧ ∀x (A(x) =⇒ A(x′)) =⇒ A(x)].

For each n we shall have

B � A(0) ∧ ∀x (A(x) =⇒ A(x′)) =⇒ A(n). (3.1)

The way to prove it is obviously the following: let us suppose

A(0) ∧ ∀x (A(x) =⇒ A(x′)). (3.2)

For n = 0 we have A(0). Suppose now A(s̄) proved with the hypothesis (3.2). We
have, from (3.2), A(s) =⇒ A(s + 1), from which we obtain A(s + 1). We have in
this way, for each n, a proof of A(n) from (3.2). As the inference rule generalization
has not been used we have a proof of (3.1) for each n.

If we enumerate the formulas A(x),

A1(x), A2(x), . . .

we define a segment P of length ω by putting

jP(m) = ∀x [Am(0) ∧ ∀x (Am(x) =⇒ Am(x′)) =⇒ Am(x)] (3.3)

and take as a proof of Am(0)∧∀x (Am(x) =⇒ Am(x′)) =⇒ Am(n) from B ∪{ jP(k) :
k < m} for each n the one we have just described, which makes use only of B. This
segment P is, clearly, first-order Peano Arithmetic since the second member of (3.3)
is equivalent to the axiom of induction for Am in the usual form (see [13]).
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4 Gödel’s incompleteness method as a way of introducing axioms in OA

4.1 Let us consider the segment P described before. From it a new segment P′ of
length ω + 1 will be defined. The results we shall now recall are taken from [13],
pp. 143 and following. We have a primitive recursive binary relation W1(u, y) in N

and a formula W1(x1, x2) with the following properties:

(a) if W1(k1, k2) then P � W1(k1, k2);
(b) if not W1(k1, k2) then P � ¬W1(k1, k2);
(c) W1(u, y) if and only if u is the Gödel number of a formula A(x1) that

contains the free variable x1 and y is the Gödel number of a proof of
A(ū) in P.

We now consider the formula

∀x2 ¬W1(x1, x2). (4.1.1)

Let m be the Gödel number of this formula and let us consider

∀x2 ¬W1(m, x2). (4.1.2)

A procedure will be provided to prove

P � ¬W1(m, b) for each natural b. (4.1.3)

As the characteristic function of W1(u, y) is primitive recursive we can decide, for
each b, whether W1(m, b) or not. We have the two following cases.

Case 1: If not W1(m, b) then P � ¬W1(m, b), according to (4.1.b); and (4.1.3) is
proved for this b.

Case 2: If W1(m, b) then, by (4.1.c) and because m is the Gödel number of (4.1.1),
b is the Gödel number of a proof of ∀x2 ¬W1(m, x2) in P. We can reproduce that
proof and, by specializing x2 to b we obtain a proof of (4.1.3) for this b.

So that, by defining λ(P′) = ω + 1, jP′ (β + 1) = jP(β + 1) for every β + 1 < ω and
jP′ (ω + 1) = ∀x2 ¬W1(m, x2), we have the segment P′ in which (4.1.2) is an axiom,
while neither (4.1.2) nor its negation are theorems of P (Proposition 3.31 of [13]). It
is in this sense that Gödel’s method becomes a method to introduce axioms of OA.

The procedure just described may be repeated starting from P′ instead of P, if
W1(x1, x2) is substituted by the corresponding formula, and so on. A systematization
of the process would give a new segment P′′ of length 2ω. From this last segment we
can begin again, and so forth. Of course, the choice of different gödelizations would
give different segments.

4.2 To describe another kind of segment let us begin, for some gödelization g, with

∃yPf (y, g(A)) =⇒ A, (4.2.1)

where Pf (y, z) corresponds to a primitive recursive relation Pf(u, v) such that
Pf(u, v) if and only if u is the Gödel number of a proof in P of the formula of Gödel
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number v. We may suppose that y does not appear in A and then (4.2.1) is equivalent
to

∀y (¬Pf (y, g(A)) ∨ A) (4.2.2)

and we can prove easily that

P � ¬Pf (b, g(A)) ∨ A for every natural b.

(The way to prove it is: if not Pf(b, g(A)), then P � ¬Pf (b, g(A)); if Pf(b, g(A))

then we reproduce the proof of Gödel number b, which is a proof of A, and we have
P � A.)

We can then construct, from P, a segment U of length ω + 1 in which (4.2.2)
is an axiom. We can also iterate the process, like in Section 4.1. Formula 4.2.1 is
the reflection principle for A. It depends, of course, on the particular gödelization.
About the reflection principles see Feferman [7]. The effects of interpreting (4.2.1)
as the box of modal logic are investigated in Boolos [1], Chapter 3. Löb proved that
for all sentences A if (4.2.1) is a theorem of P then A is also a theorem of P (see the
same [1] or Smorinski [15]).

4.3 Another example is the following. Let us consider the set

K = {x : x is the Gödel number of a proof of ¬0 = 0 in P}.
K is diophantine (recursively enumerable), so that we can find a polynomial P ∈
Z[x, y1, . . . , yt] such that

x ∈ K iff there exist naturals yi such that P(x, yi) = 0

(see Jones [11] or Davis [3], about diophantine sets). As the coefficients of P are inte-
gers there are, clearly, terms U(zi) and V(zi) of the language of P, in which no other
variables than z0, . . . , zt appear, such that if P(bi) is zero (respectively, not zero) then
U(bi) = V (bi) (respectively, ¬U(bi) = V (bi)) is a theorem of P. To simplify, let us
denote the relation U(zi) = V(zi) by R(zi), so that we have

if P(bi) = 0, then P � R(bi); (4.3.1)

if not P(bi) = 0, then P � ¬R(bi). (4.3.2)

There is a procedure to prove

P � ¬R(b0, . . . , bt) for each (bi) ∈ N
t+1. (∗)

We shall discuss that simple procedure later, in order to insist in the demand that its
correctness be proved finitarily. Now, supposing (∗) proved, we shall see how to con-
struct a segment T of length (t + 1)ω + 1 having ∀zt . . .∀z0 ¬R(z0, . . . , zt) as an ax-
iom. We begin by defining jT(δ + 1) = jP(δ + 1) for δ + 1 < ω. We then enumerate
the t-tuples of naturals:

(b1
1,1, . . . , b1

1,t), (b2
1,1, . . . , b2

1,t), . . . .
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For the first one we have, from (∗), that for each b0,

B ∪ { jT(δ + 1) : δ1 < ω + 1} � ¬R(b0, b1
1,1, . . . , b1

1,t).

We then define jT(ω + 1) = ∀zo ¬R(z0, b1
1,1, . . . , b1

1,t). In a similar way we make

jT(ω + 2) = ∀z0 ¬R(z0, b2
1,1, . . . , b2

1,t),

and so on, and shall have that jT(δ + 1) is defined for every δ + 1 < 2ω and that
∀z0 ¬(z0, b1, . . . , bt) is an axiom of the segment defined until now (of length 2ω) for
every t-tuple of naturals (b1, . . . , bt).

We now enumerate the t − 1-tuples of naturals,

(b1
2,2, . . . , b1

2,t), (b2
2,2, . . . , b2

2,t), . . .

and define

jT(2ω + i) = ∀z1∀z0 ¬R(z0, z1, bi
2,1, . . . , bi

2,t)

for i = 1, 2, . . . and obtain a segment of length 3ω in which ∀z1∀z0 ¬R(z0, z1,

b2, . . . , bt) is an axiom for each t − 1-tuple of naturals (b2, . . . , bt).
Continuing in this way we arrive to a segment of length (t + 1)ω in which

∀zt−1, . . . ,∀z0¬R(z0, . . . , zt−1, bt)

is an axiom for each bt. We then define

jT((t + 1)ω + 1) = ∀zt, . . . ,∀z0¬R(z0, . . . , zt)

and the construction will be finished.
Let us now return to the proof of (∗). It would be inadmissible to rely on some

proof of the consistency of P and say: as P is consistent there is no proof of ¬0 = 0 in
it, so that for every (bi) we have not P(bi) = 0 and, according to (4.3.2), P � ¬R(bi).
This proof of the correctness would not be finitary (unless the consistency proof were
finitary). The finitary proof of (∗) would be as follows.

For each (bi) we decide whether P(bi) = 0 or not in N. If not, then we have
P � ¬R(bi), by (4.3.2). If the answer is yes, then there is a proof of P � ¬0 = 0 of
Gödel number b0 which we can reproduce. Then from this and P � 0 = 0 we can
prove anything, in particular (∗).

5 About the Paris-Harrington theorem Paris and others obtained some true arith-
metical statements which are interesting in themselves and not provable in Peano
Arithmetic. One of them is the theorem of Paris and Harrington (see Paris and Har-
rington [14], Smorinski [16], Graham, Rothschild, and Spencer [9] and their refer-
ences). It is asserted in [14] that this theorem, originally combinatorial (expressed as
∀e, r, k∃M(M →. (k)e

r )) is also expressible in the language of first-order Peano Arith-
metic. But it turns out that it is not provable there (see [14]). If Q(e) is the arithmeti-
cal formulation of ∀r, k∃M(M →. (k)e

r ) it is also asserted that

P � Q(ē) for each natural e (5.1)
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(whereas, as remarked before, ∀x Q(x) is not provable in P). Let us consider the pro-
cedure that proves (5.1) for each e. If its correctness is provable constructively or
finitarily, then we have OA � ∀x Q(x). The author has no reason to doubt that it is so
but, not being familiar with the subject, is not able at this moment to assure that such
correctness is indeed constructively provable.

Other ways of proving the incompleteness of Peano Arithmetic are discussed in
Kotlarski [12].

Appendix A constructively consistent open formalism for arithmetic

A.1 The intermediate formalism OA′
1 Let us remember that we are relying on [13]

for the general presentation of arithmetic, so that ∨,∧, and ∃ are defined symbols and
modus ponens and generalization are the only inference rules of OA1. The “inter-
mediate” open formalism OA′

1 to be described now differs from the formalism OA1

described in Section 1.2 in the following ways (1, 2, and 3).

1. All the formulas susceptible of being axioms or theorems of OA′
1 will be

closed. Following rigorously the terminology of [13] we could then say that
the relevant formulas of OA′

1 are the closed well-formed formulas of first-order
arithmetic, shortened as cw f . If A is a well-formed formula of OA1 in which
all the variables that have a free presence belong to the set {x1, . . . , xn} we
say that ∀x1, . . . ,∀xn A is a closure of A. We say that the closure is strict
if all the variables of the set do have a free presence in A. For instance,
∀x∀y x + y = y + x, ∀x∀y∀z x + y = y + x, and ∀y∀x x + y = y + x are clo-
sures of x + y = y + x, and the first and third are strict ones. If all the variables
appearing free in A are x1, . . . , xs and have their first free appearances in A in
precisely this order, then we say that ∀x1, . . . ,∀xs A is the natural closure of
A, and denote it A. If A is closed we understand that A = A. The first of the
three closures in the previous example is the natural one.

2. The logical (basic) axioms of OA′
1 are the natural closures of all the logical

(basic) axioms of OA1. The set of basic axioms of OA′
1 will be denoted B′.

3. The generalization rule is not an inference rule of OA′
1 (it does not even make

much sense in it, according to 1). Modus ponens is then its only inference rule.
Its exact form in OA′

1 is: whenever A, B, and C are cwf we infer B from A =⇒
B and A.

Our aim is to prove that OA′
1 has essentially the same deductive power of OA1. To

this end we need to discuss a device already used in Section 4.3. It is, in general, in
the context of OA′

1, the following.

A.1.1 Device If, in a certain segment T of OA′
1 we have, for a certain well-formed

A(x1, . . . , xr), that A(n1, . . . , nr) is a theorem of T for every R-tuple of naturals (ni),
then we take

τ = {β + 1 : β + 1 ∈ S′, β + 1 ≤ (r − 1)ω + 1},
with the order inherited from S′, and

ζ = (σT × {0}) ∪ (τ × {1})),
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with (x, i) < (y, j) if i < j, or if i = j and x < y.
We then consider any permutation i of {1, . . . , r} and a list

(n1
1, . . . , n1

r ), (n2
1, . . . , n2

r ), . . . (A.1.1)

of all the r-tuples of naturals and define a new segment U in the following way. We
first put

σU = ζ, jU((α, 0)) = jT(α) for all α ∈ σT.

We then define the values jT((β, 1)) for β ∈ τ as follows. We first substitute n j
i(1)

by xi(1) in all the members of the list (A.1.1), then suppress the members that repeat
previous ones, and then renumerate the upper indices, obtaining a new list

(n1
1, . . . , xi(1), . . . , n1

r ), (n2
1, . . . , xi(1), . . . , n2

r ), . . . (A.1.2)

and define

jU((1, 1)) = ∀xi(1) A(n1
1, . . . , xi(1), . . . , n1

r )

jU((2, 1)) = ∀xi(1) A(n2
1, . . . , xi(1), . . . , n2

r )

. . .

In all the members of the new list (A.1.2) we now substitute n j
i(2)

by xi(2), suppress
all the members that repeat previous ones and then renumerate it, thus obtaining (sup-
posing, to simplify the notation, that i(1) ≤ i(2)) a new list

(n1
1, . . . , xi(1), . . . , xi(2), . . . , n1

r ), (n2
1, . . . , xi(1), . . . , xi(2), . . . , n2

r ), . . . (A.1.3)

and define

jU((ω + 1, 1)) = ∀xi(2)∀xi(1) A(n1
1, . . . , xi(1), . . . , xi(2), . . . , n1

r )

jU((ω + 1, 2)) = ∀xi(2)∀xi(1) A(n2
1, . . . , xi(1), . . . , xi(2), . . . , n2

r )

. . .

By iterating the process we arrive finally to

jU(((r − 1)ω + 1, 1)) = ∀xi(r), . . . ,∀xi(1) A(x1, . . . , xr)

It is clear that U is a segment of OA′
1. This describes the device.

Proposition A.1 The natural closure of every theorem of OA1 is a theorem of
OA′

1.

Proof: The proof will be constructive. As every well-formed formula is interde-
ducible in OA1 with any of its closures, then it is clear that the proposition will enable
us to think of OA′

1 as a presentation of OA1 having modus ponens as sole inference
rule.
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The proof will consist in describing the way, given any segment S of OA1, of
constructing a segment S′ of OA′

1 having among its theorems the natural closures of
all the theorems of S.

We begin, given S, by considering any β ∈ σS and the segment S<β defined by

σS<β
= {γ : γ ∈ σS, γ < β},

jS<β
being the restriction of jS to σS<β

. We write a list of all the logical and basic
axioms of S<β (the same as for S). As σS<β

belongs to C (remember Definition 1.1) we
can make a list of all its elements and then a list of all the axioms jS(γ) for γ ∈ σS<β

.
From these two lists we can make a list of all the axioms of S<β and then a list

Aβ

1 , Aβ

2 , . . . (A.1.4)

such that

(i) it contains all the theorems of S<β,

(ii) each member of the list is an axiom (logical or nonlogical) of S<β or is obtained
from previous members by generalization or by modus ponens.

We then consider the list

Aβ

1 , Aβ

2 , . . . (A.1.5)

of the natural closures of the previous one.
In preparation for the construction of the associated segment S′ let us advance

that for each β ∈ σS, and related to the list (A.1.5), a certain sequence αβ,1, αβ,2, . . .

of ordinals that are 0 or of the form tω + 1, for natural t, will be defined, as well as
the corresponding

τβ,i = {γ + 1 : γ + 1 ∈ S, γ + 1 ≤ αβ,i}.
We shall also define an αβ,ω of the form tω + 1, and

τβ,ω = {γ + 1 : γ + 1 ∈ S, γ + 1 ≤ αβ,ω}.
The order in these sets is the restriction of the orders in S. We then will define

ββ = ((τβ,1 × {1}) ∪ (τβ,2 × {2}) ∪ · · · ∪ (τβ,ω × {ω}) × {β}
with the order defined as ((δ, i), β) < ((η, j), β) if i < j, or if i = j and δ < η (where
i and j represent naturals or ω).

For the future segment S′ of OA′
1 we shall have

σS′ =
⋃

β∈S

ββ,

where, for δ1 ∈ ββ and δ2 ∈ γγ , we have δ1 < δ2 if β < γ in σS, or if β = γ and
δ1 < δ2 in ββ. It is already clear that σS′ will belong to C. We define, to begin with
the description of S′,

jS′ (((αβ,ω, ω), β)) = jS(β) (A.1.6)
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for each β, where αβ,ω is, of course, the last or greatest element of τβ,ω.
More concretely, what shall be done is, for each β ∈ σS, the following.

β.I To define the αβ,i and τβ,i and the not yet defined jS′ (γ) for γ ∈ ββ,
in accordance, of course, with (b1) of Definition 1.2; and to prove
that every member of the list (A.1.5) is a theorem of the segment
S′

<β′ , where the notation β′ = ((αβ,ω, ω), β) is used, defined by

σS′
<β′ = {γ : γ ∈ σS′ , γ < β′},

jS′
<β′ being the restriction of jS′ to σS′

<β′ .

β.II If jS′ (((αβ,ω, ω), β)) = jS(β) = ∀x B(x), to prove that B(n) is a
theorem of S′

<β′ for each natural n.

Once this is done it will have been proved that S′ is a segment of OA′ in which the
natural closure of every theorem of S is a theorem. In this process it is very important
to note the following

Note A.2 The accomplishments of β.I and β.II for each β ∈ σS will be completely
independent of the same actions for every other such β; they will depend only on
S. In fact, in each of these accomplishments only the basic and logical axioms and
those of the form jS(γ) for γ ≤ β will be used, apart from those of the form jS′ (δ) for
δ ∈ ββ that may appear in the same process. This will avoid completely any recourse
to transfinite induction and maintain the proof completely constructive.

To accomplish β.I we run through the lists (A.1.4) and (A.1.5) performing the steps
described as follows.

For positive i, the ith step takes τβ, j and the values of j′S(γ) for

γ ∈
⋃

j<i

(τβ, j × { j}) × {β}

as already given and supposes that it has been proved, by means of all the logical
and basic axioms of S′ (the natural closures of those of S), the axioms jS′ (γ) for γ as

before and the axioms jS′ (((αδ,ω, ω)δ)) for δ < β (see (A.1.6)), that all the Aβ
j for

j < i are theorems of S′. We then want to define τβ,i and the corresponding values of
jS′ , in order to make appear Aβ

i as a theorem. We have three cases to consider.

Case 1: Aβ
i is an axiom of S<β. In this case we take αβ,i = 0, so that τβ,i = ∅. And

Aβ
i is a theorem of S′

<β′ because then it is either a logical or basic axiom of OA′
1 or,

according to (A.1.6), it is an axiom of it of the form

jS′ (((αγ,ω, ω), γ))

for some γ < β.

Case 2: Aβ
i is obtained by modus ponens from previous members Aβ

j and Aβ

k =
Aβ

j =⇒ Aβ
i . By induction hypotheses Aβ

j and Aβ
j =⇒ Aβ

i are theorems proved by
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means of the said axioms. Suppose x1, . . . , xr are the variables appearing free in Aβ

k .
Then, with the obvious notation,

Aβ
j (n1, . . . , nr) =⇒ Aβ

i (n1, . . . , nr) and Aβ
j (n1, . . . , nr)

are theorems (proved with the same means) and, by the device A.1.1, we may define
αβ,ω (in fact equal to (r − 1)ω + 1) and the values of jS′ (((δ, i)β)) for δ ∈ τβ,i in

order to have Aβ
i as the axiom jS′ (((αβ,i, i), β)).

Case 3: Aβ
i is obtained by generalization from a previous member of the list. This

case is easier to deal with than the previous one.

We must now accomplish β.II. Let us suppose

jS(β) = ∀y C(x1, . . . , xr) and jS(β) = ∀x B(x),

where the xi are all the variables that have free presences in C(xi) and the variables
x, y may, or not, coincide with one another or with some xi. To concretize, we shall
suppose x is x1 and y is x2. The proof corresponding to any other possibility will be
a more or less trivial variant of the one that shall be given now.

According to the first identity, now written as

jS(β) = ∀x2 C(xi),

the formula C(x1, n2, . . . , xr) is, for each natural n2, a theorem that must appear in
(A.1.4), so that every C(ni) must also appear in the list, for all (ni). And, once ac-
complished β.I, they must also be theorems of S′

<((1,ω),β). Now, by using the same
device A.1.1, we can define τβ,ω and the values of jS′ in τβ,ω × {ω}) × {β}, so that
we obtain

jS′ (((αβ,ω, ω), β)) = jS(β),

as wanted.

Note A.3 (About the consistency of OA′
1) Clearly, we may prove that OA′

1 is con-
sistent by showing that (N,+, · , ′) is a model of it. But let us look more closely at
this consistency problem, considering that the only inference rule of OA′ is modus
ponens.

We admit in OA′
1, as possible axioms or theorems, only cwf; and, following [13],

we only make use of ¬, =⇒, and ∀ as undefined logical symbols. We say that a cwf of
OA′

1 is irreducible if it is not of the forms ¬A or A =⇒ B. The irreducible formulas
of OA′

1 are then the cwf that are atomic or of the form ∀x A. All the cwf of OA′
1 are

then obtained from the irreducible ones by means of repeated use of ¬ and =⇒. We
now recall that the theorems of OA′

1 are obtained from AX(OA′
1) by iterated use of

modus ponens and that every theorem requires for its proof only a finite set of those
axioms. We may also remember that any such finite set of axioms is a subset of the set
of axioms of some segment of OA′

1. It is then clear that OA′
1 is consistent if and only

if there is a way, for any finite collection of its axioms, of assigning truth values T or
F to every member of the finite set of irreducible formulas from which all the axioms
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of the set are built by means of ¬ and =⇒ in such a way that the logical valuation
induced by these values in the finite set of axioms under consideration have value T
in all its members. As we know that OA′

1 is consistent, we know in consequence that
this procedure does exist: we can find by trial an adequate set of values T or F for the
irreducible cwf from which a finite set of axioms is built because there is only a finite
number of possibilities in assigning these values. But, of course, the proof that this
procedure is correct is not finitary: it depends on the original nonfinitary semantical
proof of the consistency of OA′

1. Had we not this proof at hand we could not be sure
there is, in every case, a satisfactory assignment of values T , F to be found by trial.

The situation just described exemplifies anew the general phenomenon: there are cor-
rect procedures whose correctness is not proved finitarily. This is the kind of phe-
nomenon that forced the demand of constructivity in the proofs of the correctness
made in Definitions 1.2(b1) and 2.1(b). �

A.2 The constructively consistent open formalism OA′′
1

A.2.1 The formalism OA′′
1 has, as OA1, OA, or OA′

1, the language of a first-order
theory, with the constant 0 and the functional symbols +, · , and ′. Here, following
[13], we take ¬, =⇒, and ∀ as the only primitive logical symbols.

A.2.2 The only inference rule, as in OA′
1, will be modus ponens in the form ‘B is

inferred from A and A =⇒ B, for any cwf A and B’.

A.2.3 The logical axioms will not be the same as for a first-order theory. They will
be:

(i) A =⇒ (B =⇒ A), for any cwf A, B;
(ii) ((A =⇒ (B =⇒ C)) =⇒ ((A =⇒ B) =⇒ (A =⇒ C)), for any cwf

A, B, C;
(iii) (¬B =⇒ ¬A) =⇒ ((¬B =⇒ A) =⇒ B), for any cwf A and B;
(iv) u = u, for any constant term u;
(v) u = v =⇒ (t1 = t2 =⇒ t∗1 = t∗2 ), for any constant terms u, v, t1, t2,

whenever, for each i, t∗i is obtained from ti by substituting some pres-
ence of u by v, or inversely, or by leaving ti unchanged.

A.2.4 The arithmetical axioms will be the following (vi) – (xi), for any natural n,
n1, n2:

(vi) ¬0 = n′;
(vii) n′

1 = n′
2 =⇒ n1 = n2;

(viii) n1 + 0 = n1;
(ix) n1 + n′

2 = (n1 + n2)
′;

(x) n1 · 0 = 0;
(xi) n1 · n′

2 = (n1 · n2) + n1.

If we denote the sets of logical and arithmetical axioms of OA′′
1 by B′′

L and by B′′
A ,

then we define the set B′′ of initial axioms of OA′′
1 as

B′′ = B′′
L ∪ B′′

A .
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A.2.5 We define the collection AX(OA′′
1 ) of all axioms of OA′′

1 as follows, by
means of the notion of segment, analogously to (b1) of Definition 1.2. A segment
U of OA′′

1 consists of a member σU of the class C (see Section 1) and a procedure
that defines a function jU from σU to the set of cwfs of OA′′

1 of the form ∀x A(x) or
¬∀x B(x) and provides, for each δ ∈ σU, a proof of

B′ ∪ { jU(γ) : γ ∈ σU, γ < δ} � AU
δ (n)

for each natural n, if ∀x AU
δ (x) = jU(δ); and a proof of

B′′ ∪ { jU(γ) : γ ∈ σU, γ < δ} � ¬AU
δ (n)

for some natural n, if ¬∀x AU
δ (x) = jU(δ). We then define

AX(U) = B′′ ∪ { jU(γ) : γ ∈ σU}.
It is demanded, as always, that the correctness of the whole procedure be proved con-
structively. The collection of all the axioms of OA′

1 is then

AX(OA′′
1 ) =

⋃
AX(U),

where the union runs over all the segments U of OA′′
1 . We include explicitly the log-

ical axioms in AX(OA′′
1 ) because, unlike for OA′

1, they are not the natural closures
of all the usual logical axioms of first-order logic. We now have the following propo-
sition.

Proposition A.4 OA′′
1 is consistent.

Proof: The proof will be constructive. As we did in previous considerations about
the consistency of OA′

1, in (A.1.3), we say that the irreducible cwf are the atomic
constant ones and those of the form ∀x A. All the other cwf are built from them by
means of ¬ and =⇒. Given any finite collection of axioms we may consider the fi-
nite collection of all their irreducible “components” (from which the axioms of the
collection are built using only ¬ and =⇒). If we can exhibit an assignation of truth
values T , F, to these irreducible components in such a way that the logical valuations
agreeing with it have value T in all the members of the given collection of axioms,
then we will have proved that this collection is consistent. If we can do this operation
for any such collection we will have proved the consistency of OA′′

1 . This is what
will be done, constructively.

We first observe: if a finite set D of axioms of OA′′
1 does not have as members

two flagrantly contradictory formulas such as ∀x A(x) and ¬∀x A(x) then we can as-
sign the value T to each ∀x B(x) in D and the value F to each ∀z C(z) whose nega-
tion belongs to D; and there is no difficulty in assigning appropriate truth values to
the components fo the members of D of the forms (iv) to (xi).

It will be sufficient to show that no finite set D of axioms of OA′′
1 can contain

two formulas ∀(x) A(x) and ¬∀y A(y). To begin with, it is easy to see that any finite
set of axioms of OA′′

1 is contained in the set AX(U) for some segment U. In fact,
there is a least δ ∈ σU such that D ⊆ { jU(γ) : γ ≤ δ}. Now, if we had ∀x A(x) ∈ D
and ¬∀y A(y) ∈ D we would have a natural m and some δ′ ∈ σU, δ′ < δ, such that

B′′ ∪ { jU(γ) : γ ∈ σU, γ ≤ δ′} � A(m)
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and the same for ¬A(m). If now D′ were a finite set of axioms of U such that D′ �
A(m), D′ � ¬A(m) and D′ ⊆ B′ ∪ { jU(γ) : γ ∈ σU, γ ∈ δ′}, then, by the previous ob-
servation, D′ would have to contain two formulas such as ∀v A′(v) and its negation.
The iteration of this observation would then produce an impossible infinite descent
in σU. �
We also have the following proposition.

Proposition A.5 OA′′
1 is complete.

Proof: The proof is nonconstructive. The same proof of Theorem 1.5 applies here
and it is now slightly simpler because we are taking ¬, =⇒, and ∀ as the only unde-
fined logical symbols. �
Finally, we have this proposition.

Proposition A.6 OA′′
1 contains (nonconstructively) OA′

1.

Proof: For the proof we need first to observe that any proof in OA′′
1 gives a proof

in OA′
1 because the first formalism is not stronger than the second (it is, at first sight,

weaker). We now consider any cwf A and suppose OA′
1 � A. As OA′′

1 is complete,
either A or its negation A′ is a theorem of OA′′

1 (where we understand that A is ¬A′

or A′ is ¬A). If we had OA′′
1 � A′ we would have OA′

1 � A′, by our first observation,
against the consistency of OA′

1. So that we must have OA′′
1 � A, as expected. �

Corollary A.7 Every closure of every theorem of OA1 is a theorem of OA′′
1 .

Proof: This is a consequence of the previous proposition and Proposition A.6. �

Remark A.8 If, in the proof of Proposition A.6, we write thoroughly OA1 in the
place of OA′

1, we obtain a direct proof of the corollary, without needing to make use
of the intermediate formalism OA′

1.

A.2.6 OA′′
1 and Hilbert’s program The proof that OA′′

1 contains OA′
1 does not pro-

vide any effective way of repeating in OA′′
1 , and by the only means of the finitary or

constructive manipulations allowed in it, a proof that may have been given in OA′
1;

so that any conviction that OA′′
1 can develop arithmetic as satisfactorily as OA′

1 must,
perhaps, rely on empirical grounds. We may, for example, try to prove in OA′′

1 what
has been proved in Sections 4.1, 4.2, and 4.3 for OA. In any case, OA′′

1—having been
proved (constructively) to be consistent and (nonconstructively) to be complete—
might perhaps be considered at least a partial fulfilment of Hilbert’s program, if we
admitted in that program a logical instrument other than the usual first-order logic.
Let us remember that the admission of some form of the ω-rule was suggested, al-
though vaguely, by Hilbert himself.

Acknowledgments The present paper dealt, in its original form, only with the formalism
OA, defined here in Section 2 (see also Sections 3 and 4). On behalf of completeness, the
referee suggested the use of constructive ordinals (see [2]) instead of just ordinals < ε0. The
suggestion evolved into the consideration of the class C and the formalism OA1 (see Defini-
tion 1.1) and the completeness of the latter followed almost trivially. The Appendix, which
dealt originally with a formalism related to OA was rewritten, with a first part dealing with the
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“intermediate” formalism OA′′
1 , related to OA1; and the completeness result made possible

the second part, dealing with the already mentioned complete and constructively consistent
OA′′

1 .
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