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Abstract. In a real Hilbert space H we consider the following perturbed
Cauchy problem

(Pεδ)

{
ε u′′εδ(t) + δ u′εδ(t) +Auεδ(t) +B(uεδ(t)) = f(t), t ∈ (0, T ),

uεδ(0) = u0, u′εδ(0) = u1,

where u0, u1 ∈ H, f : [0, T ] 7→ H and ε, δ are two small parameters, A

is a linear self-adjoint operator, B is a locally Lipschitz and monotone

operator. We study the behavior of solutions uεδ to the problem (Pεδ) in
two different cases:

(i) when ε→ 0 and δ ≥ δ0 > 0;

(ii) when ε→ 0 and δ → 0.

We obtain some a priori estimates of solutions to the perturbed problem,

which are uniform with respect to parameters, and a relationship between

solutions to both problems. We establish that the solution to the unper-
turbed problem has a singular behavior, relative to the parameters, in the

neighborhood of t = 0. We show the boundary layer and boundary layer
function in both cases.
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1. Introduction

Let H and V be two real Hilbert spaces endowed with norms | · | and || · ||,
respectively. Denote by ( · , · ) the scalar product in H. The framework of our

studying will be determined by the following conditions:

(H) V ⊂ H densely and continuously, i.e.

||u|| ≥ ω0 |u|, for all u ∈ V, ω0 > 0.

(HA) A : D(A) = V 7→ H is a linear, self-adjoint and positive definite operator,

i.e.

(Au, u) ≥ ω |u|2, for all u ∈ V, ω > 0.

(HB1) Operator B : D(B) ⊆ H → H is A1/2 locally Lipschitz, i. e. D(A1/2) ⊂
D(B) and, for every R > 0, there exists L(R) ≥ 0 such that

|B(u1)−B(u2)| ≤ L(R)|A1/2(u1 − u2)|, for all ui ∈ D(A1/2),

|A1/2ui| ≤ R, for i = 1, 2;

(HB2) Operator B is the Fréchet derivative of some convex and positive func-

tional B with D(A1/2) ⊂ D(B).

(HB3) Operator B possesses the Fréchet derivative B′ in D(A1/2) and there

exists constant L1(R) ≥ 0 such that∣∣(B′(u1)−B′(u2)
)
v
∣∣ ≤ L1(R)

∣∣A1/2(u1 − u2)
∣∣ |A1/2v|,

for all u1, u2, v ∈ D(A1/2),

|A1/2ui| ≤ R, for i = 1, 2.

The hypothesis (HB2) implies, in particular, that operator B is monotone and

verifies condition

d

dt
B(u(t)) =

(
B(u(t)), u′(t)

)
, for all t ∈ [a, b] ⊂ R

in the case when u ∈ C([a, b], D(A1/2)) ∩ C1([a, b], H) (see, for example [15]).

Consider the following perturbed Cauchy problem

(Pεδ)

ε u′′εδ(t) + δ u′εδ(t) +Auεδ(t) +B(uεδ(t)) = f(t), t ∈ (0, T ),

uεδ(0) = u0, u′εδ(0) = u1,

where u0, u1 ∈ H, f : [0, T ] 7→ H and ε, δ are two small parameters.

We study the behavior of solutions uεδ to the problem (Pεδ) in two different

cases:

(i) ε→ 0 and δ ≥ δ0 > 0, relative to the following unperturbed system:

(Pδ)

δl′δ(t) +Alδ(t) +B(lδ(t)) = f(t), t ∈ (0, T ),

lδ(0) = u0,
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(ii) ε→ 0 and δ → 0, relative to the following unperturbed problem:

(P0) Av(t) +B(v(t)) = f(t), t ∈ [0, T ).

The problem (Pεδ) is the abstract model of singularly perturbed problems

of hyperbolic-parabolic type in the case (i) and of hyperbolic-parabolic-elliptic

type in the case (ii). Such kind of problems arises in the mathematical modeling

of elasto-plasticity phenomena and abstract results can be applied to singularly

perturbed problems of hyperbolic-parabolic-elliptic type with stationary part

defined by strongly elliptic operators.

For example in [3], the equation

ρvtt + γvt = σ∆v

is considered (where ρ, γ, σ are the mass density per unit area of the mem-

brane, the coefficient of viscosity of the medium, and the tension of the mem-

brane, respectively), which characterizes the vibration of a membrane in a viscous

medium, which can be rewritten as

ε2utt + ut = ∆u, with ε = (ρσ)1/2/γ.

In the case when the medium is highly viscous (γ � 1), or the density ρ is

very small, we have ε → 0 and the formal “limit” of this equation will be the

following first order equation

ut = ∆u.

Without pretending to a complete analysis, let us mention some works dedicated

to the study of singularly perturbed Cauchy problems for linear or nonlinear

differential equations of second order of type (Pεδ). The case when δ = 1 was

widely studied by various mathematicians (see, e.g. [4], [5], [8], [10] and the

bibliography therein). In [6] the asymptotic behavior of solutions to singular

perturbation problems for second order equations, as ε→ 0 and δ → 0, is studied.

In [13] the linear case is considered. In [2], [14], [16], some numerical results about

singular behavior of solutions to the problem (Pεδ) for some ordinary differential

equations and their applicability in modeling of different physical and engineering

processes are presented.

In what follows we need some notations. For k ∈ N?, 1 ≤ p ≤ +∞, (a, b) ⊂
(−∞,+∞) and Banach space X we denote by W k,p(a, b;X) the Banach space

of all vectorial distributions u ∈ D′(a, b;X), u(j) ∈ Lp(a, b;X), j = 0, 1, . . . , k,

endowed with the norm

‖u‖Wk,p(a,b;X) =


( k∑
j=0

‖u(j)‖pLp(a,b;X)

)1/p

, p ∈ [1,∞),

max
0≤j≤k

∥∥u(j)
∥∥
L∞(a,b;X)

, p =∞.
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If p = 2, and X is a Hilbert space, then W k,2(a, b;X) is also a Hilbert space

with the inner product

(u, v)Hk(a,b;X) =

k∑
j=0

b∫
a

(
u(j)(t), v(j)(t)

)
X
dt.

For s ∈ R, k ∈ N and p ∈ [1,∞], we define the Banach space

W k,p
s (a, b;X) =

{
f : (a, b)→ H | f (l)( · )e−st ∈ Lp(a, b;X), l = 0, . . . , k

}
,

with the norm ‖f‖Wk,p
s (a,b;X) = ‖fe−st‖Wk,p(a,b;X).

2. Existence of solutions to the problems (Pεδ) and (Pδ)

Definition 2.1. Let T > 0 and f ∈ L2(0, T ;H), A : D(A) ⊆ H → H,

B : D(B) ⊆ H → H. The function u ∈ L2(0, T ;D(A) ∩ D(B)) with u′ ∈
L2(0, T ;H) and u′′ ∈ L2(0, T ;H) is called strong solution to the Cauchy problem

u′′(t) + u′(t) +Au(t) +B(u(t)) = f(t), for all t ∈ (0, T ),(2.1)

u(0) = u0, u′(0) = u1,(2.2)

if u satisfies the equality (2.1) in the sense of distributions almost every t ∈ (0, T )

and the initial conditions (2.2) .

Definition 2.2. Let T > 0 and f ∈ L2(0, T ;H), A : D(A) ⊆ H → H,

B : D(B) ⊆ H → H. The function l ∈ L2(0, T ;D(A) ∩ D(B)) with l′ ∈
L2(0, T ;H) is called strong solution to the Cauchy problem

l′(t) +Al(t) +B(l(t)) = f(t), for all t ∈ (0, T ),(2.3)

l(0) = u0,(2.4)

if v verifies the equality (2.3) in the sense of distributions almost every t ∈ (0, T )

and the initial condition (2.4).

Based on the methods from [1], in [11] the following two theorems were

established.

Theorem 2.3. Let T > 0. Let us assume that condition(H) is fulfilled,

the operator A : D(A) ⊂ H → H satisfies condition HA) and the operator

B : D(B) ⊂ H → H satisfies conditions (HB1), (HB2). If u0 ∈ D(A), u1 ∈
D(A1/2) and f ∈ W 1,1(0, T ;H), then there exists a unique strong solution to

problem (2.1), (2.2), such that u ∈ C 2([0, T ];H), A1/2u ∈ C1([0, T ];H), Au ∈
C([0, T ];H). If, in addition, u1 ∈ D(A), f(0) − B(u0) − Au0 − u1 ∈ D(A1/2),

f ∈W 2,1(0, T ;H) and condition (HB3) is fulfilled, then A1/2u ∈W 2,∞(0, T ;H)

and u ∈W 3,∞(0, T ;H).
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Theorem 2.4. Let T > 0 and assume that condition (H) is fulfilled, the op-

erator A : D(A) ⊂ H → H satisfies condition (HA) and the operator B : D(B) ⊂
H → H satisfies conditions (HB1), (HB2). If u0 ∈ D(A) and f ∈W 1,1(0, T ;H),

then there exists a unique strong solution to the problem (2.3), (2.4), such that

l ∈ C1([0, T ];H), Al ∈ C([0, T ];H). For this solution the following estimates

‖l‖C([0, t];H) + ||A1/2l||L2(0,t;H) ≤CM0(t), for all t ∈ [0, T ],∥∥A1/2l
∥∥
C([0, t];H)

+ ||l′||C([0,t];H) +
∥∥A1/2l′

∥∥
L2(0,t;H)

(2.5)

≤C(ω)M1(t), for all t ∈ [0, T ],

are valid, where

M0(t) =
∣∣u0

∣∣+

∫ t

0

(
|f(s)|+ |B(0)|

)
ds,

M1(t) =
∣∣Au0

∣∣+ ‖f‖W 1,1(0,t;H) + |B(0)|+ |f(0)|.

The problems (Pεδ) and (Pδ) can be rewritten as follows:

(Pµ)

µU ′′µ (s) + U ′µ(s) +AUµ(s) +B(Uµ(s)) = F (s),&s ∈ (0, T/δ),

Uµ(0) = u0, U ′µ(0) = δu1,

and

(P0)

L′(s) +AL(s) +B(L(s)) = F (s), s ∈ (0, T/δ),

L(0) = u0,

where Uµ(s) = uεδ(δ s), L(s) = lδ(sδ), F (s) = f(sδ) and µ = ε/δ2. Using results

obtained in the paper [11] we get the following a priori estimates for solutions

to the problem (Pµ).

Lemma 2.5. Let S > 0. Let us assume that condition (H) is fulfilled, the

operator A : D(A) ⊂ H → H satisfies condition (HA) and the operator B verifies

conditions (HB1), (HB2). If u0 ∈ D(A), u1 ∈ D(A1/2) and F ∈W 1,1(0,∞;H),

then there exists the constant C(ω0, ω) > 0 such that for every strong solution

Uµ to the problem (Pµ) the following estimate holds:∥∥A1/2Uµ
∥∥
C([0, s];H)

+ ||U ′µ||L2(0, s;H) +
(
B(Uµ(s)

)1/2 ≤M2,

for all µ ∈ (0, 1] and for all s ∈ [0, S],

µ‖U ′′µ‖C([0,s];H) + ‖U ′µ‖C([0,s];H) +
∥∥A1/2U ′µ

∥∥
L2(0,s;H)

≤ Ce12L2(M2)sM3,

for all µ ∈ (0, 1] and for all s ∈ [0, S],

‖AUµ‖C([0,s];H) ≤ CM4e
(6L2(M2)+1)s,
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for all µ ∈ (0, 1/2] and for all s ∈ [0, S], where

M2 = |A1/2u0|+ |u1|+ |B(u0)|1/2 + ‖F‖W 1,1(0,∞;H),

M3 = |Au0|+ |A1/2u1|+ |B(u0)|+ |B(u0)|1/2 + ‖F‖W 1,1(0,∞;H),

M4 = (L(M2) + 1)M1.

3. Relationship between solutions to the problems (Pεδ) and (Pδ)

in the linear case

In what follows, for all µ > 0, denote by

K(s, τ, µ) =
1

2
√
πµ

(
K1(s, τ, µ) + 3K2(s, τ, µ)− 2K3(s, τ, µ)

)
,

where

K1(s, τ, µ) = exp

{
3s− 2τ

4µ

}
λ

(
2s− τ
2
√
µs

)
,

K2(s, τ, µ) = exp

{
3s+ 6τ

4µ

}
λ

(
2s+ τ

2
√
µs

)
,

K3(s, τ, µ) = exp

{
τ

µ

}
λ

(
s+ τ

2
√
µs

)
, λ(s) =

∫ ∞
s

e−η
2

dη.

The properties of kernel K(t, τ, ε) are collected in the following lemma.

Lemma 3.1 ([9]). The function K(t, τ, ε) possesses the following properties:

(a) K ∈ C([0,∞)× [0,∞)) ∩ C2((0,∞)× (0,∞));

(b) Kt(t, τ, ε) = εKττ (t, τ, ε)−Kτ (t, τ, ε), for all t > 0 and all τ > 0;

(c) εKτ (t, 0, ε)−K(t, 0, ε) = 0, for all t ≥ 0;

(d) For all τ ≥ 0

K(0, τ, ε) =
1

2ε
exp

{
− τ

2ε

}
;

(e) For every t > 0 fixed and every q, s ∈ N there exist constants C1(q, s, t, ε)

> 0 and C2(q, s, t) > 0 such that∣∣∂st ∂qτK(t, τ, ε)
∣∣ ≤ C1(q, s, t, ε) exp{−C2(q, s, t)τ/ε}, for all τ > 0;

Moreover, for γ ∈ R there exist C1, C2 and ε0, all of them positive and

depending on γ, such that the following estimates are fulfilled :∫ ∞
0

eγ τ
∣∣Kt(t, τ, ε)

∣∣ dτ ≤ C1 ε
−1 eC2t, for all ε ∈ (0, ε0], for all t ≥ 0,∫ ∞

0

eγ τ
∣∣Kτ (t, τ, ε)

∣∣ dτ ≤ C1 ε
−1 eC2t, for all ε ∈ (0, ε0], for all t ≥ 0,∫ ∞

0

eγ τ
∣∣Kτ τ (t, τ, ε)

∣∣ dτ ≤ C1 ε
−2 eC2t, for all ε ∈ (0, ε0], for all t ≥ 0;

(f) K(t, τ, ε) > 0, for all t ≥ 0 and for all τ ≥ 0;
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(g) For every continuous function ϕ : [0,∞) → H with |ϕ(t)| ≤ M exp{γ t}
the following equality is true:

lim
t→0

∣∣∣∣ ∫ ∞
0

K(t, τ, ε)ϕ(τ) dτ −
∫ ∞

0

e−τϕ(2ετ) dτ

∣∣∣∣ = 0,

for every ε ∈
(
0, (2 γ)−1

)
;

(h)

∫ ∞
0

K(t, τ, ε)dτ = 1, for all t ≥ 0,

(i) Let γ > 0 and q ∈ [0, 1]. There exist C1, C2 and ε0 all of them positive

and depending on γ and q, such that the following estimates are fulfilled :∫ ∞
0

K(t, τ, ε) eγτ |t− τ |q dτ ≤ C1 e
C2t εq/2,

for all ε ∈ (0, ε0], and for allt > 0. If γ ≤ 0 and q ∈ [0, 1], then∫ ∞
0

K(t, τ, ε) eγτ |t− τ |q dτ ≤ C εq/2
(
1 +
√
t
)q
,

for all ε ∈ (0, 1] and for all t ≥ 0;

(j) Let p ∈ (1,∞] and f : [0, ∞)→ H, f(t) ∈W 1,p
γ (0,∞;H). If γ > 0, then

there exist C1, C2 and ε0 all of them positive and depending on γ and p,

such that∣∣∣∣f(t)−
∫ ∞

0

K(t, τ, ε)f(τ) dτ

∣∣∣∣ ≤ C1 e
C2t ||f ′||Lpγ(0,∞;H)ε

(p−1)/2p,

for all ε ∈ (0, ε0], and for all t ≥ 0. If γ ≤ 0, then∣∣∣∣f(t)−
∫ ∞

0

K(t, τ, ε)f(τ) dτ

∣∣∣∣
≤ C(γ, p) ‖f ′‖Lpγ(0,∞;H)

(
1 +
√
t
)(p−1)/p

ε(p−1)/2p,

for all ε ∈ (0, 1] and for all t ≥ 0.

Lemma 3.2 ([9]). Let B = 0. Assume that A : D(A) ⊂ H → H is a linear,

self-adjoint, positive definite operator and F ∈ L∞γ (0,∞;H) for some γ ≥ 0.

If Uµ is the strong solution to the problem (Pµ) with Uµ ∈ W 2,∞
γ (0,∞;H) ∩

L∞γ (0,∞;H), AUµ ∈ L∞γ (0,∞;H), then for every 0 < µ < (4γ)−1 the function

Wµ, defined by

Wµ(s) =

∫ ∞
0

K(s, τ, µ)Uµ(τ) dτ,

is the strong solution in H to the problemW ′µ(s) +AWµ(s) = F0(s, µ) for a.e. s > 0 in H,

Wµ(0) = ϕµ.
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F0(s, µ) =
1√
π

[
2 exp

{
3s

4µ

}
λ

(√
s

µ

)
− λ
(

1

2

√
s

µ

)]
δu1 +

∫ ∞
0

K(s, τ, µ)F (τ) dτ,

ϕµ =

∫ ∞
0

e−τ Uµ(2µτ) dτ.

4. Behavior of solutions to the problem (Pεδ),

when ε→ 0 and δ ≥ δ0 > 0

Using results obtained in the paper [11] we get the relationship between the

solutions to the problems (Pεδ) and (Pδ) in the case δ ≥ δ0 > 0, presented in the

following two theorems.

Theorem 4.1. Let T > 0, δ ≥ δ0 > 0 and p > 1. Let us assume that

condition (H) is fulfilled, the operator A satisfies condition (HA) and the ope-

rator B verifies conditions (HB1), (HB2). If u0 ∈ D(A), u1 ∈ D(A1/2) and

f ∈ W 1,p(0, T ;H), then there exist constants C = C(T, p, δ0, ω0, ω, L(m)) > 0,

ε0 = ε0(ω0, ω, L(m)), ε0 ∈ (0, 1), such that

‖uεδ − lδ‖C([0,T ];H) +
∥∥A1/2uεδ −A1/2lδ

∥∥
L2(0,T ;H)

≤ C εβ
(
|Au0|+ |A1/2u1|+ |B(u0)|+ |B(u0)|1/2 + ‖f‖W 1, p(0,T ;H)

)
,

for all ε ∈ (0, ε0], where uεδ and lδ are strong solutions to problems (Pεδ) and

(Pδ) respectively, β = min{1/4, (p− 1)/2p},

m(T, δ0, u0, u1, f) = C
(
|A1/2u0|+ |B(u0)|1/2 + |u1|+ ||f ||W 1, p(0,T ;H)

)
.

Theorem 4.2. Let T > 0, δ ≥ δ0 > 0 and p > 1. Let us assume that

condition (H) is fulfilled, the operator A satisfies condition (HA) and the op-

erator B satisfies conditions (HB1)–(HB3). If u0, Au0, B(u0), u1f(0) ∈ D(A)

and f ∈ W 2,p(0, T ;H), then there exist constants C = C(T, p, δ0, ω0, ω, L(m),

L1(m1), ‖B′(0)‖) > 0, ε0 = ε0(ω0, ω, L(m)), ε0 ∈ (0, 1), such that

‖u′εδ − l′δ +Hεδe
−δ2t/ε‖C([0, T ] ;H) +

∥∥A1/2
(
u′εδ − l′δ +Hεδe

−δ2t/ε)∥∥
L2(0,T ;H)

≤ C εβ
(
|Au0|+ |Au1|+ |B(u0)|1/2 + |AHεδ|+ ‖f‖W 2, p(0,T ;H) + 1

)3
,

for all ε ∈ (0, ε0], where uεδ and lδ are strong solutions to problems (Pεδ) and

(Pδ), respectively,

Hεδ = δ−1f(0)− u1 − δ−1Au0 − δ−1B(u0), β = min{1/4, (p− 1)/2p},

m1 = C(m + |Au0|).
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5. Behaviour of solutions to the problem (Pεδ),

when ε→ 0 and δ → 0

For the case ε→ 0, δ → 0 and in the linear case (B = 0) in [12] the following

theorem was proved.

Theorem 5.1. Let T > 0 and p > 1. Let B = 0. Let us assume that

condition (H) is fulfilled, the operator A satisfies condition (HA). If u0 ∈ V ,

u1 ∈ H, f ∈ W 1,p(0, T ;H), then there exist constants C = C(p, T, ω0, ω) > 0

and ε0 = ε0(ω0, ω), ε0 ∈ (0, 1), such that

‖uεδ − v − hδ‖C([0,T ];H) ≤ C
(∣∣A1/2u0

∣∣+ |u1|+ ‖f‖W 1,p(0,T ;H)

)
Θ(ε, δ),

for all ε ∈ (0, ε0] and for all δ ∈ (0, 1], where uεδ and v are strong solutions to

the problems (Pεδ) and (P0), respectively,

Θ(ε, δ) =
εβ

δ1+1/p
+
√
δ, β = min{1/4, (p− 1)/2p}.

The function hδ is the solution to the problemδh′δ(t) +Ahδ(t) = 0, t ∈ (0, T ),

hδ(0) = u0 −A−1f(0),

and

|hδ(t)| ≤
∣∣u0 −A−1f(0)

∣∣e−δt/ω, t ∈ [0, T ].

If, in adition, u1 ∈ D(A1/2), then

‖uεδ − v − hδ||C([0,T ];H) ≤ C
(
|A1/2u0|+ |A1/2u1|+ ||f ||W 1,p(0,T ;H)

)
Θ1(ε, δ),

for all ε ∈ (0, ε0] and for all δ ∈ (0, 1], and

Θ1(ε, δ) =
ε(p−1)/(2p)

δ2+1/p
+
√
δ.

The main result of this paper valid for the nonlinear case is presented in the

following theorem.

Theorem 5.2. Let T > 0 and p ≥ 2. Let us assume that condition (H) is ful-

filled, the operator A satisfies condition (HA), the operator B verifies conditions

(HB1), (HB2). If u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈W 1,p(0, T ;H)∩R(A+B),

then there exist constants C = C(T, p, ω0, ω, L(m)) > 0, C0 = C0(T, L(m)) > 0,

ε0 = ε0(ω0, ω, L(m)), ε0 ∈ (0, 1), such that

(5.1) ||uεδ − v − hδ||C([0,T ];H)

≤ C
(
|Au0|+

∣∣A1/2u1

∣∣+
∣∣B(u0)

∣∣+
∣∣B(u0)

∣∣1/2 + ‖f‖W 1, p(0,T ;H)

)
Θ(ε, δ),
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for all ε ∈ (0, ε0] and for all δ ∈ (0, 1], where uεδ and v are strong solutions to

the problems (Pεδ) and (P0), respectively, the function hδ is the solution to the

problem

(5.2)

δh′δ(t) +Ahδ(t) +B(lδ(t))−B(v(t)) = 0, t ∈ (0, T ),

hδ(0) = u0 − (A+B)−1f(0),

Θ(ε, δ) =
ε1/4

δ7/4+1/p
+
√
δ

and

m(T, u0, u1, f) = C
(∣∣A1/2u0

∣∣+ |B(u0)|1/2 + |u1|+ ||f ||W 1,p(0,T ;H)

)
.

Proof. During the proof, we will denote by C all constants depending on

T, p, ω0, ω and L(m) that may vary from line to line and let

M1 = |Au0|+
∣∣A1/2u1

∣∣+ |B(u0)|+ |B(u0)|1/2 + ‖f‖W 1,p(0,T ;H).

Consider the function f ∈ W 1,p(0, T ;H). Define on [0,∞) the function f̃ as

follows:

f̃(t) =


f(t), 0 ≤ t ≤ T,
2T − t
T

f(T ), T ≤ t ≤ 2T,

0, t ≥ 2T,

and get

(5.3)
∥∥f̃∥∥

W 1,p(0,∞;H)
≤ C(p, T )||f ||W 1,p(0,T ;H), C(p, T ) =

(
1

p+ 1

)1/p

T + 3.

If we denote by Ũµ the unique strong solution to the problem (Pµ), defined on

(0,∞) instead of (0, S) with S = T/δ and f̃ instead of f , then, from Lemma 2.5,

it follows that Ũµ ∈ W 2,∞
γ (0,∞;H) ∩W 1,2

γ (0,∞;V ), A1/2Ũµ ∈ L∞γ (0,∞;H),

AŨµ ∈ L∞γ (0,∞;H) with γ = γ(ω0, ω, L(µ)).

Moreover, the estimate (5.3) implies that

(5.4)



∥∥F̃∥∥
Lp(0,∞;H)

≤ C(p, T ) δ−1/p‖f‖Lp(0,T ;H),

for p ∈ (1,∞), for all δ ∈ (0, 1],∥∥F̃ ′∥∥
Lp(0,∞;H)

≤ C(p, T ) δ1−1/p‖f ′‖Lp(0,T ;H),

for p ∈ (1,∞), for all δ ∈ (0, 1],∥∥F̃∥∥
W 1,p(0,∞;H)

≤ C(p, T ) δ−1/p‖f‖W 1,p(0,T ;H),

for p ∈ (1,∞), for all δ ∈ (0, 1].
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Due to these estimates and Lemma 2.5, the following estimates∥∥A1/2Ũµ
∥∥
C([0, s];H)

+
∥∥Ũ ′µ∥∥L2(0, s;H)

≤ Cδ−1/p,(5.5) ∥∥Ũ ′µ∥∥C([0,s];H)
+
∥∥A1/2Ũ ′µ

∥∥
L2(0,s;H)

+
∥∥AŨµ∥∥C([0,s];H)

≤ CM1δ
−1/p,(5.6)

for all δ ∈ (0, 1] and all s ∈ [0, S], are valid.

By Lemma 3.2, the function Wµ, defined by

(5.7) Wµ(s) =

∫ ∞
0

K(s, τ, µ) Ũµ(τ) dτ,

is the strong solution in H to the problem

(5.8)

W ′µ(s) +AWµ(s) = F̃0(s, µ) for a.e. s > 0 in H,

Wµ(0) = ϕµ,

for every ε ∈ (0, ε0], where

F̃0(s, µ) = δf0(s, µ)u1

+

∫ ∞
0

K(s, τ, µ) F̃ (τ) dτ −
∫ ∞

0

K(s, τ, µ)B(Ũµ(τ)) dτ,

f0(s, µ) =
1√
π

[
2 exp

{
3s

4µ

}
λ

(√
s

µ

)
− λ
(

1

2

√
s

µ

)]
,

ϕµ =

∫ ∞
0

e−τ Ũµ(2µτ) dτ.

Using properties (f), (h), (j) from Lemma 3.1, and (5.5), we obtain that

(5.9)
∥∥Ũµ −Wµ

∥∥
C([0, s];H)

≤ C µ1/4 δ−1/p
√

1 +
√
s ≤ C ε1/4

δ3/4+1/p
,

for all ε ∈ (0, ε0], for all δ ∈ (0, 1], for all s ∈ [0, S].

Denote by R(s, µ) = L̃(s) − Wµ(s), where L̃ is the strong solution to the

problem (P0) with f̃ instead of f , T =∞ and Wµ is the strong solution of (5.8).

Then, due to Theorem 2.4, R( · , µ) ∈W 1 ,∞
γ (0,∞;H) andR is the strong solution

in H to the problemR′(s, µ) +AR(s, µ) +B
(
L̃(s)

)
−B(Wµ(s)) = F(s, µ) for a.e. t > 0,

R(0, µ) = R0,

where R0 = u0 −Wµ(0) and

(5.10) F(s, µ) = F̃ (s)−
∫ ∞

0

K(s, τ, µ)F̃ (τ) dτ − δf0(s, µ)u1

−B(Wµ(s)) +

∫ ∞
0

K(s, τ, µ)B(Ũµ(τ)) dτ.
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Taking the inner product in H by R and then integrating, we obtain

|R(s, µ)|2 + 2

∫ s

0

∣∣A1/2R(ξ, µ)
∣∣2 dξ

+ 2

∫ s

0

(
B
(
L̃(ξ)

)
−B(Wµ(ξ)), L̃(ξ)−Wµ(ξ)

)
dξ

≤ |R(0, µ)|2 + 2

∫ s

0

|F(ξ, µ)||R(ξ, µ)| dξ

for all s ≥ 0. Using the property of monotonicity of the operator B, we obtain

|R(s, µ)|2 + 2

∫ s

0

∣∣A1/2R(ξ, µ)
∣∣2 dξ ≤ |R(0, µ)|2 + 2

∫ s

0

|F(ξ, µ)||R(ξ, µ)| dξ

for all s ≥ 0. Applying Lemma of Brézis (see, e.g. [7]), we get

(5.11) |R(s, µ)|+
(∫ s

0

∣∣A1/2R(ξ, µ)
∣∣2 dξ)1/2

≤ |R(0, µ)|+
∫ s

0

|F(ξ, µ)| dξ,

for all s ≥ 0. Using (5.5), we obtain

|R0| ≤
∫ ∞

0

e−τ
∣∣Ũµ(2µτ)− u0

∣∣ dτ(5.12)

≤
∫ ∞

0

e−τ
∫ 2µτ

0

∣∣Ũ ′µ(ξ)
∣∣ dξ dτ ≤ C µ1/2 δ−1/p = C

ε1/2

δ1+1/p
,

for all ε ∈ (0, ε0] and all δ ∈ (0, 1]. In what follows we will estimate
∣∣F(t, ε)

∣∣.
Using the property (j) from Lemma 3.1, (5.3) and (5.4), we have

(5.13)

∣∣∣∣F̃ (s)−
∫ ∞

0

K(s, τ, µ)F̃ (τ) dτ

∣∣∣∣
≤ C(T )

∥∥F̃ ′∥∥
Lp(0,∞;H)

(1 +
√
s)1−1/pµ1/2−1/2p ≤ C ε1/2−1/2p

δ1/2−1/2p
,

for ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ∈ [0, S]. Since eξλ(
√
ξ) ≤ C, for all ξ ≥ 0,

the estimates∫ s

0

exp

{
3ξ

4µ

}
λ

(√
ξ

µ

)
dξ ≤ Cµ

∫ ∞
0

e−ξ/4 dξ ≤ Cµ, for all s ≥ 0,

∫ s

0

λ

(
1

2

√
ξ

µ

)
dξ ≤ µ

∫ ∞
0

λ

(
1

2

√
ξ

)
dξ ≤ Cµ, for all s ≥ 0,

hold. Then

(5.14)

∣∣∣∣δ ∫ s

0

f0(ξ, µ)u1 dξ

∣∣∣∣ ≤ C δµ|u1| ≤ C
ε

δ
,

for all ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ≥ 0. In what follows we will estimate

the difference

(5.15) I(s, ε) =

∫ ∞
0

K(s, τ, µ)B(Ũµ(τ)) dτ −B(Wµ(s)) = I1(s, ε) + I2(s, ε),
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where, due to the property (h) from Lemma 3.1, we have

I1(s, ε) =

∫ ∞
0

K(s, τ, µ)
(
B
(
Ũµ(τ)

)
−B

(
Wµ(τ)

))
dτ,

I2(s, ε) =

∫ ∞
0

K(s, τ, µ)
(
B(Wµ(τ))−B(Wµ(s))

)
dτ.

Using properties (f), (h), (i), from Lemma 3.1, condition (HB1), (5.6) and (5.7),

for I1(s, ε) we deduce the following estimates∣∣A1/2Ũµ(s) −A1/2Wµ(s)
∣∣(5.16)

≤
∫ ∞

0

K(s, τ, µ) |s− τ |1/2
∣∣∣∣ ∫ s

τ

|A1/2Ũ ′µ(ξ)|2 dξ
∣∣∣∣1/2 dτ

≤Cµ1/4(1 +
√
s)1/2

∥∥A1/2Ũ ′µ
∥∥
L2(0,s;H)

CM1
ε1/4

δ3/4+1/p
,

for ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ≥ 0,

(5.17) |I1(s, ε)| ≤ L(m)

∫ ∞
0

K(s, τ, µ)
∣∣A1/2Ũµ(τ)−A1/2Wµ(τ)

∣∣ dτ
≤ CM1

ε1/4

δ3/4+1/p
,

for ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ≥ 0,∣∣B(Wµ(s)) −B(Wµ(τ))
∣∣ ≤ L(m)

∣∣A1/2Wµ(s)−A1/2Wµ(τ)
∣∣(5.18)

≤L(m)
∣∣A1/2Wµ(s)−A1/2Ũµ(s)

∣∣
+ L(m)

∣∣A1/2Ũµ(τ)−A1/2Wµ(τ)
∣∣

+ L(m)
∣∣A1/2Ũµ(s)−A1/2Ũµ(τ)

∣∣
≤CM1

ε1/4

δ3/4+1/p
+ L(m)

∣∣∣ ∫ s

τ

|A1/2Ũ ′µ(ξ)| dξ
∣∣∣,

for ε ∈ (0, ε0], all δ ∈ (0, 1] and all s, τ ≥ 0. Using the last estimate, (5.6) and

properties (h), (i) from Lemma 3.1, for I2(t, ε) we get the estimate

(5.19) |I2(t, ε)| ≤ CM1
ε1/4

δ3/4+1/p

+ L(m)

∫ ∞
0

K(s, τ, µ) |s− τ |1/2
∣∣∣∣ ∫ s

τ

|A1/2Ũ ′µ(ξ)|2 dξ
∣∣∣∣1/2 dτ

≤ CM1
ε1/4

δ3/4+1/p
,

for ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ≥ 0. From (5.15), using (5.16) and (5.19),

for I(t, ε) we get the estimate

(5.20) |I(t, ε)| ≤ CM1
ε1/4

δ3/4+1/p
, ε ∈ (0, ε0],



1106 A. Perjan — G. Rusu

for all δ ∈ (0, 1], all s ≥ 0 and p ≥ 2. Using (5.13), (5.14) and (5.20), from (5.10)

we obtain

(5.21)

∫ s

0

∣∣F(τ, ε)
∣∣ dτ ≤ CM1

ε1/4

δ7/4+1/p
, for all ε ∈ (0, ε0 and all s ∈ [0, S].

From (5.11), using (5.12) and (5.21) we get the estimate

(5.22) ‖R‖C([0, s];H) +
∥∥A1/2

0 R
∥∥
L2(0,s;H)

≤ CM1
ε1/4

δ7/4+1/p
,

for all ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ∈ [0, S]. Consequently, from (5.9) and

(5.22), we deduce

(5.23)
∥∥Ũµ − L̃∥∥C([0,s];H)

≤
∥∥Ũµ −Wµ

∥∥
C([0,s];H)

+ ||R||C([0,s];H)

≤ CM1
ε1/4

δ7/4+1/p
,

for all ε ∈ (0, ε0], all δ ∈ (0, 1] and all s ∈ [0, S]. Since Uµ(s) = Ũµ(s), L(s) =

L̃(s), for all s ∈ [0, S], Uµ(s) = uεδ(δ s) and L(s) = lδ(δ s), from (5.23) we get

(5.24) ‖uεδ − lδ‖C([0,T ];H) ≤ CM1
ε1/4

δ7/4+1/p
,

for all ε ∈ (0, ε0], all δ ∈ (0, 1] and for p ≥ 2.

In what follows, let us denote by R1(t, δ) = lδ(t) − v(t) − hδ(t), where lδ is

the solution to the problem (Pδ), v is the solution to the problem (P0) and hδ is

the solution to the problem (5.2). In this case we deduce that R1 is the solution

to the system δR′1(t, δ) +AR1(t, δ) = −δv′(t), t ∈ (0, T ),

R1(0, δ) = 0.

Taking the inner product in (H) by R1 and integrating on (0, t) we obtain

δ|R1(t, δ)|2 + 2

∫ t

0

(
AR1(τ, δ), R1(τ, δ)

)
dτ

= −2δ

∫ t

0

(
v′δ(τ), R1(τ, δ)

)
dτ, for t ∈ (0, T ).

Using condition (HA) and (2.5), we get

δ|R1(t, δ)|2 + 2

∫ t

0

(
AR1(τ, δ), R1(τ, δ)

)
dτ

≤ δ2

ω

∫ t

0

|v′δ(τ |2 dτ +

∫ t

0

(
AR1(τ, δ), R1(τ, δ)

)
dτ,

for t ∈ (0, T ), and consequently

(5.25) |R1(t, δ)| ≤
√
δCM1, for t ∈ (0, T ), δ ∈ (0, 1].

Thus, the estimate (5.1) is a simple consequence of (5.24) and (5.25). �
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6. Example

Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω. In the real

Hilbert space L2(Ω) we consider the following boundary-value problem:

(6.1)


ε ∂2

t uεδ + δ ∂tuεδ +Auεδ + b|uεδ|quεδ = f(x, t), (x, t) ∈ Ω× (0, T ),

uεδ(x, 0) = u0(x), ∂t uεδ(x, 0) = u1(x), x ∈ Ω,

uεδ
∣∣
∂Ω

= 0, t ∈ [0, T ),

where ε and δ are small positive parameters, uεδ, f : [0, T ) → L2(Ω) and the

operator A is defined as follows:

D(A) = H2(Ω) ∩H1
0 (Ω),

Au(x) = −
n∑

i,j=1

∂xi
(
aij(x)∂xju(x)

)
+ a(x)u(x), u ∈ D(A),

aij ∈ C1(Ω), a ∈ C(Ω), a(x) ≥ 0, aij(x) = aji(x), x ∈ Ω,(6.2)

n∑
i,j=1

aij(x)ξi ξj ≥ a0|ξ|2, x ∈ Ω, ξ = (ξi)
n
i=1 ∈ Rn, a0 > 0.(6.3)

If we consider the operator B defined as

D(B) = L2(Ω) ∩ L2(q+1)(Ω), Bu = b|u|qu,

then, for b > 0 the operator B is a Fréchet derivative of the convex and positive

functional B, which is defined as follows

D(B) = Lq+2(Ω) ∩ L2(Ω), Bu =
b

q + 2

∫
Ω

|u(x)|q+2 dx,

and the Fréchet’s derivative of operator B is defined by the relationships

D
(
B′(u)

)
= {v ∈ L2(Ω) : uqv ∈ L2(Ω)}, B′(u)v = b(q + 1)|u|qv.

For b > 0 and

(6.4)

q ∈ [0, 2/(n− 2)] if n > 2,

q ∈ [0,∞) if n = 1, 2,

the operator B verifies condition (HB1). For b > 0 and

(6.5)

q ∈ [1, 2/(n− 2)] if n > 2,

q ∈ [1,∞) if n = 1, 2,
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the operator B verifies conditions (HB3). In this case the corresponding unper-

turbed problems are:

(6.6)


δ ∂tlδ +Alδ + b|lδ|qlδ = f(x, t), (x, t) ∈ Ω× (0, T ),

lδ(x, 0) = u0(x), x ∈ Ω,

lδ
∣∣
∂Ω

= 0, t ∈ [0, T ),

(6.7)

Av + b|v|qv = f(x, t), (x, t) ∈ Ω× [0, T ),

v
∣∣
∂Ω

= 0, t ∈ [0, T ).

From Theorems 4.1, 4.2 and 5.2, we obtain the following theorems.

Theorem 6.1. Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω.

Let T > 0, δ ≥ δ0 > 0, p > 1, b > 0, q verifies (6.4) and (6.2)–(6.3) are fulfilled.

If u0 ∈ H2(Ω)∩H1
0 (Ω), u1 ∈ H1

0 (Ω) and f ∈W 1,p(0, T ;L2(Ω)), then there exist

constants C = C(T, p, δ0, ω0, ω, n, q, b,Ω,m)) > 0, ε0 = ε0(ω0, ω, n, q, b,Ω,m),

ε0 ∈ (0, 1), such that

‖uεδ − lδ‖C([0,T ];L2(Ω)) ≤ C εβ
(
‖u0‖H2(Ω) + ‖u1‖H1

0 (Ω) + ‖f‖W 1, p(0, T ;,L2(Ω))

)
,

for all ε ∈ (0, ε0], where uεδ and lδ are strong solutions to problems (6.1) and

(6.6), respectively β = min{1/4, (p− 1)/2p},

m = C
(
‖u0‖H1

0 (Ω) + ‖u1‖L2(Ω) + ‖f‖W 1, p(0,T ;L2(Ω))

)
.

Theorem 6.2. Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω.

Let T > 0, δ ≥ δ0 > 0, p > 1, b > 0, q verifies (6.4)–(6.5) and (6.2)–(6.3) are ful-

filled. If u0,∆u0, |u0|q+1, u1, f(0) ∈ H2(Ω) ∩H1
0 (Ω) and f ∈ W 2,p(0, T ;L2(Ω)),

then there exist constants C = C(T, p, δ0, ω0, ω, n, q, b,Ω,m,m1) > 0, ε0 =

ε0(ω0, ω, n, q, b,Ω,m), ε0 ∈ (0, 1), such that

‖u′εδ − l′δ +Hεδe
−δ2t/ε‖C([0, T ] ;L2(Ω))

≤ Cεβ
(
‖u0‖H2(Ω) + ‖u1‖H2(Ω) + ‖Hεδ‖H2(Ω) + ‖f‖W 2, p(0,T ;L2(Ω)) + 1

)3
,

for all ε ∈ (0, ε0], where uεδ and lδ are strong solutions to problems (6.1) and

(6.6), respectively,

Hεδ = δ−1f(0)− u1 − δ−1Au0 − δ−1b|u0|qu0, β = min{1/4, (p− 1)/2p},

m1 = C
(
m + ‖u0‖H2(Ω)

)
.

Theorem 6.3. Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω.

Let T > 0, p ≥ 2, b > 0, q verifies (6.4) and (6.2)–(6.3) are fulfilled. If u0 ∈
H2(Ω) ∩ H1

0 (Ω), u1 ∈ H1
0 (Ω) and f ∈ W 1,p(0, T ;L2(Ω)) ∩ Lq+1(Ω), then there
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exist constants C = C(T, p, ω0, ω, n, q, b,Ω,m) > 0, C0 = C0(T, L(m)) > 0,

ε0 = ε0(ω0, ω, n, q, b,Ω,m)), ε0 ∈ (0, 1), such that

‖uεδ − v − hδ‖C([0,T ];H)

≤ C
(
‖u0‖H2(Ω) + ‖u1‖H1

0 (Ω) + ‖f‖W 1, p(0, T ;L2(Ω))

)
Θ(ε, δ),

for all ε ∈ (0, ε0] and all δ ∈ (0, 1], where uεδ and v are strong solutions to

the problems (6.1) and (6.7), respectively, the function hδ is the solution to the

problem δh′δ(t) +Ahδ(t) +B(lδ(t))−B
(
v(t)) = 0, t ∈ (0, T ),

hδ(0) = u0 − (A+B)−1f(0),

Θ(ε, δ) =
ε1/4

δ7/4+1/p
+
√
δ.
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