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Abstract. We prove that a finite union of convex compacta in Rn may

be represented as the attractor of a hyperbolic IFS. If such a union is
the condensation set for some hyperbolic IFS with condensation, then its

attractor can be represented as the attractor of a standard hyperbolic IFS.

We illustrate this result with the hyperbolic IFS with condensation, whose
attractor is the well-known “The Pythagoras tree” fractal.

1. Introduction

The term fractal is usually associated with the attractor of a hyperbolic

Iterated Function System (see, e.g. [3]). The main ingredients of fractals are

self-similarity and fractal dimension.

M. Barnsley [3] has introduced the idea of an Iterated Function System

with condensation, which means a hyperbolic IFS, accompanied by a constant

compact-valued multi-function (condensation). This idea has led to new fractals

as attractors of IFS’s, mostly related to Cantor sets. However, the computer

simulations of such IFS’s create more problems than for hyperbolic IFS’s.

M. Hata [18] showed that every connected attractor of a hyperbolic IFS must

be locally connected. He asked whether there exists a locally connected compact

set, which is not attractor of any IFS.
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S. Crovisier and M. Rams [7] constructed a Cantor set in R3 with the property

that any homeomorphism of the ambient space, which preserves this compact

set, coincides with the identity map on it. Hence, this compact set can not serve

as attractor of any hyperbolic IFS.

E. D’Aniello [8], E. D’Aniello and T. H. Steele [9]–[11] studied attractors of

hyperbolic IFS and provided properties according to the nature of the generating

functions. In particular, compact subsets of X = [0, 1]n are found that are not

attractors for any system of weak contractions, and hence any hyperbolic system,

all these subsets being Cantor sets.

Other examples of non IFS-attractors were studied by T. Banakh and M. No-

wak [2], P.F. Duvall and L.S. Husch [12], M. Kulczycki and M. Nowak [20],

M. Kwieciński [21], M.J. Sanders [26], [27] and others.

In this connection some questions arise as, for example, the following:

(1) Which compacta can (or can not) serve as attractors of hyperbolic IFS’s?

(2) Given a compact set, which may be realized as the attractor of a hyper-

bolic IFS, what is the minimal possible number of contractions of such

an IFS?

(3) Under which conditions the attractor of a hyperbolic IFS with conden-

sation can be realized as the attractor of a standard hyperbolic IFS?

The second question seems to be related also to Borsuk’s conjecture [5].

In this paper we formulate some answers to these questions. Section 2 is

devoted to some preliminaries from Convex Analysis. In Section 3 we show that

given a finite union of convex compacta in Rn there exists a hyperbolic IFS,

whose attractor is exactly this compact set. An algorithm for the construction

of convex compact sets in R2, using the Random Iterative Algorithm (see [3]),

called also Chaos Game, was described in [17]. As a result, in Section 4 we show

that for any IFS with condensation in Rn, whose condensation set is a finite

union of convex compacta, there exists a standard hyperbolic IFS with the same

attractor. In Section 5 we apply the previous results to a hyperbolic IFS with

condensation, whose attractor is the well-known fractal The Pythagoras tree. As

a consequence, we construct the Pythagoras tree by the CAS Mathematica, using

only five contractions. In Section 6 we formulate some open questions.

2. Preliminaries

In this paper we will consider the Euclidean space X = Rn. For any x, y ∈ X,

[x, y] = {(1 − λ)x + λy | λ ∈ [0, 1]} denotes the segment joining x to y. A set

C ⊂ X is called convex set, if for any x, y ∈ C, [x, y] ⊂ C.

Let K be a convex compact set in X. Recall that the metric projection onto

K is the mapping PrK : X → K, PrK(x) = y, where y ∈ K is the unique point

such that ‖x− y‖ = min{‖x− z‖ | z ∈ K}.
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Lemma 2.1. Let K be a convex compact set in X. The metric projection PrK
is nonexpansive, i.e. for any x, y ∈ X one has ‖PrK(x)− PrK(y)‖ ≤ ‖x− y‖.

Proof. Given x, y ∈ X let denote PrK(x) = s and PrK(y) = t. The cases

x = s, y = t and s = t are obvious.

x

s t

y

Figure 1. The angles x̂st and ŷts are obtuse or right.

Consider a 3-dimensional subspace in X, which contains the points x, y, s

and t. Let draw two planes, which are perpendicular to the segment [s, t] at its

ends. The angles x̂st and ŷts are obtuse or right (see Figure 1), otherwise it

would be another point on the interval (s, t) ⊂ K, which is closer to x or y than

s or t respectively, contradiction. Thus, ‖s− t‖ ≤ ‖x− y‖. �

Recall that a mapping f : X → X is called a contraction, if there exists

λ ∈ [0, 1) such that for any x, y ∈ X one has ‖f(x)− f(y)‖ ≤ λ‖x− y‖. Denote

by B(x, r) the open ball of radius r centered by x and by B(x, r) its closure.

Recall some notions from Convex Analysis (see, e.g. [25]). The affine hull

affC of a set C ⊂ X is the smallest affine set containing C, i.e. the set of all

affine combinations of elements of C,

affC =

{ m∑
i=1

λixi

∣∣∣∣ xi ∈ C, λi ∈ R, i = 1, . . . ,m;

m∑
i=1

λi = 1; m ∈ N∗
}
.

Obviously, C ⊂ affC.

The relative interior of a convex set C ⊂ X, denoted by ri C, is defined as

its interior within the affine hull of C, i.e.

ri C =
{
x ∈ affC | ∃ r > 0 such that

(
B(x, r) ∩ affC

)
⊂ C

}
.

The following result is a direct consequence of Theorem 6.2 [25].

Theorem 2.2 ([25]). For any convex set C in Rn, containing at least two

points, the relative interior ri C is nonempty, i.e. there exist a point x ∈ C and

a ball B(x, r) such that
(
B(x, r) ∩ aff C

)
⊂ C.

Remark 2.3. We consider in this paper only the Euclidian space Rn, since

Theorem 2.2 is no longer true for convex sets in infinite-dimensional spaces. For

example, the Hilbert cube, defined as the Cartesian product of the intervals
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[0, 1/n] for n ∈ N∗, or as the set of all sequences (xn)n∈N∗ in the Hilbert space l2
such that 0 ≤ xn ≤ 1/n (n ∈ N∗), is a convex compact set C in l2 and aff C = l2.

However, the Hilbert cube does not contain any ball in l2.

3. Convex compacta as attractors of hyperbolic IFS’s

Let X = Rn. Denote by Pcp(X) the space of all nonempty compact subsets

of X, endowed with the Pompeiu–Hausdorff metrics.

An Iterated Function System (IFS) {X; f1, . . . , fm} is defined as a collection

of pairwise distinct continuous functions fi : X → X (1 ≤ i ≤ m). If all functions

fi are contractions, one speaks about a hyperbolic IFS.

Given an IFS {X; f1, . . . , fm} let consider its Barnsley–Hutchinson operator

F∗ : Pcp(X) → Pcp(X), defined by F∗(C) =
m⋃
i=1

fi[C], where fi[C] =
⋃
x∈C

fi(x),

for any C ∈ Pcp(X) (see e.g. [3], [19]).

Remark 3.1. It is worth noting that multivalued contractions sometimes

are called also Nadler contractions (see e.g. [4], [16]), since S.B. Nadler [24] was

the first who studied these mappings.

There are various definitions of attractor. In ordinary dynamics (e.g. itera-

tions of mappings) by an attractor one usually means an invariant set, which is

dynamically indivisible and whose basin – the set of attracted points – is a large

set. The basin must contain a neighbourhood of the attractor. At the same

time, set-valued multi-functions need not be continuous or even semicontinuous,

so for the basin to contain a neighbourhood is not an adequate demand.

In the case of compact spaces in [1] (see also [22]) the following definition

has been proposed: A is an attractor, if it is invariant and there exists a closed

neighborhood V of A such that
⋂
n≥0

fn[V ] is contained in A.

In [23] the invariance f [A] = A is relaxed up to the condition f [A] ⊃ A with

the assumption that A attracts any bounded subset of a neighbourhood of A.

In this context we will say that a compact set A ∈ Pcp(X) is attractor for an

IFS with the Barnsley–Hutchinson operator F∗, if:

• F∗(A) ⊃ A;

• there is a closed neighbourhood V δ = {x ∈ X | ∃ y ∈ A, ‖x − y‖ ≤ δ}
of A such that

⋂
n≥0

Fn∗ (V δ) ⊂ A.

Both inclusions are, in fact, equalities (see [15]).

Theorem 3.2 ([19]). Any hyperbolic IFS {X; f1, . . . , fm} has a nonempty

compact attractor A and this attractor is the unique fixed point of the corre-

sponding Barnsley-Hutchinson operator F∗, i.e. F∗(A) =
m⋃
i=1

fi[A] = A.
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Theorem 3.3. Any convex compact set in Rn can be represented as the

attractor of a hyperbolic IFS.

Proof. Let K be a convex compact set in Rn. If K consists of at least

two points, then by Theorem 2.2 there exist an affine subspace L = affK ⊂ Rn,

a point x0 ∈ K and a ball B(x0, r) such that
(
B(x0, r) ∩ L

)
⊂ K ⊂ L.

Fix % ∈ (0, r) and denote λ = %/r ∈ (0, 1). Let PrL : Rn → L be the

orthogonal projection onto the subspace L, let g1 : Rn → B(x0, r) be the metric

projection onto the ball B(x0, r), and let g2 : Rn → Rn, g2(x) = λx+ (1− λ)x0,

be the similitude with ratio λ and center x0.

Define the mapping f : Rn → Rn by f = g2 ◦ g1 ◦ PrL. Due to the structure

of f we have

f [Rn] = f [B(x0, r) ∩ L] = g2[B(x0, r) ∩ L] = B(x0, %) ∩ L ⊂ K.

It is easy to check that f is a λ-contraction.

Consider the covering
⋃
x∈K

B(x, %) of the compact set K by open balls of

radius %. Among these balls there exists a finite subcovering
p⋃
i=1

B(xi, %) of K.

Fix the centers of balls x1, . . . , xp ∈ K.

Define the mappings ϕi : Rn → K (1 ≤ i ≤ p) by

(3.1) ϕi = PrK ◦ Ti ◦ f,

where Ti : Rn → Rn, Ti(x) = x + (xi − x0), is the translation by the vector

(xi − x0) ∈ K, and PrK : Rn → K is the metric projection onto the convex

compact set K. Since f is a contraction, by Lemma 2.1 all mappings ϕi (1 ≤
i ≤ p) are contractions as well.

We claim that the hyperbolic IFS {Rn;ϕ1, . . . , ϕp} has K as attractor. It is

sufficient to show that for the corresponding Barnsley–Hutchinson operator F∗
we have

(3.2) F∗(K) =

p⋃
i=1

ϕi[K] = K.

Indeed, by construction
p⋃
i=1

ϕi[K] ⊂ K.

Conversely, assume x ∈ K. There exists i such that x ∈
(
B(xi, %) ∩ L

)
. It

follows that there exists y = T−1i (x) ∈
(
B(x0, %) ∩ L

)
. Denote

z = g−12 (y) =
1

λ
y +

λ− 1

λ
x0 ∈

(
B(x0, r) ∩ L

)
⊂ K.

As a result, ϕi(z) = x. It implies that K ⊂
p⋃
i=1

ϕi[K].
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Note that, due to the structure of ϕi (use of the metric projection PrK), for

any compact set V such that K ⊂ V one has

(3.3)

p⋃
i=1

ϕi[V ] =

p⋃
i=1

ϕi[K] = K.

By Theorem 3.2 the compact set K, which verifies (3.2), is the attractor of the

IFS {Rn;ϕ1, . . . , ϕp}. �

Remark 3.4. The proof of Theorem 3.3 shows that, given a convex compact

set K, the value of the radius r of the ball from Theorem 2.2 can affect the

number of contractions in the required IFS: a possible increase of r and an

optimization of the covering of the compact set K may decrease the number of

required contractions.

Theorem 3.5. A finite union of convex compacta in Rn can be represented

as attractor of a hyperbolic IFS.

Proof. Let the compact set K = K1 ∪ . . .∪Km be a finite union of convex

compacta Ki (1 ≤ i ≤ m). By Theorem 3.3 for each convex compact set Ki

(1 ≤ i ≤ m) there exist contractions ϕij : Rn → Ki (1 ≤ j ≤ pi), which have by

analogy to (3.1) the structure ϕij = PrKi
◦ Tij ◦ fi, where PrKi

: Rn → Ki is the

metric projection onto the convex compact set Ki. As a result,
pi⋃
j=1

ϕij [Ki] = Ki.

Due to the structure of contractions ϕij (use of the metric projections PrKi
),

for any i (1 ≤ i ≤ m) and any compact set V such that Ki ⊂ V , by analogy

to (3.3) it follows that

(3.4)

pi⋃
j=1

ϕij [V ] =

pi⋃
j=1

ϕij [Ki] = Ki.

Consider the hyperbolic IFS, consisting of all these contractions

{Rn;ϕ11, . . . , ϕ1p1 , ϕ21, . . . , ϕ2p2 , . . . , ϕm1, . . . , ϕmpm}. Let F∗ be the correspon-

ding Barnsley–Hutchinson operator. We claim that

m⋃
i=1

pi⋃
j=1

ϕij [K] = K.

Indeed, since Ki ⊂ K for any i (1 ≤ i ≤ m), using (3.4) we obtain

F∗(K) =

m⋃
i=1

pi⋃
j=1

ϕij [K] =

m⋃
i=1

( pi⋃
j=1

ϕij [K]

)
=

m⋃
i=1

Ki = K.

Therefore, K is the attractor of this IFS. �

Remark 3.6. Note that each contraction ϕij : Rn → Ki mentioned in the

proof of Theorem 3.5 has the property: ϕij [Rn] ⊂ Ki ⊂ K.
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4. Attractors of IFS’s with condensation

A constant compact-valued multi-function f0 : X → Pcp(X), f0(x) ≡ K for

some K ∈ Pcp(X) and any x ∈ X, is called [3] a condensation with the com-

pact set K as condensation set. A condensation is a super-contraction with the

contractivity factor equal to 0. A hyperbolic Iterated Function System with Con-

densation (IFSC) {X; f0, . . . , fm} consists of a condensation f0 and contractions

f1, . . . , fm.

M. Barnsley [3] has obtained a formula for the attractor of a hyperbolic

IFS with condensation. Namely, let {X; f1, . . . , fm} be a hyperbolic IFS with

attractor A, and with F∗ as the corresponding Barnsley–Hutchinson operator.

Let f0 be a condensation with K ∈ Pcp(X) as its image. In this case the attractor

Ac of the IFS with condensation {X; f0, . . . , fm} is described as

(4.1) Ac = A ∪
( ⋃
n≥0

Fn∗ (K)

)
, where F 0

∗ (K) = K.

Theorem 4.1. For any hyperbolic IFS with condensation in Rn, whose con-

densation set is a finite union of convex compacta, there exists a standard hy-

perbolic IFS with the same attractor.

Proof. Let {Rn; f0, . . . , fm} be a hyperbolic IFSC with the condensation

f0 and let the condensation set K be a finite union of convex compacta. Denote

by Ac its attractor.

For the hyperbolic IFS {Rn; f1, . . . , fm} denote by F∗ its Barnsley–Hutchin-

son operator and by A its attractor, i.e. F∗(A) = A. Hence, the attractor Ac is

given by (4.1).

By Theorem 3.5 there exists a hyperbolic IFS {Rn;ϕ1, . . . , ϕp}, having K as

attractor. According to Remark 3.6, we can choose the contractions of this IFS

such that ϕi[Rn] ⊂ K (1 ≤ i ≤ p). Let Φ∗ be the Barnsley–Hutchinson operator

of this hyperbolic IFS. Hence,

(4.2) Φ∗(K) = K and Φ∗(M) ⊂ K for any M ∈ Pcp(Rn).

We claim that the hyperbolic IFS {Rn; f1, . . . , fm, ϕ1, . . . , ϕp} and the IFSC

{Rn; f0, . . . , fm} have the same attractor Ac. It is sufficient to show that

(F∗ ∪ Φ∗)[Ac] = F∗[Ac] ∪ Φ∗[Ac] =

( m⋃
i=1

fi[Ac]

)
∪
( p⋃
j=1

ϕj [Ac]

)
= Ac.

From (4.1) and (4.2) we have

(F∗ ∪ Φ∗)[Ac] = F∗[Ac] ∪ Φ∗[Ac]

=

(
F∗(A) ∪

( ⋃
n≥0

Fn+1
∗ (K)

))
∪ Φ∗

(
A ∪K ∪

( ⋃
n≥1

Fn∗ (K)

))
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=

(
A ∪

( ⋃
n≥1

Fn∗ (K)

))
∪ Φ∗(K) ∪ Φ∗

(
A ∪

( ⋃
n≥1

Fn∗ (K)

))

=

(
A ∪

( ⋃
n≥1

Fn∗ (K)

))
∪K =

(
A ∪

( ⋃
n≥0

Fn∗ (K)

))
= Ac.

Hence, the IFS {Rn; f1, . . . , fm, ϕ1, . . . , ϕp} and the IFSC {Rn; f0, . . . , fm} have

the same attractor Ac. �

Theorem 4.2. Let a convex compact set K in Rn be the attractor of a hy-

perbolic IFS, consisting of p contractions. Let K be also the condensation set for

a hyperbolic IFSC, consisting of a condensation and m contractions. Then the

attractor of this IFSC can be represented as the attractor of a standard hyperbolic

IFS, consisting of at most m+ p contractions.

Proof. Instead of contractions of the given hyperbolic IFS consider their

compositions with the metric projection onto the convex compact set K. By

analogy with Theorems 3.3 and 4.1 we show that the new hyperbolic IFS, con-

sisting of all these (m+ p) contractions, has K as attractor. �

Remark 4.3. Theorem 4.2 gives an algorithm to construct attractors of such

hyperbolic IFS’s with condensation, using the Random Iterative Algorithm.

Remark 4.4. In general case, given a hyperbolic IFS with condensation, if we

substitute the constant compact-valued multi-function with some contractions,

which generate the condensation set as attractor, then the attractor of the new

“extended” hyperbolic IFS does not necessarily coincide with the attractor of

the given IFS with condensation.

Example 4.5. Consider the IFS with condensation
{
R2; f0, f1

}
, where f0 is

the condensation and f1 is the similitude with ratio 1/2 and the center in (0, 1)

as follows:

f0 : (x, y) 7→ K = [0, 1]× {0}, f1 : (x, y) 7→
(
x

2
,

1 + y

2

)
.

The attractor of this IFS with condensation is the set of parallel segments

A =

+∞⋃
n=0

(
[0, 2−n]× {1− 2−n}

)⋃
{(0, 1)}

(see Figure 2 (left)). The condensation set K = [0, 1]× {0} is a convex compact

set, which can be represented as the attractor of the hyperbolic IFS {R2;ϕ1, ϕ2},
where

ϕ1 : (x, y) 7→
(x

2
,
y

2

)
, ϕ2 : (x, y) 7→

(
1 + x

2
,
y

2

)
.

The new “extended” IFS
{
R2;ϕ1, ϕ2, f1

}
consists of three similitudes with ratio

1/2 and the centers in (0, 0),(1, 0) and (0, 1), respectively. It is known [3] that its
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Figure 2. Attractors.

attractor is the Sierpiński triangle (see Figure 2 (right)). Hence, the attractor of

this “extended” IFS does not coincide with the attractor of the given IFS with

condensation.

On the other hand, we can represent K as well as the attractor of another

hyperbolic IFS
{
R2;ψ1, ψ2

}
, where

ψ1 : (x, y) 7→
(
x

2
, 0

)
, ψ2 : (x, y) 7→

(
1 + x

2
, 0

)
.

It is easy to check that ψ1[A]∪ψ2[A]∪f1[A] = A. Thus, the new “extended” IFS{
R2;ψ1, ψ2, f1

}
has the same attractor A as the given IFS with condensation.

5. The Pythagoras tree

We illustrate Theorem 4.1 with a hyperbolic IFS with condensation, whose

attractor is the Pythagoras tree. The well-known fractal called The Pythagoras

tree is a plane fractal, which was invented by the Dutch mathematics teacher

Albert E. Bosman in 1942. This fractal, constructed from squares, can be repre-

sented as the attractor of an Iterated Function System with condensation. Given

a right triangle, this IFS is determined by a constant compact-valued mapping

with the “hypotenuse’s square” as condensation set, together with two affine

contractions, which map this square onto the other two squares related to the

given right triangle. The shape of fractal depends on the shape of this triangle.

Example 5.1. Figure 3 (left) represents the classical Pythagoras tree, which

was created manually by A.E. Bosman [6]. Figure 3 (right) represents the

Pythagoras tree, obtained by computer simulation as the attractor of the IFS

with condensation {R2; f0, f1, f2}, consisting of the condensation f0 and two

contractions f1, f2 as follows:

f0 : (x, y) 7→ K = [−0.5, 0.5]× [0, 1];

f1 : (x, y) 7→ (0.64x− 0.48y − 0.18, 0.48x+ 0.64y + 1.24);

f2 : (x, y) 7→ (0.36x+ 0.48y + 0.32,−0.48x+ 0.36y + 1.24).
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Figure 3. Pythagoras trees.

It is known [3] that any square can be represented as the attractor of a hyper-

bolic IFS, consisting of four affine contractions (e.g. four similitudes with ratio

1/2 and centers in the vertices of the square).

According to Theorem 4.2 one can construct the Pythagoras tree as the at-

tractor of a hyperbolic IFS, consisting of six contractions. In fact, the Pythagoras

tree can be constructed using a smaller number of contractions.

Figure 4. Covering of square with three smaller squares.

It is known (see e.g. [13]) that a square can not be covered with two smaller

squares. In Figure 4 it is shown that a square can be covered with three smaller

squares (see also [13]).

Theorem 5.2. A square can be obtained as attractor of a hyperbolic IFS,

consisting of three contractions.

Proof. The given square can be covered with three smaller squares. Take

three affine contractions such that each of them maps the basic square to one

of these small squares. Afterwards, take the composition of each of these three

contractions with the metric projection onto the basic square. By Theorem 3.2

the attractor of the hyperbolic IFS, consisting of these three new contractions,

coincides with the given square. �

Theorem 5.3. The Pythagoras tree can be obtained as the attractor of a hy-

perbolic IFS, consisting of at most five contractions.

Proof. It follows from Theorems 4.2 and 5.2. �
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Remark 5.4. The Pythagoras tree from Figure 3 (right) is constructed as

the attractor of a hyperbolic IFS, which consists of five contractions, using the

Random Iterative Algorithm. Another application of the Random Iterative Al-

gorithm to construct the Pythagoras tree was described in [14].

6. Open questions

In this context some questions arise and may be of independent interest:

(1) Is it possible to obtain the Pythagoras tree as attractor with only four

contractions?

(2) Is it true that any image of a square, generated by a contraction, can be

covered with a smaller square?

(3) Is it true that a square can be covered with the union of its two images,

generated by two contractions?

All numerical calculations and graphic objects have been done using the

Computer Algebra System Mathematica.
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[14] L. Gadomski, V. Glavan and V. Guţu, Playing Chaos game on the Pythagoras tree

with CAS Mathematica, Computer Algebra Systems in Teaching and Research. Differen-

tial Equations, Dynamical Systems and Celestial Mechanics (L. Gadomski et al., eds.),

Wydawnictwo Collegium Mazovia, Siedlce, 2011, 38–45.
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