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EXISTENCE OF SOLUTIONS

FOR FRACTIONAL p-KIRCHHOFF TYPE EQUATIONS

WITH A GENERALIZED CHOQUARD NONLINEARITY

Wenjing Chen

Abstract. In this article, we establish the existence of solutions to the

fractional p-Kirchhoff type equations with a generalized Choquard nonlin-

earity without assuming the Ambrosetti–Rabinowitz condition.

1. Introduction and statement of main result

In this work, we consider the following fractional p-Laplacian generalized

Choquard equation

(1.1) M(‖u‖pW )
[
(−∆)spu+ V (x)|u|p−2u

]
= λ(Iµ ∗ F (u))f(u), in RN ,

where 1 < ps < N , M : R+
0 → R+ is a Kirchhoff function,

(1.2) ‖u‖W =

(
[u]ps,p +

∫
RN

V (x)|u|p dx
)1/p

with

[u]s,p =

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

,
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the potential function V : RN → R+ is continuous, f ∈ C(R,R) and F ∈ C(R,R)

with F (u) =
∫ u

0
f(t) dt, here Iµ(x) = |x|−µ is the Riesz potential of order

µ ∈ (0, ps), and (−∆)sp is the fractional p-Laplacian operator which, up to a nor-

malization constant, is defined as

(−∆)spϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
dy, x ∈ RN ,

along functions ϕ ∈ C∞0 (RN ), where Bε(x) denotes the ball of RN centered at

x ∈ RN and radius ε > 0.

On the one hand, this paper is motivated by some works that has been

focused on the study of the Kirchhoff type problems. To be precise, in the

classical Laplacian operator case, it is related to the stationary analogue of the

equation

utt −
(
a+ b

∫
Ω

|∇u|2
)
4u = g(x, u),(1.3)

proposed by Kirchhoff [16] as an extension of the classical D’Alembert’s wave

equation for free vibrations of elastic strings. Kirchhoff’s model takes into ac-

count the changes in length of the string produced by transverse vibrations.

Equation (1.3) received much attention only after Lions [21] proposed an ab-

stract framework to the problem. Fiscella and Valdinoci [15] first proposed

a stationary fractional Kirchoff variational model as follows

(1.4)


M

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
(−∆)su(x)

= λf(x, u) + |u|2∗−2u in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is an open bounded set, 2∗ = 2N/(N − 2s), N > 2s with

s ∈ (0, 1). M and f are two continuous functions under some suitable assump-

tions. In [15], the authors first provided a detailed discussion about the physical

meaning underlying the fractional Kirchhoff problems and their applications.

They supposed that M : R+ → R+ is an increasing and continuous function,

and there exists m0 > 0 such that M(t) ≥ m0 = M(0) for all t ∈ R+. Based

on the truncated skill and mountain pass theorem, they obtained the existence

of a non-negative solution to problem (1.4) for any λ > λ∗ > 0, where λ∗ is

an appropriate threshold. Autuori et al. [5] established the existence and the

asymptotic behavior of non-negative solutions to problem (1.4) under different

assumptions on M , the Kirchhoff function M can be zero at zero, that is, the

problem is degenerate case.

Moreover, there is a lot of literature concerning the existence and multiplicity

of solutions for the fractional p-Laplacian Kirchhoff type problems. Xiang et al.
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in [39] investigated the existence of solutions for Kirchhoff type problems involv-

ing the fractional p-Laplacian by variational methods, where the nonlinearity is

subcritical and the Kirchhoff function is non-degenerate. Combining the moun-

tain pass theorem with the Ekeland variational principle, Xiang et al. in [40]

established the existence of two solutions for a degenerate fractional p-Laplacian

Kirchhoff equation in RN with concave-convex nonlinearity. By the same meth-

ods as in [40], Pucci et al. in [30] obtained the existence of two solutions for

a nonhomogenous Schrödinger–Kirchhoff type equation involving the fractional

p-Laplacian in RN on a nondegenerate situation. Furthermore, nonexistence

and multiplicity of solutions for a nonhomogeneous fractional p-Kirchhoff type

problem involving critical exponent in RN were studied in [41]. The existence of

infinitely many solutions was proved in [31], [36] by using Krasnosel’skĭı’s genus

theory under degenerate frameworks. Recently, Song and Shi considered infin-

itely many solutions for the degenerate p-fractional Kirchhoff equations with the

critical Sobolev–Hardy nonlinearities in [34], [35]. Xiang, Radulescu and Zhang

obtained the existence of nontrivial radial solutions for a fractional Choquard–

Kirchhoff-type problem involving an external magnetic potential and a critical

nonlinearity in [38]. The local existence and blow-up of solutions for a diffusion

model of Kirchhoff-type driven by a nonlocal integro-differential operator were

studied in [37].

On the other hand, we mention some results about the Choquard equation,

consider the following Choquard or the nonlinear Schrödinger–Newton equation

(1.5) −∆u+ V (x)u = (Iµ ∗ u2)u+ λf(x, u) in RN ,

which was elaborated by Pekar [29] in the framework of quantum mechanics.

The first investigation for the existence and symmetry of solutions to (1.5) went

back to the works of Lieb [19]. Equations of type (1.5) have been extensively

studied, see e.g. [1], [25], [26] and references therein. Moroz and van Schaftin-

gen in [26] considered the existence of ground-states for a generalized Choquard

equation. The existence, multiplicity and concentration of solutions for a gener-

alized quasilinear Choquard equation were studied by Alves and Yang in [2], [3].

We refer to [28] for a good survey of the Choquard equation.

In the setting of the fractional Choquard equations,

(1.6) (−∆)su+ V (x)u = (Iµ ∗ F (u))f(u) in RN ,

Wu [42] investigated existence and stability of solutions to (1.6) with f(u) = u

and µ ∈ (N − 2s,N). Subsequently, D’Avenia and Squassina in [12] studied the

existence, regularity and asymptotic behavior of solutions to (1.6) with f(u) = up

and V (x) ≡ const. In particular, they claimed the nonexistence of solutions as

q ∈ ((2N − µ)/N, (2N − µ)/(N − 2s)). If V (x) = 1 and f satisfies Berestycki–

Lions type assumptions, the existence of ground state solutions for a fractional
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Choquard equation has been established in [33]. Very recently, Ambrosio studied

the concentration phenomena of solutions for a fractional Choquard equation

with mangetic field in [4].

Recently, Belchior et al. in [6] applied the mountain pass theorem without

(PS) condition and a characterization of the infimum more suitable to the Nehari

manifold naturally attached to the problem to study the existence of ground

state, regularity and polynomial decay for the following fractional Choquard

equation

(−∆)spu+A|u|p−2u = (Iµ ∗ F (u))f(u) in RN ,(1.7)

where A is a positive constant, f is a C1 positive function on (0,+∞),

lim
t→0

|f(t)|
tp−1

= 0, lim
t→+∞

f(t)

tq−1
= 0

for some p < q < (2N − µ)p/(2(N − ps)), and

(1.8) f ′(t)t2 − (p− 1)f(t)t > 0 for all t > 0.

An example of function f satisfying these hypotheses is given by

f(t) = |t|q1−1t+ + |t|q2−1t+, where p < q1 < q2 <
(N − µ)p

N − ps

and t+ = max{t, 0}. From (1.8), f satisfies the Ambrosetti–Rabinowitz condition

((AR) for short):

pF (t) < tf(t) for all t > 0,(1.9)

and the function f(t)/tp−1 is increasing. It is well known that the (AR)-condition

is quite natural and important not only to ensure that an Euler–Lagrangian

functional has the mountain pass geometry structure, but also to ensure that

the Palais–Smale sequence of the functional is bounded. However, there are

many functions which are superlinear at infinity, but do not satisfy the (AR)-

condition, for example, the function f(t) = |t|p−2t log(1 + |t|). Thus, many

researchers have tried to drop the (AR)-condition for elliptic equations involving

the p-Laplacian, see [14], [17], [18], [22] and references therein. In particular,

Lee et al. in [17] considered the existence of nontrivial weak solutions for the

quasilinear Choquard equation, where the nonlinearity f does not satisfy the

(AR)-condition.

Motivated by the above results, in the present paper, we are interested

in the existence of solutions for the fractional p-Kirchhoff type equation (1.1)

with a generalized Choquard nonlinearity without assuming the Ambrosetti–

Rabinowitz condition. We first give the following assumptions on the potential

function V and the Kirchhoff function M .
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(V) V : RN → R+ is a continuous function and there exists V0 > 0 such that

inf
RN

V ≥ V0.

(M1) M : R+
0 → R+ is a continuous function and there exists m0 > 0 such

that inf
t≥0

M(t) = m0.

(M2) There exists θ ∈ [1, (2N − µ)/N) such that

M(t)t ≤ θM (t), for all t ≥ 0, where M (t) =

∫ t

0

M(τ) dτ.

A typical example is M(t) = m0 + btθ−1, where b ≥ 0, t ≥ 0.

Moreover, we impose the following assumption on the nonlinearity f : R→ R
that

(F1) F ∈ C1(R,R).

(F2) There exist a constant c0 > 0 and p < q1 ≤ q2 < (N − µ)p/(N − ps)
such that

|f(t)| ≤ c0(|t|q1−1 + |t|q2−1), for all t ∈ R.

(F3) lim
|u(x)|→∞

F (u(x))/|u(x)|pθ =∞ uniformly for x ∈ RN .

(F4) There exist c1 ≥ 0, r0 ≥ 0 and κ > N/(ps) such that

|F (t)|κ ≤ c1|t|κpF (t) for all t ∈ R and |t| ≥ r0,

where

F (t) =
1

pθ
f(t)t− 1

2
F (t) ≥ 0.

The main result is as follows.

Theorem 1.1. Let 0 < µ < ps < N , and (V), (M1)–(M2), (F1)–(F4) hold.

Then problem (1.1) has a nontrivial weak solution for any λ > 0.

The paper is organized as follows. In Section 2, we give some definitions and

preliminaries. Section 3 is devoted to prove Theorem 1.1, we obtain the existence

of solution to problem (1.1) by the mountain pass theorem.

2. Preliminaries

We introduce some useful notations. The fractional Sobolev space W s,p(RN )

is defined by

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p <∞

}
,

where [u]s,p denotes the Gagliardo norm defined by

[u]s,p =

(∫ ∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

,

and W s,p(RN ) is equipped with the norm

‖u‖W s,p(RN ) =
(
‖u‖pp + [u]ps,p

)1/p
,
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where and hereafter we denote by ‖ · ‖q the norm of Lebesgue space Lq(RN ). As

it is well-known, W s,p(RN ) =
(
W s,p(RN ), ‖u‖W s,p(RN )

)
is a uniformly convex

Banach space. Let Lp(RN , V ) denote the Lebesgue space of real-valued functions,

with V (x)|u|p ∈ L1(RN ), equipped with norm

‖u‖p,V =

(∫
RN

V (x)|u|p dx
)1/p

for all u ∈ Lp
(
RN , V

)
.

Let W s,p
V (RN ) denote the completion of C∞0 (RN ), with respect to the norm

‖u‖W =
(
[u]ps,p + ‖u‖pp,V

)1/p
.

The embedding W s,p
V (RN ) ↪→ Lν(RN ) is continuous for any ν ∈ [p,Np/(N − ps)]

by [13, Theorem 6.7], namely there exists a positive constant Cν such that

‖u‖ν ≤ Cν‖u‖W for all u ∈W s,p
V (RN ).(2.1)

Next, we recall the Hardy–Littlewood–Sobolev inequality.

Theorem 2.1 ([20, Theorem 4.3]). Assume that 1 < r, t < ∞, 0 < µ < N

and
1

r
+

1

t
+
µ

N
= 2.

Then there exists C(N,µ, r, t) > 0 such that∫∫
R2N

|g(x)| · |h(y)|
|x− y|µ

dx dy ≤ C(N,µ, r, t)‖g‖r‖h‖t

for all g ∈ Lr(RN ) and h ∈ Lt(RN ).

In particular, F (t) = |t|q1 for some q1 > 0, by the Hardy–Littlewood–Sobolev

inequality, the integral ∫∫
R2N

F (u(x))F (u(y))

|x− y|µ
dx dy

is well defined if F ∈ Lt(RN ), for some t > 1, satisfying 2/t + µ/N = 2, that

is t = 2N/(2N − µ). Hence, by the fractional Sobolev embedding theorem, if

u ∈ W s,p
V (RN ), we must require that tq1 ∈ [p,Np/(N − ps)]. Thus, for the

subcritical case, we must assume

p̃µ,s =
(N − µ/2)p

N
< q1 ≤ q2 <

(N − µ/2)p

N − ps
= p∗µ,s.

Hence, p̃µ,s is called the lower critical exponent and p∗µ,s is said to be the upper

critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality.

Equation (1.1) has a variational structure and its associated energy functional

Jλ : W s,p
V (RN )→ R is defined by

Jλ(u) = Φ(u)− λΨ(u).
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with

Φ(u) :=
1

p
M (‖u‖pW ) and Ψ(u) :=

1

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|µ
dx dy.

We have that Jλ is of class C1
(
W s,p
V (RN ),R

)
(see Lemmas 2.2 and 2.4). We say

that u ∈W s,p
V (RN ) is a weak solution of problem (1.1), if

M(‖u‖pW )

[
〈u, ϕ〉s,p +

∫
RN

V |u|p−2uϕdx

]
= λ

∫
RN

(Iµ ∗ F (u))f(u)ϕdx,

for all ϕ ∈W s,p
V (RN ), where

〈u, ϕ〉s,p =

∫∫
R2N

[
|u(x)− u(y)|p−2(u(x)− u(y))

]
·
[
ϕ(x)− ϕ(y)

]
|x− y|N+ps

dx dy.

Clearly, the critical points of Jλ are exactly the weak solutions of problem (1.1).

Lemma 2.2 ([30, Lemma 2]). Let (V) and (M1) hold. Then Φ is of class

C1(W s,p
V (RN ),R) and

〈Φ′(u), ϕ〉=M(‖u‖pW )

[ ∫∫
R2N

|u(x)− u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))

|x− y|N+ps
dx dy

+

∫
RN

V (x)|u(x)|p−2u(x)ϕ(x) dx

]
,

for all u, ϕ ∈ W s,p
V (RN ). Moreover, Φ is weakly lower semi-continuous in

W s,p
V (RN ).

The next result is stated in [2], its proof is included for the readers’ conve-

nience.

Lemma 2.3. Assume (F2) holds, then there exists K > 0 such that

(2.2) |Iµ ∗ F (v)| ≤ K for v ∈W s,p
V (RN ).

Proof. By the assumption (F2) and note that p<q1≤q2<(N−µ)p/(N−ps)
< Np/(N − ps), using (2.1), we have

|Iµ ∗ F (v)| =
∣∣∣∣ ∫

RN

F (v)

|x− y|µ
dy

∣∣∣∣
≤
∣∣∣∣ ∫
|x−y|≤1

F (v)

|x− y|µ
dy

∣∣∣∣+

∣∣∣∣ ∫
|x−y|≥1

F (v)

|x− y|µ
dy

∣∣∣∣
≤ c0

∫
|x−y|≤1

|v|q1 + |v|q2
|x− y|µ

dy + c0

∫
|x−y|≥1

(|v|q1 + |v|q2) dy

≤ c0
∫
|x−y|≤1

|v|q1 + |v|q2
|x− y|µ

dy + C(‖v‖q1W + ‖v‖q2W )

≤ c0
∫
|x−y|≤1

|v|q1 + |v|q2
|x− y|µ

dy + C.
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Moreover, choosing

t1 ∈
(

N

N − µ
,

Np

(N − ps)q1

)
and t2 ∈

(
N

N − µ
,

Np

(N − ps)q2

)
,

using the Hölder inequality and (2.1), we find∫
|x−y|≤1

|v|q1 + |v|q2
|x− y|µ

dy

≤
(∫
|x−y|≤1

|v|q1t1 dy
)1/t1(∫

|x−y|≤1

|x− y|−µt1/(t1−1) dy

)(t1−1)/t1

+

(∫
|x−y|≤1

|v|q2t2 dy
)1/t2(∫

|x−y|≤1

|x− y|−µt2/(t2−1) dy

)(t2−1)/t2

≤C
(
‖v‖q1W + ‖v‖q2W

)[(∫
r≤1

rN−1−µt1/(t1−1) dy

)(t1−1)/t1

+

(∫
r≤1

rN−1−µt2/(t2−1) dy

)(t2−1)/t2]
≤ C. �

Lemma 2.4. Let (V) and (F1)–(F2) hold. Then Ψ and Ψ′ are weakly strongly

continuous on W s,p
V (RN ).

Proof. Let {un} be a sequence in W s,p
V (RN ) such that un ⇀ u in W s,p

V

(
RN
)

as n→∞. Then {un} is bounded in W s,p
V

(
RN
)
, and then there exists a subse-

quence denoted by itself, such that

un → u in Lq1(RN ) ∩ Lq2(RN ) and un → u a.e. in RN as n→∞,

and by [7, Theorem IV-9] there exists ` ∈ Lq1(RN ) ∩ Lq2(RN ) such that

|un(x)| ≤ `(x) a.e. in RN .

First, we show that Ψ is weakly strongly continuous on W s,p
V (RN ). Since F ∈

C1(R,R), we see that F (un) → F (u) as n → ∞ for almost all x ∈ RN , and so

(Iµ ∗ F (un))F (un) → (Iµ ∗ F (u))F (u) as n → ∞ for almost all x ∈ RN . From

Lemma 2.3 and (F2), we have∣∣(Iµ ∗ F (un))F (un)
∣∣ ≤ Kc0( |un(x)|q1

q1
+
|un(x)|q2

q2

)
∈ L1

(
RN
)
.

By Lebesgue dominated convergence theorem, we get∫
RN

(Iµ ∗ F (un))F (un) dx→
∫
RN

(Iµ ∗ F (u))F (u) dx as n→∞,

which implies that Ψ(un) → Ψ(u) as n → ∞. Thus Ψ is weakly strongly

continuous on W s,p
V

(
RN
)
.
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We next prove that Ψ′ is weakly strongly continuous on W s,p
V

(
RN
)
. Since

un(x) → u(x) as n → ∞ for almost all x ∈ RN , f(un) → f(u) for almost all

x ∈ RN as n→∞. Then

(Iµ ∗ F (un))f(un)→ (Iµ ∗ F (u))f(u) a.e. in RN , as n→∞.

By (F2) and the Hölder inequality, we have that, for any ϕ ∈W s,p
V (RN ),∫

RN

∣∣(Iµ ∗ F (un))f(un)ϕ(x)
∣∣ dx

≤ c0K
∫
RN

∣∣(|un|q1−1 + |un|q2−1
)
ϕ(x)

∣∣ dx
≤ c0K

(
‖un‖q1−1

q1 ‖ϕ‖q1 + ‖un‖q2−1
q2 ‖ϕ‖q2

)
≤ c0K

(
Cq1‖`(x)‖q1−1

q1 + Cq2‖`(x)‖q2−1
q2

)
‖ϕ‖W .

Then, by Lebesgue dominated convergence theorem, we obtain

‖Ψ′(un)−Ψ′(u)‖(W s,p
V (RN ))′ = sup

‖ϕ‖Ws,p
V

(RN )=1

|〈Ψ′(un)−Ψ′(u), ϕ〉|

= sup
‖ϕ‖Ws,p

V
(RN )=1

∫
RN

∣∣(Iµ ∗ F (un))f(un)ϕ(x)− (Iµ ∗ F (u))f(u)ϕ(x)
∣∣ dx→ 0

as n→∞. Therefore, we get that Ψ′(un)→ Ψ′(u) in
(
W s,p
V

(
RN
))′

as n→∞.�

3. Proof of the main result

In this section, we will prove our main result. First, we introduce the follow-

ing definition.

Definition 3.1. For c ∈ R, we say that Jλ satisfies the (C)c condition if for

any sequence {un} ⊂W s,p
V

(
RN
)

with

Jλ(un)→ c, ‖J ′λ(un)‖(1 + ‖un‖W )→ 0,

there is a subsequence {un} such that {un} converges strongly in W s,p
V

(
RN
)
.

We will use the following mountain pass theorem to prove our result.

Lemma 3.2 ([11, Theorem 1]). Let E be a real Banach space, I ∈ C1(E,R)

satisfies the (C)c condition for any c ∈ R, and

(a) there are constants ρ, α > 0 such that I|∂Bρ ≥ α,

(b) there is an e ∈ E \Bρ such that I(e) ≤ 0.

Then,

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) ≥ α

is a critical value of I, where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

We first show that the energy functional Jλ satisfies the geometric structure.
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Lemma 3.3. Assume that (V), (M1)–(M2) and (F1)–(F3) hold. Then:

(a) There exists α, ρ > 0 such that Jλ(u) ≥ α for all u ∈ W s,p
V (RN ) with

‖u‖W = ρ.

(b) Jλ(u) is unbounded from below on W s,p
V (RN ).

Proof. (a) From Lemma 2.3 and (M1)–(M2), (F2), we have

Jλ(u) =
1

p
M (‖u‖pW )− λ

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|µ
dx dy

≥ 1

pθ
M(‖u‖pW )‖u‖pW −

λc0K

2

∫
RN

(
|u|q1
q1

+
|u|q2
q2

)
dx

≥
[
m0

pθ
− λc0K

2

(
Cq1q1 ‖u‖

q1−p
W + Cq2q2 ‖u‖

q2−p
W

)]
‖u‖pW .

Since q2 ≥ q1 > p, the claim follows if we choose ρ small enough.

(b) From (M2), we have

(3.1) M (t) ≤M (1)tθ for all t ≥ 1.

By the assumption (F3), we take t0 such that F (t0) 6= 0, we find∫
RN

(Iµ ∗ F (t0χB1))F (t0χB1) dx = F (t0)2

∫
B1

∫
B1

Iµ(x− y) dx dy > 0,

where Br denotes the open ball centered at the origin with radius r and χB1

denotes the standard indicator function of set B1. By the density theorem,

there will be v0 ∈W s,p
V (RN ) with∫

RN
(Iµ ∗ F (v0))F (v0) dx > 0.

Define the function vt(x) = v0(x/t), then

Jλ(vt) =
1

p
M (‖vt‖pW )− λ

2

∫∫
R2N

F (vt(x))F (vt(y))

|x− y|µ
dx dy

≤ 1

p
M (1)‖vt‖pθW −

λ

2

∫∫
R2N

F (vt(x))F (vt(y))

|x− y|µ
dx dy

=
1

p
M (1)

[
tN−ps‖v0‖pW + tN

∫
RN

V (tx)|v0|p dx
]θ

− t2N−µ λ
2

∫∫
R2N

F (v0(x))F (v0(y))

|x− y|µ
dx dy,

for sufficiently large t. Therefore, we have that Jλ(vt) → −∞ as t → ∞ since

1 ≤ θ < (2N − µ)/N gives that 2N−µ > Nθ > (N−ps)θ. Hence the functional

Jλ is unbounded from below on W s,p
V (RN ). �

Lemma 3.4. Assume that (V), (M1)–(M2) and (F1)–(F4) hold. Then (C)c-

sequence of Jλ is bounded for any λ > 0.
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Proof. Suppose that {un} ⊂W s,p
V (RN ) is a (C)c-sequence for Jλ(u), that is

Jλ(un)→ c, ‖J ′λ(un)‖W (1 + ‖un‖W )→ 0,

which shows that

c = Jλ(un) + o(1), 〈J ′λ(un), un〉 = o(1)(3.2)

where o(1) → 0 as n → ∞. We now prove that {un} is bounded in W s,p
V (RN ).

We argue by contradiction. Suppose that the sequence {un} is unbounded in

W s,p
V (RN ), then we may assume that

‖un‖W →∞, as n→∞.(3.3)

Let ωn(x) = un/‖un‖W , then ωn ∈ W s,p
V (RN ) with ‖ωn‖W = 1. Hence, up to

a subsequence, still denoted by itself, there exists a function ω ∈W s,p
V (RN ) such

that

(3.4) ωn(x)→ ω(x) a.e. in RN and ωn(x)→ ω(x) a.e. in Lr(RN )

as n→∞, for p ≤ r < Np/(N − ps).
Let Ω1 = {x ∈ RN : ω(x) 6= 0}, then

lim
n→∞

ωn(x) = lim
n→∞

un(x)

‖un‖W
= ω(x) 6= 0 in Ω1,

and (3.3) implies that

(3.5) |un| → ∞ a.e. in Ω1.

From the assumption (F3) and Lemma 2.3, we have

(3.6) lim
n→∞

(Iµ ∗ F (un(x)))F (un(x))

|un(x)|pθ
|ωn(x)|pθ =∞, for a.e. x ∈ Ω1.

Moreover, by (F3), there exists t0 > 0 such that

F (t)

|t|pθ
> 1 for all |t| > t0.

Since F is continuous, then there exists C > 0 such that |F (t)| ≤ C for all

t ∈ [−t0, t0]. Thus, we see that there is a constant C0 such that for any t ∈ R,

we have F (t) ≥ C0, which show that there is a constant C such that

(Iµ ∗ F (un))F (un)− C
‖un‖pθW

≥ 0.

This means that

(3.7)
(Iµ ∗ F (un))F (un(x))

|un(x)|pθ
|ωn(x)|pθ − C

‖un‖pθW
≥ 0.

By (3.2) we have that

c = Jλ(un) + o(1) =
1

p
M (‖un‖pW )− λ

2

∫
RN

(Iµ ∗ F (un))F (un) dx+ o(1).(3.8)
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Using this and (M1)–(M2), we find

1

2

∫
RN

(Iµ ∗ F (un))F (un) dx =
1

pλ
M (‖un‖pW )− c

λ
+
o(1)

λ
(3.9)

≥ m0

pθλ
‖un‖pW −

c

λ
+
o(1)

λ
→∞,

as n → ∞. We claim that meas(Ω1) = 0. Indeed, if meas(Ω1) 6= 0, from (3.1),

(3.6)–(3.8) and Fatou’s lemma, we have

+∞ =

∫
Ω1

lim inf
n→∞

(Iµ ∗ F (un(x)))F (un(x))

|un(x)|pθ
|ωn(x)|pθ dx(3.10)

−
∫

Ω1

lim sup
n→∞

C

‖un‖pθW
dx

≤
∫

Ω1

lim inf
n→∞

(
(Iµ ∗ F (un(x)))F (un(x))

|un(x)|pθ
|ωn(x)|pθ − C

‖un‖pθW

)
dx

≤ lim inf
n→∞

∫
Ω1

(
(Iµ ∗ F (un(x)))F (un(x))

|un(x)|pθ
|ωn(x)|pθ − C

‖un‖pθW

)
dx

= lim inf
n→∞

∫
Ω1

(
(Iµ ∗ F (un))F (un)

‖un‖pθW
− C

‖un‖pθW

)
dx

≤ lim inf
n→∞

∫
Ω1

M (1)(Iµ ∗ F (un))F (un)

M (‖un‖pW )
dx− lim inf

n→∞

∫
Ω1

C

‖un‖pθW
dx

≤ lim inf
n→∞

∫
RN

M (1)(Iµ ∗ F (un))F (un)

M (‖un‖pW )
dx− lim inf

n→∞

∫
Ω1

C

‖un‖pθW
dx

=
M (1)

p
lim inf
n→∞

∫
RN

(Iµ ∗ F (un))F (un)
1
pM (‖un‖pW )

dx

=
M (1)

p
lim inf
n→∞

∫
RN

(Iµ ∗ F (un))F (un) dx

λ

2

∫
RN

(Iµ ∗ F (un))F (un) dx+ c− o(1)

.

So, by (3.9) and (3.10), we get +∞ ≤ 2M (1)/(pλ). This is a contradiction.

This shows that meas(Ω1) = 0. Hence ω(x) = 0 for almost all x ∈ RN . The

convergence in (3.4) means that

(3.11) ωn(x)→ 0 a.e. in RN and ωn(x)→ 0 a.e. in Lr(RN ),

as n→∞, for p ≤ r < Np/(N − ps).
Using (3.2) and (M2), for n large enough, we get

c+ 1 ≥Jλ(un)− 1

pθ
〈J ′λ(un), un〉(3.12)

=
1

p
M (‖un‖pW )− 1

pθ
M(‖un‖pW )‖un‖pW
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+ λ

∫
RN

(Iµ ∗ F (un))

(
1

pθ
f(un)un −

1

2
F (un)

)
dx

≥λ
∫
RN

(Iµ ∗ F (un))

(
1

pθ
f(un)un −

1

2
F (un)

)
dx

=λ

∫
RN

(Iµ ∗ F (un))F (un) dx.

Let us define Ωn(a, b) := {x ∈ RN : a ≤ |un(x)| ≤ b} for a, b ≥ 0. From (M1)

and (M2), we have that

(3.13) M (‖un‖pW ) ≥ 1

θ
M(‖un‖pW )‖un‖pW ≥

m0

θ
‖un‖pW .

This together with (3.3) and (3.8) yields that

0 <
2

pλ
≤ lim sup

n→∞

1

M (‖un‖pW )

∫
RN

(Iµ ∗ F (un))F (un) dx(3.14)

= lim sup
n→∞

∫
RN

(Iµ ∗ F (un))F (un)

M (‖un‖pW )
dx

= lim sup
n→∞

(∫
Ωn(0,r0)

+

∫
Ωn(r0,∞)

)
(Iµ ∗ F (un))F (un)

M (‖un‖pW )
dx.

On the one hand, by Lemma 2.3, (3.13), (F2) and (3.11), we obtain∫
Ωn(0,r0)

(Iµ ∗ F (un))F (un)

M (‖un‖pW )
dx ≤ Kθ

m0

∫
Ωn(0,r0)

|F (un)|
‖un‖pW

dx(3.15)

≤ c0Kθ

m0

∫
Ωn(0,r0)

(
|un|q1

q1‖un‖pW
+
|un|q2

q2‖un‖pW

)
dx

=
c0Kθ

m0

∫
Ωn(0,r0)

(
|un|q1−p

q1
|ωn|p +

|un|q2−p

q2
|ωn|p

)
dx

≤ c0Kθ

m0

(
rq1−p0

q1
+
rq2−p0

q2

)∫
Ωn(0,r0)

|ωn|p dx→ 0,

as n → ∞. On the other hand, using the Hölder inequality, (3.11), (3.12) and

(F4), we find∫
Ωn(r0,∞)

|Iµ ∗ F (un)|F (un)

M (‖un‖pW )
dx ≤ θ

m0

∫
Ωn(r0,∞)

|Iµ ∗ F (un)|F (un)

‖un‖pW
dx(3.16)

=
θ

m0

∫
Ωn(r0,∞)

|Iµ ∗ F (un)|F (un)

|un|p
|ωn(x)|p dx

≤ θ

m0

(∫
Ωn(r0,∞)

(
|Iµ ∗ F (un)|F (un)

|un|p

)κ
dx

)1/κ

·
(∫

Ωn(r0,∞)

|ωn(x)|κp/(κ−1) dx

)(κ−1)/κ
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≤ θ

m0
c
1/κ
1

(∫
Ωn(r0,∞)

|Iµ ∗ F (un)|κF (un) dx

)1/κ

·
(∫

Ωn(r0,∞)

|ωn(x)|κp/(κ−1) dx

)(κ−1)/κ

≤ θ

m0
c
1/κ
1 K(κ−1)/κ

(∫
Ωn(r0,∞)

|Iµ ∗ F (un)|F (un) dx

)1/κ

·
(∫

Ωn(r0,∞)

|ωn(x)|κp/(κ−1) dx

)(κ−1)/κ

≤ θ

m0
c
1/κ
1 K(κ−1)/κ

(
c+ 1

λ

)1/κ

(3.17)

·

(∫
Ωn(r0,∞)

|ωn(x)|κp/(κ−1) dx

)(κ−1)/κ

→ 0,

as n → ∞. Here we used the fact that κp/(κ− 1) ∈ (p,Np/(N − ps)) if

κ > N/(ps). Thus, we get a contradiction from (3.14)–(3.16). �

Lemma 3.5. Assume that (V), (M1)–(M2) and (F1)–(F4) hold. Then the

functional Jλ satisfies (C)c-condition for any λ > 0.

Proof. Suppose that {un} ⊂W s,p
V (RN ) is a (C)c-sequence for Jλ(u), from

Lemma 3.4, we have that {un} is bounded in W s,p
V (RN ), then if necessary to a

subsequence, we have

(3.18)

un ⇀ u in W s,p
V (RN ), un → u a.e. in RN ,

un → u in Lq1(RN ) ∩ Lq2(RN ),

|un| ≤ `(x) a.e. in RN , for some `(x) ∈ Lq1(RN ) ∩ Lq2(RN ).

For simplicity, let ϕ ∈ W s,p
V (RN ) be fixed and Bϕ be the linear functional on

W s,p
V (RN ) defined by

Bϕ(v) =

∫∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
(v(x)− v(y)) dx dy.

for all v ∈W s,p
V (RN ). By the Hölder inequality, we have

|Bϕ(v)| ≤ [ϕ]p−1
s,p [v]s,p ≤ ‖ϕ‖p−1

W ‖v‖W ,

for all v ∈W s,p
V (RN ). Hence, (3.18) gives that

lim
n→∞

(
M(‖un‖pW )−M(‖u‖pW )

)
Bu(un − u) = 0,(3.19)

since
{
M(‖un‖pW )−M(‖u‖pW )

}
n

is bounded in R.

Since J ′λ(un)→ 0 in (W s,p
V (RN ))′ and un ⇀ u in W s,p

V (RN ), we have

〈J ′λ(un)− J ′λ(u), un − u〉 → 0 as n→∞.
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That is,

o(1) = 〈J ′λ(un)− J ′λ(u), un − u〉(3.20)

=M(‖un‖pW )

(
Bun(un − u) +

∫
RN

V (x)|un|p−2un(un − u) dx

)
−M(‖u‖pW )

(
Bu(un − u) +

∫
RN

V (x)|u|p−2u(un − u) dx

)
− λ

∫
RN

[
(Iµ ∗ F (un))f(un)− (Iµ ∗ F (u))f(u)

]
(un − u) dx

=M(‖un‖pW )
[
Bun(un − u)−Bu(un − u)

]
+
(
M(‖un‖pW )−M(‖u‖pW )

)
Bu(un − u)

+M(‖un‖pW )

∫
RN

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) dx

+
[
M(‖un‖pW )−M(‖u‖pW )

] ∫
RN

V (x)|u|p−2u(un − u) dx

− λ
∫
RN

[
(Iµ ∗ F (un))f(un)− (Iµ ∗ F (u))f(u)

]
(un − u) dx.

From Lemma 2.4, we have

(3.21)

∫
RN

[
(Iµ ∗ F (un))f(un)− (Iµ ∗ F (u))f(u)

]
(un − u) dx→ 0,

as n→∞. Moreover, using the Hölder inequality and (3.18), we have

(3.22)
[
M(‖un‖pW )−M(‖u‖pW )

] ∫
RN

V (x)|u|p−2u(un − u) dx→ 0,

as n→∞. From (3.19)–(3.22) and (M1), we obtain

lim
n→∞

M(‖un‖pW )

([
Bun(un − u)−Bu(un − u)

]
+

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u) dx

)
= 0.

Since

M(‖un‖pW )
[
Bun(un − u)−Bu(un − u)

]
≥ 0,

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) ≥ 0,

for all n by convexity, (M1) and (V1), we have

(3.23)

lim
n→∞

[
Bun(un − u)−Bu(un − u)

]
= 0,

lim
n→∞

∫
RN

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) dx = 0.
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Let us now recall the well-known Simon inequalities. There exist positive num-

bers cp and Cp, depending only on p, such that

(3.24) |ξ − η|p ≤


cp(|ξ|p−2ξ − |η|p−2η)(ξ − η) for p ≥ 2,

Cp
[
(|ξ|p−2ξ − |η|p−2η)(ξ − η)

]p/2
(|ξ|p + |η|p)(2−p)/2

for 1 < p < 2,

for all ξ, η ∈ RN . According to the Simon inequality, we divide the discussion

into two cases.

Case 1. p ≥ 2. From (3.23) and (3.24), as n→∞, we have

[un − u]ps,p =

∫∫
R2N

|un(x)− u(x)− un(y) + u(y)|p

|x− y|N+ps
dx dy

≤ cp
∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))− |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps

·
(
un(x)− u(x)− un(y) + u(y)

)
dx dy

= cp
[
Bun(un − u)−Bu(un − u)

]
= o(1),

and

‖un − u‖pp,V ≤ cp
∫
RN

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) dx = o(1).

Consequently, ‖un − u‖W → 0 as n→∞.

Case 2. 1 < p < 2. Taking ξ = un(x)− un(y) and η = u(x)− u(y) in (3.24),

as n→∞, we have

[un − u]ps,p ≤Cp
[
Bun(un − u)−Bu(un − u)

]p/2(
[un]ps,p + [u]ps,p

)(2−p)/2
≤Cp

[
Bun(un − u)−Bu(un − u)

]p/2(
[un]p(2−p)/2s,p + [u]p(2−p)/2s,p

)
≤C

[
Bun(un − u)−Bu(un − u)

]p/2
= o(1).

Here we used the fact that [un]s,p and [u]s,p are bounded, and the elementary

inequality

(a+ b)(2−p)/2 ≤ a(2−p)/2 + b(2−p)/2 for all a, b ≥ 0 and 1 < p < 2.

Moreover, by the Hölder inequality and (3.23), as n→∞,

‖un − u‖pp,V ≤Cp
∫
RN

V (x)
[(
|un|p−2un − |u|p−2u

)
(un − u)

]p/2
·
(
|un|p + |u|p

)(2−p)/2
dx

≤Cp
(∫

RN
V (x)

(
|un|p−2un − |u|p−2u

)
(un − u) dx

)p/2
·
(∫

RN
V (x)(|un|p + |u|p) dx

)(2−p)/2
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≤Cp
(
‖un‖p(2−p)/2p,V + ‖u‖p(2−p)/2p,V

)
·
(∫

RN
V (x)

(
|un|p−2un − |u|p−2u

)
(un − u) dx

)p/2
≤C

(∫
RN

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) dx

)p/2
→ 0.

Thus ‖un − u‖W → 0 as n→∞. �

Now we are ready to prove our main result.

Proof of Theorem 1.1. By Lemmas 3.2–3.5, we obtain that there exists

a critical point of functional Jλ, so problem (1.1) has a nontrivial weak solution

for any λ > 0. �
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