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Kripke Completeness of Infinitary
Predicate Multimodal Logics
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Abstract  Kripke completeness of some infinitary predicate modal logicsis
presented. More precisely, we prove that if a norma modal logic L above K
is D-persistent and universal, the infinitary and predicate extension of L with
BF,, and BF is Kripke complete, where BF,, and BF denote the formulas
Nico OPi D O Ajc,, Pi @d VXOgp D OVxe, respectively. The results include
the completeness of extensions of standard modal logics such asK, and its ex-
tensions by the schemata T, B, 4, 5, D, and their combinations. The proof is
obtained by extending the correspondence between the representation of modal
algebras and the compl eteness of propositional modal logic to infinite.

1 Introduction  The study of logics with infinitary connectives based on classical
logic started in thel950s at the latest. There are two main motives to introduce in-
finitary connectives into the language: one comes from model theory. There exist
some concepts in mathematics which cannot be described by atheory of finitary log-
ics, and infinitary connectives are introduced to strengthen the expressive power of
theories (see Barwise and Feferman [L’I__]). Others come from proof theory. Infinitary
connectives are used as an instrument to give aproof of consistency of finitary formal
systems ([16], [14]). The completeness theorem for the classical infinitary predicate
logicisgivenin [12] by using the properties of Boolean algebras and then [[13] by the
Henkin methods (cf. [E]).

Now we discuss modal logics. Let K, be an infinitary extension of propo-
sitional K and BF,,, be the formula /\;_, Opi D O /., pi of infinitary proposi-
tional modal logic which corresponds to the Barcan formula BF, that is, the formula
VxOg D OVxe of predicate modal logic. The completeness theorem for infinitary
propositional modal logic K, @ BF,,, with respect to the class of Kripke framesis
given, for example, in [17], [5], and [21]. In [[1Z], the interpolation theorem is also
proved. In 5], the completeness of the infinitary extension of graded modal logic is
proved which includes the completeness of K, @ BF,,, as a specia case. In [21],
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the completeness of infinitary multimodal logic and some of its extensionsis proved.
However, most completeness studies of infinitary modal logic have not directed at-
tention to predicate logic.

Inthisarticle, we present Kripke completeness of someinfinitary predicate mul-
timodal logics above K. More precisely, we prove that if a (finitary) propositional
modal logic L above K is D-persistent and universal then the infinitary and predi-
cate extension of L with BF,,, and BF is Kripke complete, by an algebraic method. It
is known that the representation theorem of modal algebras corresponds to the com-
pleteness theorem of propositional modal logic ([, [|§]). Similarly infinitary repre-
sentation theorem, that is, a representation theorem which preserves countable infi-
nite meets and joins, corresponds to the compl eteness theorem of infinitary predicate
modal logics, as we will see in Section[4] The results include the completeness of
extensions of standard modal logics such as K and its extensions by the schemata
T,B, 4,5, D, and their combinations.

2 Infinitary representation of modal algebras A multimodal algebrais a modal
algebra with countably many modal operators. Here we assume that there isno in-
teraction between modal operators. We introduce a representation theorem for mul-
timodal algebras which preserves countably many infinite meets and joins (cf. [[24],

[23)).
Definition 2.1  Anagebra(A, A, Vv, —, 0; (i € w), 0, 1) iscalled amultimodal al-
gebraif foreachi € w, (A, A, Vv, —, £,0, 1) isaBoolean algebra and

1. 01=1;

2. Oy(xAYy) =0;xAOjyforany xand yin A.
For any x and y in A, we sometimes write x — y for —x v y. Also, we write %,(A)
for the set of all primefiltersof A.

Definition 22 Let A and B be multimodal algebras. A function f : A — Bis
called a homomorphism of multimodal algebrasif f isahomomorphism of Boolean
algebras and satisfies f (O;x) = 0; f(x) for al i € w.

Proposition 2.3 Let A beany set and { R}, be any set of binary relations on A.
Then (P(A),N, U, —, 0; (i € w), J, A) isamultimodal algebra, where

—X=A\ X OX:={xe A:Vy(X<r Y = Yye X)},

for any i € w. Especially, for any multimodal algebra A, the binary relations
R (i € w) on % (A) givenby F <g G <= Di‘lF C G defineamultimodal algebra
on P(F(A)).

Proof: Since (P(A),N, U, —, &, A) isaBoolean algebra, it is enough to show that
the operator O; iswell defined for any i € w, but thisis straightforward. O

Definition 2.4 ([18]) Let A be a Boolean agebra and Q be a pair ({Xn}neo.
{Yn}new) Of subsets of P(A) suchthat A Xn € Aand \/ Y, € Aforanyne w. A
primefilter F iscalled a Q-filter if the following conditions are satisfied:

1. Vnew(Xn CF = A X, € F);
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2 Vnew(\/Yne F = YZNF #9).

Obviously, the two conditions in Definition[2.4Jare infinitary extensions of the con-
ditionsfor prime filters:

1 X, ye F = XxAyeF;
2. XvyeF = xeForyeF.

Wewrite Fo(A) for theset of al Q-filtersin A. Itiseasy to seethat the binary relation

on Fo(A) defined in Proposition2.3lyields amultimodal algebra P( 7o (A)).
Thefollowing proposition, an infinitary extension of the primefilter theorem for

Boolean agebras, is sometimes called the Rasiowa-Sikorski Lemma ([IL8], [19]).

Proposition 2.5 ([18]) Let A be a Boolean algebra and Q = ({Xn}news {Ynlnew)
be a pair of countable subsets of P(A) such that /\ X, € Aand \/ Y, € A for any
ne w. Thenfor anyaandbin Awitha £ b, thereexistsa Q-filter F suchthata e F
andb ¢ F.

Proof: We define two sequences {a, : h € w} and {8n : n € w} of elements of A
which satisfy the conditions

1. og =4, ,30=b;

2. Vn € w(ant1 < an, Bn =< Bnt1, on £ Bn);

3. Vne w(azng1 < /\ Xpor Ix e Xn(X < Bony1));
4. Vne w3y € Yn(azniz < Y) OF \/ Yo < Boni2).

Suppose az and By are constructed. We may assumethat aax £ Bak vV A\ Xk OF aax A
A\ Xk £ Bax, Since otherwise,

ook < (o V Ba) A BV [\ X = Ba v (@a A\ X < Bax

Casel: g £ Bak Vv /\ X Thereexistsx € Xy such that aox £ Bk V X, for if not,

ax < /\ (BacV X = Bac v \ X

Xe Xk
Take one such x and define ook 1 := aok and Bk 1 := Bok V X.

Case2:  ax A A\ X £ Bk Define agy 1 = axx A /\ X and Boky1 = Bk

We construct ook 2 and Bax, 2 Similarly. It is easy to seethat o, and Sy, are well de-

fined. Let G bethefilter generated by the set {«, : N € w} and H betheideal generated

by the set {8 : n € w}. Itisobviousfrom () that H and G are disjoint. Hence, there

exist aprimeideal | and aprimefilter F suchthaaGC F,HC l,and | N F = & by

the prime filter theorem. Now it is straightforward by @) and (4] that F isa Q-filter.
O

Let A beaBoolean algebraand F be afilter of A. Then the binary relation ~F on A
defined by
X~y << Jace F(xAna=yAa)

is a congruence relation. We write A/F for A/ ~g, |z| for the equiva ence class of
anelement ze A and | Z| fortheset {|z| : ze Z} forany Z C A. However, ~¢ does
not preserve infinite meets and joinsin A, in general. Hence, we need the following

lemma ([24], [23]).
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Lemma2.6 Let Abeamultimodal algebra, Q = ({Xn}tnew, { Ynlnew) be a pair of
countable subsetsof P(A). Let F beafilter of Asuchthat X, C Fimplies A\ X, € F
for any n € w. Suppose the following conditions are satisfied:

LVnew(AXne A \V YaeA);

2. Viewvne o(A\OiXse A, ADiXn =0 A Xn);

3. Viewvze AVn e wdme o({T;(z— X) : X € Xn} = Xn);
4. Vi e wVze AVn e wdme o({T;j(y = 2) : Y € Yn} = Xm).

Then, for any i € w, A/(Di—lF) is a Boolean algebra which satisfies the following
conditions:

1 Vne (A Xl € A/(O7F). Al =1 A XaD);
2. Vne o(\V/ Yol € A/(O7IF), VYol =V YaD).
Proof: We only show the second one. Takeany i and nin w and let G = Di—lF.

Then A/GisaBoolean algebra. Forany y € Y;,, itisobviousthat |y| < | \/ Yn|. Sup-
pose z is an upper bound of the set |Y,|. Then

vy e Ya(lyl < I2) Vye Ya(y— z€ G)
Vye Ya(Oi(y— 2) € F)

ACiy—>2eF

Y€Yn

0 /\(y—> 2)eF

YeYn
\/Yn—> ze G

1\ Yal < 12.

Hence, | Y,| hasthe least upper bound | \/ Yy| in A/ G. O

e oot

Now we show the main lemma for the compl eteness theorem of infinitary and pred-
icate modal logic and the infinitary representation theorem ([24]], [23]).

LemmaZ2.7 Let Abeamultimodal algebraand Q = ({Xn}new, {Yn}new) beapair
of countable subsets of P(A). Suppose Q satisfiesthe conditionsin Lemmal2.6] Then
for any F € %o(A) and Oja ¢ F, there exists G € Fo(A) such that 0;71F C G and
agG.

Proof: Let H=071F. By Lemmal2Z6] A/H isaBoolean algebrawhich satisfies
1. Vne (A Xl € A/H, A1Xnl = A Xnl);
2.Vnew(\/ Yol € A/H, /Yol =1V YaD).

Let |Ql = ({| Xnl}new, {Ynl}new). Sincea ¢ H, |al # |1|. Then, by Proposition[2.5]
there existsa | Q|-filter G of A/H suchthat |a] ¢ G. Defineaset G Aby {xe A:
Ix| € G}. Weclaimthat G isa Q-filter of A. It is easy to see that G isaprimefilter.
Takeany n € . Since G isa Q|filter, A\ | Xa| € Gif and only if | X,| € G. Hence,

X CG < |X|cG
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= NIXleG
= [\ %leG
— /\XneG.

Similarly, \/ Y, € Gif andonly if Y,N G # &. Itistrivid thata¢ Gand H C G.
O

Then we have the infinitary representation theorem for multimodal algebras ([24],
123)).

Theorem 2.8 Let A be any multimodal algebra and Q = ({Xn}new, {Yn}new) bE @
pair of countable subsets of P(A). Suppose Q satisfies the conditionsin Lemmal2.6]
Then the function n : A — P(Fo(A)) defined by

n:xe—{Fe Jq(A) :xeF}

is a monomorphism of multimodal algebras such that n(/\ X,) = (n[Xn] and
n(\/ Yn) =UnlYa] foralne w.

Proof: Itiseasy to seethat n isamorphism of Boolean algebras. Moreover, i isan
injection by Proposition[2.5] We first show that n(0;x) = Ojn(x) for any x € Aand
i € w. Takeany i € w. Suppose F € n(0;x). Then

OixeF = VGe f(A'FCG = xeG)
& VGe Jo(A(F<r G = Genx)
<— F e Ojnx).

Hence, n(0;x) C Tjn(x). Conversely, suppose F ¢ n(0;x). Then, by Lemmal.7]
there existsa Q-filter G suchthat 0;'F ¢ Gand x ¢ G. Hence, F ¢ Oin(x). There-
fore, n is amonomorphism of multimodal algebras. We next show that n preserves
infinite meetsand joinsin Q. Takeany n € w. Then

Fen(/\X) <= J\XeF
— XnCF
&= Vxe X (Fen(x)
= Fe( )Xl

Hence, n(/\ Xn) = (n(Xn), and similarly, n(\/ Xn) = [ n[Xx]. a

Remark 2.9 Itisknown that the same infinitary representation theorem holds for
Heyting algebras ([8], [15], [20], and [23]). In thiscase, the equality A\, x(XV YY) =
Ayex X V yisessential. Moreover, the intuitionistic counterpart of Section[5lholds.
Let L be an intermediate propositional logic and L ,,,, be theinfinitary and predicate
extension of L. Suppose D,,, and D denotetheformulas /\;_,(pi V) D Aic, Pi VQ
and Vx(¢(X) v q) D VXe(X) V q, respectively. Then, if L is D-persistent and univer-
s, L o, + Do, +D isKripke complete (for details see [22], [23]).
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3 Infinitary predicate multimodal logics In this section, we discuss an infinitary
and predicate extension of multimodal K.

The language £ of infinitary predicate multimodal logic consists of the follow-
ing symbols:

Lo

logical connectives: A\, \/, —, Di(i € w);
quantifiers: v, 3,

the set of variables of cardinality Xq;

. countably many constant symbols: c,d, e, ... ;
5. countably many predicate symbols. P, Q, R, ....

A wN

It should be remarked that £ includes uncountably many variables. This makes it
possible to show the proof theoretic equivalence of renaming bound variablesin a
standard manner. Indeed, in infinitary predicate logics, renaming bound variablesis
adelicate problem and there are several ways to avert this difficulty:

1. The set of variablesis countable and is divided into two digjoint sets FV and
BV: for each formula ¢, every free variable of ¢ belongs to FV and every
bound variable of ¢ belongs to BV; there is no inference rule for renaming
bound variables (e.g., [6], [10], and [11]);

2. The set of variables is uncountable and assume a specia inference rule for re-
naming bound variables (e.g., [13]);

3. The set of variablesis uncountable and there is no inference rule for renaming
bound variables (e.g., [I2], [[], and [A]).

Note that £ does not have any function symbols. So, atermin £ isavariable or a
constant symbol, and aclosed termin £ isaconstant symbol. Wewrite T for the set
of al terms. The set of formulas of the language £ isthe smallest set which satisfies
the following:

1. if Pisapredicate symbol of arity nandty, ..., t, areterms, then P(ty, ..., ty)
isaformula;

2. if I isacountable set of formulasthen (/A T') and (\/ I') are formulas;

3. if pisaformulathen (—¢) and (OD;¢) are formulas (i € w);

4. if pisaformulaand x isavariable of £ then (Yx¢) and (Ixe) are formulas.

A Kripkeframeisapair (W, {Ri}ico), Where Wisaset and R; isabinary relation on
W foreachi € w. Let D be aset. A Kripke model A with constant domain D isa
triple (F, D, I), where F isaKripkeframe (W, {R}ic,) and | isamapping from W
called an interpretation which satisfies the following conditions:

1. forany w e W, 1, assigns an element 1,,(c) € D to a constant symbol ¢, and
for any constant symbol cand w, w’ € W, 1,(c) = 1, (c);
2. for any w € W and predicate symbol P of arity n, 1,,(P) c D".

Anassignment 4 isafunction from the set of al variablesto D. For each w € W and
assignment A4, define the function vy, 4 from T to D by

A(x) iftisavariablex

v, At = { l,(c) if tisaconstant symbol c.
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Then, the relation =4 between w € W and aformula ¢ is defined by

1

akrowbd

7.

w kg Py, ...ty ifandonly if (v, a(t1), ..., vi,.a(th)) € 1, (P), for any
predicate symbol P of arity nand termsty, .. ., t,;

wikg ATifandonly if w =g yforany y € T

wkEg \/Tifandonly if w =4 y for somey € T

w =g —pifandonly if w g ¢;

w =g VXg if and only if w =4 ¢ for any A4’ such that A(y) = A’ (y) for any
Y#X

w =g X if and only if w =4 ¢ for some A’ suchthat 4 (y) = A’ (y) for any
Y#X

w =g Ojg if and only if for any w’ in W, w <g w’ impliesw’ =4 ¢. (i € w).

Suppose w € W and ¢ isaclosed formula. Thenitiseasy to seethat w =4 ¢ <—
w =4 ¢ forany 4 and A'. Therefore, for a closed formula ¢, we write w = ¢ for
w k=g . If wgforany w e W, wewrite M = ¢. If M = ¢ for any M, wewrite

2

Now we discuss formal systems. First, we present asystem LK,,,, for classical

infinitary logic, givenin [B]. A sequent I' — A isapair of finite setsT" and A of
formulas. WewriteI", AforT’'UA and T, ¢ for I, {¢}. The axiom schemaof LK,,,,,
is p— p, and the derivation rules are the following:

s I'—> A
I — A’ () rcr’,, AcA)
out I'=> Ao ¢, A= E
FASA g (O

conjunction

RSO ey AR
digunction

e o BT o
negation FA FA

e e e e
foral D= A, gly/x] o[t/X], T — A
Toawe T wprsa )

exists

' = A, ¢[t/X] oly/X], T — A
r>aag & Iproa 07

Here, t denotesany termwhich isfreefor xin ¢ and y denotes avariable which
does not occur in any formulas in the lower sequent and free for xin ¢.
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Wewrite LK,,, for the propositional fragment of LK,,,,,. ThesystemLM,,,,, (LM,,,)
is defined by LK, (LK,) and the following inference rule:

|

0T — Oje (nec)

(Or:={0jy:.yel}, i €cw).
In 6], Feferman proved the cut-elimination theorem for LK,,,,,. In fact, by the meth-
odsin [6], the cut-elimination theorem for LM, is obtained immediately (see [23]).

Theorem 3.1  If asequent isderivablein LM,,,,, there exists a cut-free derivation
of it.

ThelogicK ,,» (K,) istheset of al formulaswhich arederivablein LM,,,,, (LM,,,).
We will see in Section[that K w0 @d K, are Kripke incomplete.

Now we define another formal systemLM,,,, ® BF,,,, by LM,,,, and additional
axiom schemata— /\ .., 0i Pn O Oi \pe,, Pnand — VxOjp D OjVxgp forany i € w.
We use the symbol +-gf for the existence of aderivationinLM,,,,, & BF,,,,,. Thelogic
K wy0 @ BFy,, 1S defined by

Ka)la)@Blea) = {(p l_BF (0}

Namely, the set of all formulas which are derivablein LM,,,, ® BF,,,.

4 Completenesstheorem In this section, we present the compl eteness theorem of
K w0 ® BF ., With respect to the class of Kripke frames. Let C be acountable set of
new constant symbols and £’ be a new language consisting of symbolsin £ and C.
A derivation 9 is said to be of the language £ (L), if each sequent in 9 consists of
formulas of the language £ (£).

Lemma4.l LetT' — A bea sequent of the language £'. Suppose there exists a
derivation D’ of thelanguage £’ of I' — A. Let (Cj)iecw and (Vj)ieo be any mutually
distinct lists of constant symbols and variables, respectively. Suppose (Xj)ic iS any
mutually distinct list of variables such that none of them has any occurrencesin the
derivation 2. Then

1. there exists a derivation 9 of the sequent I'[ X /C; | | € w] — A[X/Ci | i € ]
such that any constant symbol of (¢;)i<,, does not occur in D;
2. thereexistsa derivation 9 of thesequent I'[Xi/V; | | € w] — A[Xi/Yi | i € w].

Proof: With the aid of uncountably many variables, we can prove the lemmain a
standard manner. O

Lemmad4.2 Let ¢ beaclosed formula of the language £. If there exists a deriva-
tion 9’ of thelanguage £’ of ¢, then there exists a derivation 9 of the language £ of
(/8

Proof: Let (Cj)iew be an enumeration of C. It is obvious that 9’ includes at most
countably many variables. Since there exist uncountably many variablesin £, there
existsamutually distinct list (x; )i<., Of variablessuch that each of them does not occur
in 9'. Hence, by Lemmal4.1] there exists aderivation 9 of the formula¢[x;/ci | i €
w] = ¢ which does not include any constant symbolsin C. O
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The set sub(p) of al subformulas of aformula ¢ is defined as usua. In particular,
if o = AT or \/ T, then sub(¢) = {p} U, sub(y). By asimpleinduction, the
cardinality of sub(¢) isat most countable for any formula ¢. Also if ¢ contains only
finitefreevariables, any formulain sub(e) hasonly finitefreevariables. Let ¢ beany
formula of the language £/, fv(¢) be the set of all free variablesin ¢, and subst(p)
be the set of al instances of the substitutions of constant symbols of £’ to some free
variablesin ¢, that is,

subst(g) ;= {g[tx/X | X € X] : X C fv(p), ¥Xx e X(tx € £’ isclosed)}.
Then the set esub(y) of extended subformulas of ¢ is defined by

esub(p) :=sub(p) U | | subst(y).
Yesub(e)
Itiseasy to seethat if aformula ¢ contains only finite free variables the cardinality
of the set esub(p) is also countable. A set I of formulas is said to be closed under
extended subformulasif ¢ € T impliesesub(¢) C T". The closure Go(T") of extended
subformulas of " isthe smallest set of formulaswhich includesT™ and is closed under
extended subformulas. A set I of formulasis said to be closed under finitary connec-
tivesif the following conditions are satisfied:

1. if ¢ and ¢ are membersof T, then ¢ A ¥ and ¢ Vv  are members of T;

2. if g isamember of ', then —¢ and O;¢ are membersof ', for dl i € w;

3. if g isamember of T, then Vx¢ and Ixp is amember of I for any variable x
which has some free or bounded occurrencesin some formulasin T;

4 Noeland\/oerl.

The closure G (I') of finitary connectives of T" is the smallest set of formulas which
includesT" and is closed under finitary connectives. A set I of formulasis said to be
closedif Go(T) =T'and G(I") =T. Theclosure C(T") of aset I isthe smallest closed
set whichincludesT'. A set W of closed formulasis said to be saturated if it isthe set
of all closed formulas of some closed set I of formulas. Then the following lemmas
hold immediately.

Lemma4.3 LetT beacountable set of formulas. Suppose each formulainI” con-
tains only finite free variables and constant symbols of C. Then C(T") is countable
and any formulain C(T") has only finite free variables and constant symbols of C.

Lemma4.4 Let W beasaturated set of thelanguage £'. Let ~ beasubset of ¥ x &
defined by v ~ ¢ <= Fgr (¥ D @) A (¢ D ) where the derivation is of the lan-
guage £'. Then ~ isan equivalencerelation on ¥ and ¥/ ~ isa multimodal algebra
under the operations:

1 lelnlyl=lenyl, foranye, ¢ e

2. lelvIiyl=levyl, foranye, ¥ eV,

3. —lol =I—¢l, for any ¢ € V;

4. Dile| = |0, forany ¢ € ¥ (i € w);
5. 0=|Val

6.

1=|/\®|.
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To show the compl eteness theorem, we need the following lemma

Lemma4.5 Let W bea saturated set of the language £’. Suppose each formulain
W contains only finite constant symbols of C. Then each of the right-hand side of the
following equalities existsin the modal algebra A = W/ ~ and each of the equalities
holdsin A:

1. |AT|=AlIland|\/T|=\/ T, forall AT e Wand \/T € ¥;

2. O|AT|=AIO00,foral AT e Vandi € w;

3. Oi(el = IATD =/\V€F|Di((p3 y)|, forall o, AT € ¥, andi € w;
4. T(VTI—leh)=A,cr|0i(y D)l foral g, \/T € ¥,andi € o;
5

IVxpl = Allglt/x]] : tisclosed} and [3x¢| = V{l¢[t/X]| :
tisclosed}, for all Yx¢ and Ixg in ¥;

|0;Vxe| = A Oi{le[t/X]| : tisclosed} for all Vxg € W andi € w;

7. VX (¢ D )| = A {Di(ly] — |e[t/X]]) : tisclosed}, for all Vxg
and ¢ in ¥, and for all i € w;

8. IVX(@i(e DY) = A{Ti(lelt/X]| — |¥|) : tisclosed}, for all Ixg
and ¢ in Y, for all i € w.
Proof: (1) isstraightforward. (2) followsfrom the axiom BF,,,. Now the equalities

el > A\ ITI= Adel = 1vD. VITI = lol = A\ (7] = o)

yel yel

always hold in any Boolean algebra. Hence, (3) and (4) are specia cases of (2). As
to the first part of (5), suppose Vx¢ € . Itisclear that {|¢[t/X]| : tisclosed} isa
well-defined subset of A and |Vxg| isitslower bound. Suppose || is another lower
bound. Then, Fgr ¥ — ¢[t/X], for any t. Since ¢ and Vx¢ include only finite con-
stant symbols of C, there exists ¢ in C which does not occur in ¥ and Vxp. Now
there existsavariable y which does not occur in the derivation of ¥ — ¢[c/X]. Then,
Fer v — ¢[y/X] by Lemmal4_1] Hence, Fg¢ ¥ — Yxe which means || < |VXg|.
Hence,
A\ Uglt/X]| : tisclosed} = |Vxg| € A,

The second part is similar. (6) follows from BF. Since V¥ is saturated, Vx(O; (¢ D
@)) € W whenever Yxp € W, and VX(Oi (¢ D ¥)) € W whenever 3xg € A. Hence,
(7) and (8) are special cases of (6). O

Now we prove the completeness theorem of infinitary predicate multimodal logic.

Theorem 4.6  Aclosed formula ¢ of the language £ isa member of K, ® BF,,.
if and only if it isvalid in every Kripke model with constant domain.

Proof: An easy induction shows that if ¢ is derivable in LM, ® BF,,,, then it
isvalid in every Kripke mode with constant domain. We show the converse. By
Lemmal4.2] it is enough to show that if there exists no derivation of the language £/
of ¢, thenthere existsaKripke model with constant domain which refutes¢. Let & be
the set of all closed formulas of the closure of the set {¢}. By Lemmal4.3] W is count-
able and each formulain W contains only finite constant symbols of C. Let A bethe



336 YOSHIHITO TANAKA

modal algebra W/ ~ in Lemmal4.4] For each closed formulay € W of the shape Vxx
or Ixy, let [v] be the subset {| x[t/X]| : t isclosed} of A. Define two subsets ag and
Bo of P(A) by

ag = Po = {[¥] : ¥ € Wisof the shape Vxy or Ixx}.
Then define

1. a1:{|F|:/\Fe\IJ}andﬁl:{|1"|:\/Fe\IJ};
2. ao={{0j(y—> 2 :yeVY}.iew,ze A, Y e B1};
3 a1 ={{0iz—>x:xeX}licew,ze A, Xe Ugpax) (= 2).

Define Q = ({Xn}news {Yn}new) DY (Unew an, BoU B1). By Lemmallh] Q satisfies
the conditionsin Lemmal2.6]

Now we define a Kripke model (W, {R}icw, D, ) with constant domain which
refutesp. Let W = 75(A), R bethebinary relation in Proposition2.3lfor any i € w;
D bethe set of all closed termsin £'; and | be an interpretation defined by

1 Ig(t) =t,forany F € Wand closed term t;
2. (tg,...,th) € Ig(P) < |P(y,...,ty)| € F,forany F € W and any predi-
cate P of arity n.

Then, forany v € W and F € %o(A), v isvalidin F if and only if |y € F, by an
induction on . We only show the case where vy = O; x. Suppose |Dj x| € F. Then,
O071F ¢ Gimplies G k= x, since | x| € G. Hence, F |= O;x. Suppose |Dix| ¢ F.
Then, by Lemmal2.7] there exists G € %o (A) such that O7*F ¢ G and || ¢ G.
Hence, F = Oj x. Now, since|¢| # 1in A, thereexistsa Q-filter F suchthat |¢| € F,
by Proposition[2.5] Hence, ¢ isnot valid at F. O

It is known that the predicate extension of K plus BF is complete with respect to the
class of Kripke frames with constant domain. On the other hand, since BF,,, is not
derivablein LM,,,,, by Theorem[3.1] we have the following corollary.

Corollary 4.7 Thelogic K ., plus BF isincomplete with respect to the class of
Kripke frames with constant domain and the logic K, is Kripke incomplete.

5 Applications Let f; be a function which replaces all occurrences of O in a
monomodal formula with 0;, for each i € w. For any propositional monomaodal
logic L, we write L, ® BF,,,, for the logic axiomatized by the system consists of
LM,» ® BF,,,, and additional axiom schemata

{— filp):pel, icw}

In this section, we give a sufficient condition on L for the completeness theorem of
itsextension L, ® BF,,0-

A class C of (monomodal) Kripke framesis said to be elementary if there exists
aset W of first-order sentencesin R and = such that

C = {F: F satisfies ¥ as afirst-order structure}.

An elementary class C of monomodal Kripke frames is said to be universal if any
formulain Wisof theformVxq, ..., VXay. Let L beapropositional modal logic. We
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write C_ for theclass{F : F =L} of Kripkeframes. Then, L issaid to be elementary
(universal), if C_ is elementary (universal). For any class C of monomodal Kripke
frames, we write C* for its multimodal extension, namely,

C* = {(W, {Ri}iew) : Vi € ®((W, R) € O)}.

Let A be amoda algebra. An assignment v on A is afunction from the set of all
formulas of propositional modal logic to A which satisfies

1. v(p) € Afor any propositiona variable p;

2. v(p* 1Y) =v(p)*v(y) for any formulas ¢ and v, where x € {A, V};
3. v(—¢p) = —v(p) for any formula ¢;

4. v(dg) = Ou(e) for any formula ¢.

A formula ¢ of propositional modal logic issaid to bevalid in Aif v(¢) = 1 for any
assignment v on A, and alogic L issaidto bevalidin Aif every ¢ € L isvalidin A.
The following is the generalized compl eteness theorem.

Theorem 5.1 Let L be a propositional modal logic above K. Suppose C is a uni-
versal class of Kripke frames such that for any modal algebra A, if L isvalidin A
then (%(A), R) € C, where F <gG <= O 'F C Gfor any F and G in 7, (A).
Then, L, @ BF,,.» IS complete with respect to the class C* of Kripke frames.

Proof:  Suppose ¢ & L, @ BF,,,». Consider the Lindenbaum algebra A and take
Q asin the proof of Theorem[4.6] Since A validates f;(¢) for any ¢ € L, the frame
(% (A), Ri) isamember of C for any i € w. Hence, theframe (Fo(A), {Ri}ico) isa
member of C*, since any Q-filter isaprimefilter and C is universal. However, vy is
not valid in the frame ( 7o (A), {Rilicw)- O

Atriple F = (W, R, P) iscaled ageneral frameif (W, R) isaKripkeframeand Pis
asubalgebraof 2(W) in Proposition2.3] Piscalled thedual algebraof F and written
by F*. Let Abeamodal algebra. Itisknownthat thefunctionsn : A— P(F,(A)) de-
finedby  : x+— {F : x € F} isamonomorphism of modal algebras. Then the general
frame (%,(A), R, n[A]), where Risthe binary relation in Proposition 23] is called
the dual frame of A andwrittenby A, . A general frame F is said to be descriptive if
itisisomorphicto (F*)_. A propositional formula g issaid to be valid in a general
frame (W, R, P) if pisvalidinevery Kripkemodel (W, R, v) suchthat v(p) € P for
any propositional variable p. For any Kripke (general) frame F, we write F = ¢, if
pisvaidin F. A logicL issaidto bevalidin aKripke (generd) frame F if F = ¢
for any ¢ € L whichiswrittenas F = L. A logic L is said to be D-persistent if
(W, R, P) =L implies (W, R) =L for any descriptive frame (W, R, P).
The following properties are well known (see, e.g.,

Proposition 5.2 Let A be a modal algebra. For any formula ¢ of propositional
modal logic, ¢ isvalidin Aif and only if it isvalid in the dual frame A, .

Proposition 5.3 Let L be a D-persistent propositional modal logic. If L isvalid
inamodal algebra A, then (%,(A), R) = L.

Proposition 5.4  LetL bea D-persistent propositional modal logic. ThenL iscom-
plete with respect to the class C of Kripke frames.
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Then we have the following.

Theorem 5.5 Let L be a D-persistent and universal propositional modal logic.
Then L, ® BF,,,, is complete with respect to the class C_* of Kripke frames.

Proof: Let A be a moda algebra in which L is valid. Then L is vaid in the
Kripkeframe ( %,(A), R) by Proposition5.3] Hence, ( %,(A), R) € C__ and therefore
L w0 ® BF,,., is complete with respect to the class C, *, by Theorem[5.1] O

A propositional modal logic L aboveK iscalled asubframelogicif it ischaracterized
by aclass of general frames which are closed under subframes (for more information
see, e.g., [2, [26]). We also say that L has the finite embedding property if a Kripke
frame F validates L whenever each finite subframe validatesL . It is known that the
following conditions are equivalent for each propositional subframelogic L above K
(see [] for details).

1. L isuniversal and Kripke complete;
2. L isD-persistent;
3. L hasthe finite embedding property and is Kripke complete.

It is aso known that the following conditions are equivalent for each finitary propo-
sitional subframe logic L above K 4 (see [Z] for details).

1. L isuniversal;
2. L isD-persistent;
3. L hasthe finite embedding property.

Then we have the following as corollaries of Theorem[5.5]

Corollary 5.6  Quppose a propositional modal logic L above K isa subframelogic,
has the finite embedding property, and is Kripke complete. Then L, @ BF,,, is
complete with respect to the class C_ * of Kripke frames.

Corollary 5.7 Suppose a propositional modal logic L above K4 is a subframe
logic and has the finite embedding property. Then L, & BF,, is complete with re-
spect to the class C_ * of Kripke frames.

The following theorem is known as the Fine-van Benthem Theorem (see [25], [[Z],
aso [2]).

Theorem 5.8 If a propositional modal logic L above K is characterized by an el-
ementary class C of Kripke framesthen L is D-persistent.

From the Fine-van Benthem Theorem and Theorem [5.5] we have the following im-
mediately.

Theorem 5.9 If a propositional modal logic L above K is characterized by a uni-
versal class C. of Kripke frames, then L, ., ® Bf,,,, is complete with respect to the
class C_* of Kripke frames.

Conversely, Theorem [E9]limplies Theorem [5.5] as follows. Suppose L is a D-
persistent and universal propositional modal logic above K. By Proposition[5.4] L
is complete with respect to the class C, of Kripke frames. Hence, L is characterized
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by the universal class C of Kripke frames. Consequently, Theorem5.5land Theo-
rem[B.0hre equivalent.

The foregoing completeness proofs rely on the universality of the class C of
Kripke frames. On the other hand, for some propositional modal logic L, we canim-
mediately prove Kripke completeness of L, @ BF,,., With respect to the class C*
without assuming that C is universal. Let D be the formula—0O_L. It iswell known
that K @ D iscomplete with respect to the class C of serial frames. Now we show that
K w0 ® BFy,, ®D iscomplete with respect to the class C* of serial frames. Suppose
v & K, ®BF,, ®D. Let Abethe Lindenbaum algebra. Since A satisfies —00 = 1,
wehaveO0= 0. Let F beany Q-filter of A. Sinced0=0 ¢ F, thereexistsa Q-filter
Gsuchthat 0~1F ¢ Gand 0 ¢ G, by Lemmal2.7] Therefore, the frame (Fo(A), R)
belongsto C for any i € w. Then from Theorem E.1]we have the following.

Theorem 5.10 Thelogic K o, @ BF,,, @D is complete with respect to the class
of serial frames.

Now the following corollary follows immediately.

Corollary 5.11  Any infinitary predicate multimodal logic which is defined by
K w0 @ BFy, plus additional axiom schemata T, B, 4, 5, D, and their combinations
is complete with respect to the class of reflexive, symmetric, transitive, euclidean, se-
rial, and their combined frames, respectively.
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