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Abstract. In this paper, we establish sufficient criteria for the existence
of solutions for generalized fractional differential equations and inclusions

supplemented with generalized fractional integral boundary conditions. We

make use of the standard fixed point theorems for single-valued and mul-
tivalued maps to obtain the desired results, which are well illustrated with

the aid of examples.

1. Introduction

Fractional calculus is a branch of mathematical analysis dealing with the

study of derivatives and integrals of non-integer order. Differential equations

involving fractional order derivatives are termed as fractional order differential

equations and find useful applications in physics, chemical technology, population

dynamics, biotechnology, economics, viscoelasticity, control theory of dynamical

systems, electrical networks optics and signal processing, rheology etc. For de-

tails and examples, we refer the reader to the books [3], [12], [17], [20], [23], [24]

and a series of articles [1], [2], [4]–[8] and the references cited therein.

2010 Mathematics Subject Classification. Primary: 26A33, 34A08; Secondary: 34B15.
Key words and phrases. Differential Equation; Caputo fractional derivative; fractional

integral; existence; fixed point.

1051



1052 S.K. Ntouyas — B. Ahmad — M. Alghanmi — A. Alsaedi

Fractional derivatives appear in terms of fractional integrals and have differ-

ent forms in contrast to the classical integer order derivative. Riemann–Liouville

and Hadamard fractional integrals are the well-known examples of fractional

integrals used for defining several types of fractional derivatives. A new frac-

tional integral, known as generalized Riemann–Liouville fractional integral or

Katugampola fractional integral, unifies the Riemann–Liouville and Hadamard

integrals into a single integral [15]. The fractional derivative expressed in terms

of generalized fractional integral is known as generalized fractional derivative [16]

(see definitions in Section 2). Recently, Lupinska and Odzijewicz [22] obtained

a Lyapunov-type inequality for fractional boundary value problem with Katu-

gampola fractional derivative.

In this paper, we initiate the study of a new class of boundary value prob-

lems involving generalized fractional derivatives and integrals. Precisely, we in-

vestigate the existence and uniqueness of solutions for the following generalized

fractional differential equation and inclusions:

ρDαy(t) = f(t, y(t)), t ∈ [0, T ],(1.1)

ρDαy(t) ∈ F (t, y(t)), t ∈ [0, T ],(1.2)

supplemented with the following nonlocal boundary conditions:

(1.3) y(0) = 0, y(T ) = λ
ρ1−β

Γ(β)

∫ ξ

0

sρ−1

(ξρ − sρ)1−β
y(s) ds := λ ρIβy(ξ),

for ξ ∈ (0, T ),

(1.4) y(0) = 0, y(T ) =

n∑
i=1

λiy(ξi), ξi ∈ (0, T ),

and

(1.5) y(0) = 0, y(T ) =

n∑
i=1

λi
ρIβy(ξi), ξi ∈ (0, T ),

where ρDα is the generalized (Katugampola) fractional derivative of order 1 <

α ≤ 2, ρ > 0, ρIβ is the generalized (Katugampola) type fractional integral

of order β > 0, ρ > 0, f : [0, T ] × R → R is a continuous function, λ, λi ∈ R,

i = 1, . . . , n, and F : [0, T ] × R → P(R) is a multivalued function (P(R) is the

family of all nonempty subjects of R). Note that the boundary conditions (1.3)

and (1.5) involve generalized fractional integrals.

The rest of the paper is organized as follows. In Subsection 3.1, we present

the existence and uniqueness results for the problem (1.1) and (1.3) by using

Banach’s contraction mapping principle, Krasnoselskii’s fixed point theorem and

Leray-Schauder nonlinear alternative. The existence of solutions for the equa-

tion (1.1) equipped with the boundary conditions (1.4) and (1.5) is outlined in

Subsection 3.2. Existence results for the inclusions problem (1.2) and (1.3) are
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studied in Section 4 via Leray–Schauder nonlinear alternative for multi-valued

maps and Covitz and Nadler fixed point theorem for multi-valued contractions.

Examples illustrating the obtained results are also included.

2. Preliminaries

For c ∈ R, 1 ≤ p ≤ ∞, let Xp
c (a, b) denote the space of all complex-valued

Lebesgue measurable functions φ on (a, b) with ‖φ‖Xp
c
<∞, and

‖φ‖Xp
c

=

(∫ b

a

|xcφ(x)|p dx
x

)1/p

<∞.

In particular, when c = 1/p and p = 1, the space Xp
c (a, b) coincides with the

L1(a, b)-space (L1(a, b) denote the space of all Lebesgue measurable functions ϕ

on (a, b) equipped with the norm

‖ϕ‖L1 =

∫ b

a

|ϕ(x)| dx <∞.

Definition 2.1 [15]. The generalized fractional integral of order α > 0 and

ρ > 0 of f ∈ Xp
c (a, b) for −∞ < a < t < b <∞, is defined by

(2.1) (ρIαa+f)(t) =
ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
f(s) ds.

Note that the integral in (2.1) is called the left-sided fractional integral.

Example 2.2. Let α > 0 and ρ ∈ R. Then

ρIαtq =
tρα+q

ρα

Γ

(
q

ρ
+ 1

)
Γ

(
q

ρ
+ α+ 1

) .
Similarly we can define right-sided fractional integral ρIαb−f as

(2.2) (ρIαb−f)(t) =
ρ1−α

Γ(α)

∫ b

t

sρ−1

(sρ − tρ)1−α
f(s) ds.

Remark 2.3. The above definitions for generalized fractional integrals re-

duce to the ones for the standard Riemann–Liouville fractional integrals and

Hadamard fractional integrals (see [17]) for ρ = 1 and ρ→ 0 respectively [15].

Definition 2.4 ([16]). The generalized fractional derivatives associated with

the generalized fractional integrals (2.1) and (2.2) are defined, for 0 ≤ a < x <

b <∞ as follows:

(ρDα
a+f)(t) =

(
t1−ρ

d

dt

)n
(ρIn−αa+ f)(t)

=
ρα−n+1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)α−n+1
f(s) ds,
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(ρDα
b−f)(t) =

(
− t1−ρ d

dt

)n
(ρIn−αb− f)(t)

=
ρα−n+1

Γ(n− α)

(
− t1−ρ d

dt

)n ∫ b

t

sρ−1

(sρ − tρ)α−n+1
f(s) ds.

Lemma 2.5 ([16]). Let 0 < α < 1 and f ∈ Xp
c (a, b), ρ > 0. Then, for a > 0,

ρ > 0, (
ρDα

a+
ρIαa+

)
f(t) = f(t).

Lemma 2.6 ([16]). Let α, β ∈ C. Let 0 < a < b <∞ and 1 ≤ p ≤ ∞. Then,

for f ∈ Xp
c (a, b), ρ > 0,

ρIαa+
ρIβa+f = ρIα+βa+ f and ρDα

a+
ρDβ

a+f = ρDα+β
a+ f.

We remark in passing that the the generalized fractional integral and the

generalized fractional derivative of f with a = 0 are denoted by ρIαf and ρDαf ,

respectively.

Let C([0, T ],R) denote the Banach space of all continuous functions from

[0, T ] to R endowed with the norm defined by ‖y‖ = sup
t∈[0,T ]

|y(t)|. Let AC[0, T ]

denotes the space of all absolutely continuous real valued function on [0, T ].

Moreover, let us introduce the space AC2
ρ by

AC2
ρ [0, T ] =

{
f : [0, T ]→ R :

(
t1−ρ

d

dt

)
f(t) ∈ AC[0, T ]

}
.

Lemma 2.7 [22]. Let α, ρ > 0, n = [α] + 1, u ∈ C(0, T ) ∩ Xp
c (0, T ) and

ρIn−αu ∈ AC2
ρ . Then the general solution of the fractional differential equation

ρDαu(t) = 0 is

u(t) = c1t
ρ(α−1) + . . .+ cnt

ρ(α−n),

where ci ∈ R, i = 1, . . . , n. Moreover,

ρIα ρDαu(t) = u(t) + c1t
ρ(α−1) + . . .+ cnt

ρ(α−n).

Definition 2.8. A function y ∈ C([0, T ],R) is said to be a solution of

(1.1) and (1.3) if y satisfies the equation ρDαy(t) = f(t, y(t)) on [0, T ], and

the condition y(0) = 0, y(T ) = λ ρIβy(ξ).

Relative to the problem (1.1) and (1.3), we consider the following lemma.

Lemma 2.9. Let h ∈ C(0, T )∩L1(0, T ), y ∈ C([0, T ],R) such that ρI2−αy ∈
AC2

ρ [0, T ] and

(2.3) Λ1 = T ρ(α−1) − λ Γ(α)

ρβΓ(α+ β)
ξρ(α+β−1) 6= 0.

Then the solution of the linear equation

(2.4) ρDαy(t) = h(t), t ∈ [0, T ],
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supplemented with the conditions (1.3) is equivalent to the integral equation:

(2.5) y(t) = ρIαh(t) +
tρ(α−1)

Λ1

{
λ ρIα+βh(ξ)− ρIαh(T )

}
.

Proof. Applying the operator ρIα on the generalized linear fractional dif-

ferential equation (2.4) and using Lemma 2.7, we obtain

(2.6) y(t) = ρIαh(t) + c1t
ρ(α−1) + c2t

ρ(α−2),

where c1 and c2 are arbitrary unknown constants. Using the first boundary

condition y(0) = 0 in (2.6), we get c2 = 0. Applying the generalized integral to

(2.6) after inserting the value of c2, we get

(2.7) ρIβy(t) = ρIα+βh(t) + c1
Γ(α)

ρβΓ(α+ β)
tρ(α+β−1).

From the second boundary condition y(T ) = λ ρIβy(ξ), we have

ρIαh(T ) + c1T
ρ(α−1) = λ ρIα+βh(ξ) + c1λ

Γ(α)

ρβΓ(α+ β)
ξρ(α+β−1),

which yields

c1 =
1

Λ1

{
λ ρIα+βh(ξ)− ρIαh(T )

}
.

Substituting the value of c1 in (2.6) we get the equation (2.5). The converse

follows by direct computation. �

Now we give two lemmas associated with the nonlinear boundary value prob-

lems (1.1) and (1.4), and (1.1) and (1.5). One can obtain the proof of these results

by using the arguments employed in Lemma 2.9.

Lemma 2.10. For any h ∈ C(0, T ) ∩ L(0, T ), y ∈ C([0, T ],R) such that
ρI2−αy ∈ AC2

ρ [0, T ] and

(2.8) Λ2 = T ρ(α−1) −
n∑
i=1

λiξ
ρ(α−1)
i 6= 0,

the solution of the equation (2.4) with the boundary conditions (1.4) is given by

(2.9) y(t) = ρIαh(t) +
tρ(α−1)

Λ2

{ n∑
i=1

λi
ρIαh(ξi)− ρIαh(T )

}
.

Lemma 2.11. For any h ∈ C(0, T ) ∩ L(0, T ), y ∈ C([0, T ],R) such that
ρI2−αy ∈ AC2

ρ [0, T ] and

(2.10) Λ3 = T ρ(α−1) −
n∑
i=1

λi
Γ(α)

ρβΓ(α+ β)
ξ
ρ(α+β−1)
i 6= 0,

the solution of the equation (2.4) with the boundary conditions (1.5) is given by

(2.11) y(t) = ρIαh(t) +
tρ(α−1)

Λ3

{ n∑
i=1

λi
ρIα+βh(ξi)− ρIαh(T )

}
.
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3. Main results for the single valued problems

This section is devoted to the existence of solutions for the fractional differ-

ential equation (1.1) supplemented with the boundary conditions (1.3)–(1.5).

3.1. Existence results for the problem (1.1) and (1.3). Here we dis-

cuss the existence and uniqueness of solutions for the problem (1.1) and (1.3). In

relation to the problem (1.1) and (1.3), we define an operator F1 : C([0, T ],R)→
C([0, T ],R) by

(3.1) F1(y)(t) = ρIαf(t, y(t)) +
tρ(α−1)

Λ1

{
λ ρIα+βf(ξ, y(ξ))− ρIαf(T, y(T ))

}
,

For computational convenience, we set

(3.2) A1 =
T ρα

ραΓ(α+ 1)
+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
.

In the first result we establish the uniqueness of solutions for the problem (1.1)

and (1.3) via Banach’s fixed point theorem.

Theorem 3.1. Let f : [0, T ]×R→ R be a continuous function satisfying the

assumption:

(H1) |f(t, x)− f(t, y)| ≤ ϑ‖x− y‖, for all t ∈ [0, T ], ϑ > 0, x, y ∈ R.

Then the problem (1.1) and (1.3) has a unique solution on [0, T ] if

(3.3) ϑA1 < 1,

where A1 is given by (3.2).

Proof. In view of the condition (3.2), consider the set

Br = {y ∈ C([0, T ],R) : ‖y‖ ≤ r}

with r > f0A1/(1− ϑA1), sup
t∈[0,T ]

|f(t, 0)| = f0, and show that F1Br ⊂ Br, where

F1 is defined by (3.1). For y ∈ Br, we have

|F1(y)(t)| =
∣∣∣∣ρIαf(t, y(t)) +

tρ(α−1)

Λ1

{
λ ρIα+βf(ξ, y(ξ))− ρIαf(T, y(T ))

}∣∣∣∣
≤ ρIα

(
|f(t, y(t))− f(t, 0)|+ |f(t, 0)|

)
+
tρ(α−1)

|Λ1|
{
|λ| ρIα+β

(
|f(ξ, y(ξ))− f(ξ, 0)|+ |f(ξ, 0)|

)
+ ρIα

(
|f(T, y(T ))− f(T, 0)|+ |f(T, 0)|

)}
≤ (ϑr + f0)

[
T ρα

ραΓ(α+ 1)
+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)

+
T ρα

ραΓ(α+ 1)

}]
= (ϑr + f0)A1 < r,
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where A1 is given by (3.2). For the above inequality, it follows that ‖F1y‖ < r,

for any y ∈ Br. Thus F1Br ⊂ Br. Now, for y, z ∈ C([0, T ],R) and for each

t ∈ [0, T ], we obtain

|F1(y)(t)− F1(z)(t)| ≤ ρIα|f(t, y(t))− f(t, z(t))|

+
tρ(α−1)

Λ1

{
|λ| ρIα+β |f(ξ, y(ξ))− f(ξ, z(ξ))|+ ρIα|f(T, y(T ))− f(T, z(T ))|

}
≤ϑ
[

T ρα

ραΓ(α+ 1)
+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
‖y − z‖

=ϑA1‖y − z‖,

which, by taking the norm for t ∈ [0, T ], yields

(3.4) ‖F1(y)− F1(z)‖ ≤ ϑA1‖y − z‖.

By the condition ϑA1 < 1, it follows from (3.4) that the operator F1 is a contrac-

tion. Thus, the conclusion of the theorem follows by the contraction mapping

principle (Banach fixed point theorem). �

In the next result, we prove the existence of solutions for the problem (1.1)

and (1.3) by applying Leray–Schauder nonlinear alternative.

Lemma 3.2 (Nonlinear alternative for single valued maps, [13]). Let S be

a closed, convex nonempty subset of a Banach space E, U an open subset of S
and 0 ∈ U . Suppose that F : U → S is a continuous, compact (that is, F(U) is

a relatively compact subset of S) map. Then, either F has a fixed point in U or

there is a u ∈ ∂U (the boundary of U in S) and λ ∈ (0, 1) with u = λF(u).

Theorem 3.3. Assume that :

(H2) there exist a function p ∈ L1([0, T ],R+) and a nondecreasing function

Ω: R+ → R+ such that |f(t, y)| ≤ p(t)Ω(‖y‖), for all (t, y) ∈ [0, T ]× R;

(H3) there exists a constant K > 0 such that

K

Ω(K)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ|ρIα+βp(ξ) +ρ Iαp(T )

}) > 1.

Then the problem (1.1) and (1.3) has at least one solution on [0, T ].

Proof. First of all, we show that the operator F1 : C([0, T ],R)→C([0, T ],R)

defined by (3.1) is continuous and completely continuous. This will be established

in several steps.

Step 1. F1 is continuous. Let {yn} be a sequence such that yn → y in

C([0, T ],R). Then
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|F1(yn)(t)− F1(y)(t)| ≤ ρIα|f(t, yn(t))− f(t, y(t))|

+
tρ(α−1)

Λ1

{
|λ| ρIα+β |f(ξ, yn(ξ))− f(ξ, y(ξ))|+ ρIα|f(T, yn(T ))− f(T, y(T ))|

}
≤ A1‖f( · , yn)− f( · , y)‖.

Since f is continuous functions, therefore, we have

‖F1(yn)− F1(y)‖ ≤ A1‖f( · , yn)− f( · , y)‖ → 0, as n→∞.

Step 2. F1 maps bounded sets into bounded sets in C([0, T ],R). Indeed, it is

enough to show that for any µ > 0 there exists a positive constant ` such that

for y ∈ Bµ = {y ∈ C([0, T ],R) : ‖y‖ ≤ µ}, we have ‖F1(y)‖ ≤ `. By (H2), for

each t ∈ [0, T ], we have

|F1(y)(t)| ≤ ρIα|f(t, y(t))|+ tρ(α−1)

|Λ1|
{
|λ| ρIα+β |f(ξ, y(ξ))|+ ρIα|f(T, y(T ))|

}
≤ ρIαp(T )Ω(‖y‖) +

tρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ)Ω(‖y‖) + ρIαp(T )Ω(‖y‖)

}
≤ Ω(‖y‖)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
,

Thus

‖F1(y)‖ ≤ Ω(‖µ‖)
(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
:= `.

Step 3. F maps bounded sets into equicontinuous sets of C([0, T ],R). Let

0 < t1 < t2 < T, Bµ be a bounded set of C([0, T ],R) as in Step 2, and let y ∈ Bµ.

Then

|F1(y)(t2) − F1(y)(t1)|

≤
∣∣ρIα|f(t2, y(t2))| − ρIα|f(t1, y(t1))|

∣∣
+

Ω(µ)|tρ(α−1)2 − tρ(α−1)1 |
|Λ1|

{
|λ| ρIα+βp(ξ) + ρIαp(T )

}
≤ ρ1−αΩ(µ)

Γ(α)

∣∣∣∣ ∫ t1

0

[
sρ−1

(tρ2 − sρ)1−α
− sρ−1

(tρ1 − sρ)1−α

]
p(s) ds

+

∫ t2

t1

sρ−1

(tρ2 − sρ)1−α
p(s) ds

∣∣∣∣
+

Ω(µ)
∣∣tρ(α−1)2 − tρ(α−1)1

∣∣
|Λ1|

{
|λ| ρIα+βp(ξ) + ρIαp(T )

}
.

As t1 → t2, the right-hand side of the above inequality is independent of y and

tends to zero. In view of the foregoing three steps, the Arzelá–Ascoli theorem

applies. In consequence, we conclude that F1 : C([0, T ],R) → C([0, T ],R) is

completely continuous.
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Step 4. We show that there exists an open set U ⊆ C([0, T ],R) with y 6=
νF1(y) for ν ∈ (0, 1) and y ∈ ∂U . Let y ∈ C([0, T ],R) be a solution of y = νF1y

for ν ∈ [0, 1]. Then, for t ∈ [0, T ], we have

|y(t)| = |ν(F1y)(t)|

≤ ρIα|f(t, y(t))|+ tρ(α−1)

|Λ1|
{
|λ| ρIα+β |f(ξ, y(ξ))|+ ρIα|f(T, y(T ))|

}
≤ ρIαp(T )Ω(‖y‖) +

tρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ)Ω(‖y‖) + ρIαp(T )Ω(‖y‖)

}
≤ Ω(‖y‖)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
,

which, by taking the norm for t ∈ [0, T ], implies that

‖y‖

Ω(‖y‖)
(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

}) ≤ 1.

In view of (H3), there exists K such that ‖y‖ 6= K. Let us set

U = {y ∈ C([0, T ],R) : ‖y‖ < K}.

Note that the operator F1 : U → C([0, T ],R) is continuous and completely con-

tinuous.

From the choice of U , there is no y ∈ ∂U such that y = νF1(y) for some

ν ∈ (0, 1). Consequently, by the nonlinear alternative of Leray–Schauder type

(Lemma 3.2), we deduce that F1 has a fixed point y ∈ U which is a solution of

the problem (1.1) and (1.3). �

Remark 3.4. The condition (H2) can be modified by assuming p ∈ C([0, T ],

R+) instead of p ∈ L1([0, T ],R+). In this case, the constant K in condition (H3)

will take the form:
K

Ω(K)‖p‖A1
> 1.

As a special case, when p(t) = 1 and Ω(‖y‖) = d1‖y‖ + d2, we have the

following corollary.

Corollary 3.5. Let f : [0, T ] × R → R be a continuous function. Assume

that

(H4) there exist constants 0 ≤ d1 < 1/A1 and d2 > 0 such that

|f(t, y)| ≤ d1|y|+ d2 for all t ∈ [0, T ], y ∈ R.

Then the problem (1.1) and (1.3) has at least one solution on [0, T ].

In the last result, we prove the existence of solutions for the problem (1.1)

and (1.3) by applying Krasnosel’skĭı’s fixed point theorem.
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Lemma 3.6 (Krasnosel’skĭı’s fixed point theorem, [19]). Let M be a closed

convex and nonempty subset of a Banach space X. Let A1, A2 be the operators

such that

(a) A1x+A2y ∈M whenever x, y ∈M ,

(b) A1 is compact and continuous, and A2 is a contraction mapping.

Then there exists w ∈M such that w = A1w +A2w.

Theorem 3.7. Let f : [0, T ] × R → R be a continuous function, and the

assumption (H1) holds. In addition we assume that

(H5) |f(t, y)| ≤ θ(t), for all (t, y) ∈ [0, T ]× R and θ ∈ C([0, T ],R).

Then the problem (1.1) and (1.3) has at least one solution on [0, T ], provided that

(3.5) ϑ
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
< 1.

Proof. Letting sup
t∈[0,T ]

|θ(t)| = ‖θ‖ and r ≥ A1‖θ‖, we define Br = {y ∈

C([0, T ],R) : ‖y‖ ≤ r}. Introduce operators P and Q on Br as

P(y)(t) = ρIαf(s, y(s))(t),

Q(y)(t) =
tρ(α−1)

Λ1

{
λ ρIα+βf(s, y(s))(ξ)− ρIαf(s, y(s))(T )

}
.

Note that F1 = P +Q. For y, z ∈ Br, it easy to find that

‖Py +Qz‖ ≤ ‖θ‖
[

T ρα

ραΓ(α+ 1)

+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
≤ r.

Thus, Py +Qz ∈ Br.
It follows from the assumptions (H1) and (3.5) that Q is a contraction map-

ping, that is, for y, z ∈ C([0, T ],R) and for each t ∈ [0, T ], we have

‖Q(y)(t) −Q(z)(t)‖

≤ sup
t∈[0,T ]

{
tρ(α−1)

Λ1

(
|λ| ρIα+β |f(ξ, y(ξ))− f(ξ, z(ξ))|

+ ρIα|f(T, y(T ))− f(T, z(T ))|
)}

≤ϑT
ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
‖y − z‖.

Continuity of f implies that the operator P is continuous. Also, P is uniformly

bounded on Br as

‖Px‖ ≤ ‖θ‖ T ρα

ραΓ(α+ 1)
.
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Finally, we prove the compactness of the operator P. For that we define

sup
(t,y)∈[0,T ]×Br

|f(t, y)| = f <∞.

Then, for 0 < t1 < t2 < T , we have

|Py(t2) − Py(t1)|

≤ ρ1−α

Γ(α)

∣∣∣∣ ∫ t1

0

[
sρ−1

(tρ2 − sρ)1−α
− sρ−1

(tρ1 − sρ)1−α

]
f(s, y(s)) ds

+

∫ t2

t1

sρ−1

(tρ2 − sρ)1−α
f(s, y(s)) ds

∣∣∣∣
≤ ρ1−αf

Γ(α)

∣∣∣∣ ∫ t1

0

[
sρ−1

(tρ2 − sρ)1−α
− sρ−1

(tρ1 − sρ)1−α

]
ds+

∫ t2

t1

sρ−1

(tρ2 − sρ)1−α
ds

∣∣∣∣
≤ f

ραΓ(α+ 1)

∣∣2(tρ2 − t
ρ
1)α + tρα1 − t

ρα
2

∣∣,
which is independent of y and tends to zero as t2− t1 → 0. Thus, P is equiconti-

nuous. So P is relatively compact on Br. Hence, by the Arzelá–Ascoli theorem,

P is compact on Br. Thus all the assumptions of Theorem 3.7 are satisfied.

Hence, by Lemma 3.6, we deduce that the problem (1.1) and (1.3) has at least

one solution on [0, T ]. �

Example 3.8. Consider the following boundary value problem

(3.6)


1/2D7/5y(t) =

1

20(t+ 1)

(
|y|+ 2

|y|+ 1
+ cos t

)
, t ∈ [0, 2],

y(0) = 0, y(2) = 1/3 1/2I4/5y(3/2),

where ρ = 1/2, α = 7/5, λ = 1/3, β = 4/5, ξ = 3/2 and T = 2. Using the

given data, we find that |Λ1| = 0.5526156533, A1 = 12.67699740, where Λ1 and

A1 are respectively given by (2.3) and (3.2). One can easily check that f(t, y)

is continuous and the condition (H1) of Theorem 3.1 holds true with ϑ = 1/20.

Also ϑA1 ≈ 0.63384987 < 1. Thus all the conditions of Theorem 3.1 are satisfied.

So, by the conclusion of theorem 3.1, the problem (3.6) has a unique solution

on [0, 2].

Further, the hypothesis of Theorem 3.7 is satisfied with

θ(t) =
2 + cos t

20(1 + t)
.

Also

ϑ
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
≈ 0.4612850793 < 1.

Thus the conclusion of Theorem 3.7 applies to the problem (3.6).
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3.2. Existence results for the problems (1.1) with (1.4) and (1.5).

We introduce an operator F2 : C([0, 1],R) → C([0, T ],R), associated with the

problem (1.1) and (1.4), defined as

(3.7) F2(y)(t) = ρIαf(t, y(t))

+
tρ(α−1)

Λ2

{ n∑
i=1

λi
ρIαf(ξi, y(ξi))− ρIαf(T, y(T ))

}
,

where Λ2 is defined by (2.8). Furthermore, we set

(3.8) A2 =
T ρα

ραΓ(α+ 1)
+
T ρ(α−1)

|Λ2|

{ n∑
i=1

|λi|
ξραi

ραΓ(α+ 1)
+

T ρα

ραΓ(α+ 1)

}
.

The existence results for the problem (1.1) and (1.4), similar to ones for the

problem (1.1) and (1.3) obtained in Section 3, can be proved with the aid of the

operator F2 and the constant A2 given by (3.7) and (3.8) respectively. So, we

formulate the results without proof.

Theorem 3.9. Suppose that the condition (H1) holds. Then the problem

(1.1) and (1.4) has a unique solution on [0, T ] if ϑA2 < 1, where A2 is given

by (3.8).

Theorem 3.10. Assume that (H2) and the following condition hold :

(H6) there exists a constant K > 0 such that

K

Ω(K)

(
ρIαp(T ) +

T ρ(α−1)

|Λ2|

{ n∑
i=1

|λi|ρIαp(ξi) +ρ Iαp(T )

}) > 1.

Then the problem (1.1) and (1.4) has at least one solution on [0, T ].

Theorem 3.11. Assume that the conditions (H1) and (H5) hold. Then the

problem (1.1) and (1.4) has at least one solution on [0, T ], provided that

(3.9) ϑ
T ρ(α−1)

|Λ1|

{ n∑
i=1

|λi|
ξραi

ραΓ(α+ 1)
+

T ρα

ραΓ(α+ 1)

}
< 1.

Next, for the problem (1.1) and (1.5), we define an operator F3 : C([0, 1],R)

→ C([0, T ],R) by

F3(y)(t) = ρIαf(t, y(t))(3.10)

+
tρ(α−1)

Λ3

{ n∑
i=1

λi
ρIα+βf(ξi, y(ξi))− ρIαf(T, y(T ))

}
where Λ3 is defined by (2.10). Let us set

(3.11) A3 =
T ρα

ραΓ(α+ 1)
+
T ρ(α−1)

|Λ3|

{ n∑
i=1

|λi|
ξ
ρ(α+β)
i

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
.
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The existence results for the problem (1.1) and (1.5) can be obtained with the

help of the operator F3 and the constant A3. As before, we only state these

results.

Theorem 3.12. Suppose that the condition (H1) holds. Then the problem

(1.1) and (1.5) has a unique solution on [0, T ] if ϑA3 < 1, where A3 is given

by (3.11).

Theorem 3.13. Assume that (H2) and the following condition hold :

(H7) there exists a constant K > 0 such that

K

Ω(K)

(
ρIαp(T ) +

T ρ(α−1)

|Λ3|

{ n∑
i=1

|λi|ρIα+βp(ξi) +ρ Iαp(T )

}) > 1.

Then the problem (1.1) and (1.5) has at least one solution on [0, T ].

Theorem 3.14. Assume that the conditions (H1) and (H5) hold. Then the

problem (1.1) and (1.5) has at least one solution on [0, T ], provided that

(3.12) ϑ
T ρ(α−1)

|Λ3|

{ n∑
i=1

|λi|
ξ
ρ(α+β)
i

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
< 1.

Example 3.15. Let us consider the following boundary value problem

(3.13)

1/2D7/5y(t) = f(t, y(t)), t ∈ [0, 2],

y(0) = 0, y(2) = y(3/4) + 1/3 y(3/2),

where ρ = 1/2, α = 7/5, λ1 = 1, λ2 = 1/3, ξ1 = 3/4, ξ2 = 3/2 and T = 2 and

f(t, y(t)) will be fixed later.

Using the given values, we find that |Λ2| = 0.1568797472, A2 = 48.32814774,

where Λ2 and A2 are respectively given by (2.8) and (3.8). For illustrating

Theorem 3.9, we take

(3.14) f(t, y) =
1

3
√

900 + t2
e−t
(
tan−1 y + cos t

)
.

Notice that f(t, y) is continuous and satisfies the condition (H1) with ϑ = 1/90.

Also ϑA2 ≈ 0.5369794193 < 1. Thus all the conditions of Theorem 3.9 are

satisfied. Hence the conclusion of Theorem 3.9 applies to the problem (3.13)

with f(t, y) given by (3.14).

In order to illustrate Theorem 3.10, we take

(3.15) f(t, y(t)) =
(1 + t)

90

(
tan−1 y + y +

1

8

)
,

where p(t) = (1 + t)/90 and ψ(||y||) = ||y||+ (4π + 1)/8. By condition (H6), we

have K > 5.021036057. Thus all the conditions of Theorem 3.10 are satisfied
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and consequently the problem (3.13) with f(t, y) given by (3.15) has at least one

solution on [0, 2].

Example 3.16. Consider the following boundary value problem

(3.16)

1/2D7/5y(t) = f(t, y(t)), t ∈ [0, 2],

y(0) = 0, y(2) = 1/2I4/5y(3/4) + 1/3 1/2I4/5y(3/2),

where ρ = 1/2, α = 7/5, λ1 = 1, λ2 = 1/3, β = 4/5, ξ1 = 3/4, ξ2 = 3/2 and

T = 2 and f(t, y(t)) will be defined later.

Using the given data, we find that |Λ3| = 0.6271881077, A3 = 14.11003320,

where Λ3 and A3 are respectively given by (2.10) and (3.11). For illustrating

Theorem 3.12, we take

(3.17) f(t, y(t)) =
1

20(t+ 1)

(
|y|+ 2

|y|+ 1
+ cos t

)
.

Observe that f(t, y) is continuous and satisfies the condition (H1) with ϑ = 1/20.

Also ϑA3 ≈ 0.70550166 < 1. Thus all the conditions of Theorem 3.12 are satisfied

and hence its conclusion applies to the problem (3.16) with f(t, y) given by (3.17).

Next we illustrate Theorem 3.14 by taking f(t, y) given by (3.17). Clearly,

the hypothesis of Theorem 3.14 holds true with θ(t) = (2 + cos t)/(20(1 + t)).

Also

ϑ
T ρ(α−1)

|Λ3|

{ n∑
i=1

|λi|
ξ
ρ(α+β)
i

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}
≈ 0.5329368695 < 1.

Hence we deduce by Theorem 3.14 that there exist at least one solution for the

problem (3.16) with f(t, y) given by (3.17).

4. Main results for the multivalued problem (1.2) and (1.3)

This section is devoted to the existence of solutions for the problem (1.2)

and (1.3). The existence of solutions for the problems (1.2) and (1.4), and (1.2)

and (1.5) can be studied by employing the strategy used in this section. Let us

first turn to some preliminary concepts of multivalued analysis [11], [14].

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcl,b(X) = {Y ∈ P(X) : Y is closed and

bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :

Y is compact and convex}.
A multi-valued map G : X → P(X) is

(a) convex (closed) valued if G(x) is convex (closed) for all x ∈ X.

(b) bounded on bounded sets if G(Y ) =
⋃
x∈Y

G(x) is bounded in X for all

Y ∈ Pb(X)
(

i.e. sup
x∈Y
{sup{|y| : y ∈ G(x)}} <∞

)
.
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(c) upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)

is a nonempty closed subset of X, and if for each open set N of X

containing G(x0), there exists an open neighborhood N0 of x0 such that

G(N0) ⊆ N .

(d) completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multi-valued map G is completely continuous with nonempty com-

pact values, then G is u.s.c. if and only if G has a closed graph, i.e.

xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

(e) measurable if for every y ∈ X, the function

t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Recall that G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed

point set of the multivalued operator G will be denoted by FixG.

4.1. The Carathéodory case. In this subsection, we consider the case

when F has convex values and is of Carathéodory type, and prove an existence

result for the problem (1.2) and (1.3) by applying nonlinear alternative of Leray-

Schauder type.

Definition 4.1. A multivalued map F : J × R → P(R) is said to be Cara-

théodory if

(a) t 7→ F (t, y) is measurable for each x ∈ R;

(b) y 7→ F (t, y) is upper semicontinuous for almost all t ∈ J .

Further, a Carathéodory function F is called L1-Carathéodory if

(c) for each β > 0, there exists ϕβ ∈ L1(J,R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ ϕβ(t)

for all ‖y‖ ≤ β and for almost every t ∈ J .

For each y ∈ C([0, T ],R), define the set of selections of F by

SF,y :=
{
v ∈ L1([0, T ],R) : v(t) ∈ F (t, y(t)) on [0, T ]

}
.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X ×Y, y ∈ G(x)} and

state a known result for closed graphs and upper-semicontinuity.

Lemma 4.2 ([11, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G) is

a closed subset of X×Y , i.e. for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y ,

if xn → x∗, yn → y∗ as n → ∞ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely,

if G is completely continuous and has a closed graph, then it is upper semi-

continuous.

We also need the following lemmas in the sequel.
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Lemma 4.3 ([21]). Let X be a separable Banach space. Let F : J × R →
Pcp,c(X) be an L1-Carathéodory multivalued map and let Θ be a linear continu-

ous mapping from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X)→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C(J,X)× C(J,X).

Lemma 4.4 (Nonlinear alternative for Kakutani maps, [13]). Let E be a Ba-

nach space, C a closed convex subset of E, U an open subset of C and 0 ∈ U .

Suppose that F : U → Pcp,c(C) is a upper semicontinuous compact map. Then

either

(a) F has a fixed point in U, or

(b) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Definition 4.5. A function y ∈ C([0, T ],R) is said to be a solution of the

boundary value problem (1.2)–(1.3) if y(0) = 0, y(T ) = λ ρIβy(ξ) and there

exists function v ∈ L1([0, 1],R) such that v(t) ∈ F (t, y(t)) almost everywhere on

[0, T ] and

y(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ)− ρIαv(T )

}
.

Theorem 4.6. Assume that

(B1) F : [0, T ]× R→ Pcp,c(R) is L1-Carathéodory,

(B2) there exists a continuous nondecreasing function Φ: [0,∞)→ (0,∞) and

a function p ∈ L1([0, T ],R+) such that

‖F (t, y)‖P := sup{|x| : x ∈ F (t, y)} ≤ p(t)Φ(‖y‖) for each (t, y) ∈ [0, T ]× R,

(B3) there exists a constant K̂ > 0 such that

K̂

Φ(K̂)

(
ρIαp(T ) +

T ρ(α−1)

Λ1

(
|λ| ρIα+βp(ξ) + ρIαp(T )

)) > 1.

Then the problem (1.2) and (1.3) has at least one solution on [0, T ].

Proof. To transform the problem (1.2) and (1.3) into a fixed point problem,

we define an operator F : C([0, T ],R)→ P(C([0, T ],R)) by

(4.1) F(y) = {h ∈ C([0, T ],R) : h(t) = N(y)(t)},

where

N(y)(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ) + ρIαv(T )

}
,

for v ∈ SF,x. It is obvious that the fixed points of F are solutions of the problem

(1.2) and (1.3).

We will show that F satisfies the assumptions of Leray-Schauder nonlinear

alternative (Lemma 4.4) in several steps.



Generalized Fractional Differential Equations and Inclusions 1067

Step 1. F(y) is convex for each y ∈ C([0, T ],R). This step is obvious since

SF,y is convex (F has convex values).

Step 2. F maps bounded sets (balls) into bounded sets in C([0, T ],R). For

a positive number r, let Br = {y ∈ C([0, T ],R) : ‖y‖ ≤ r} be a bounded ball in

C([0, T ],R). Then, for each h ∈ F(y), y ∈ Br, there exists v ∈ SF,y such that

h(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ) + ρIαv(T )

}
.

Then, for t ∈ [0, T ], we have

|h(t)| ≤ ρIα|v(T )|+ tρ(α−1)

|Λ1|
{
|λ| ρIα+β |v(ξ)|+ ρIα|v(T )|

}
≤ Φ(‖y‖)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
.

Thus

‖h‖ ≤ Φ(r)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
:= `.

Step 3. F maps bounded sets into equicontinuous sets of C([0, T ],R). Let

t1, t2 ∈ (0, T ], t1 < t2 and let y ∈ Br. Then

|h(t2)− h(t1)| ≤
∣∣ρIα|v(t2)| − ρIα|v(t1)|

∣∣
+

Φ(r)
∣∣tρ(α−1)2 − tρ(α−1)1

∣∣
Λ1

{
|λ|ρIα+βp(ξ) + ρIαp(T )

}
≤ ρ1−αΦ(r)

Γ(α)

∣∣∣∣ ∫ t1

0

[
sρ−1

(tρ2 − sρ)1−α
− sρ−1

(tρ1 − sρ)1−α

]
p(s) ds

+

∫ t2

t1

sρ−1

(tρ − sρ)1−α
p(s) ds

∣∣∣∣
+

Φ(r)|tρ(α−1)2 − tρ(α−1)1 |
Λ1

{
|λ|ρIα+βp(ξ) + ρIαp(T )

}
.

Obviously the right hand side of the above inequality tends to zero independently

of y ∈ Br as t2− t1 → 0. Therefore it follows by the Arzelá–Ascoli theorem that

F : C([0, T ],R)→ P(C([0, T ],R)) is completely continuous.

In our next step, we show that F is u.s.c. Since F is completely continuous,

it is enough to establish that it has a closed graph.

Step 4. F has a closed graph. Let yn → y∗, hn ∈ F(yn) and hn → h∗. Then

we need to show that h∗ ∈ F(y∗). Associated with hn ∈ F(yn), there exists

vn ∈ SF,yn such that, for each t ∈ [0, T ],

hn(t) = ρIαvn(t) +
tρ(α−1)

Λ1

{
λ ρIα+βvn(ξ)− ρIαvn(s)vn(T )

}
.
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Thus it suffices to show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ [0, T ],

h∗(t) = ρIαv∗(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv∗(ξ)− ρIαv∗(T )

}
.

Let us consider the linear operator Θ: L1([0, T ],R)→ C([0, T ],R) given by

v 7→ Θv(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ)− ρIαv(T )

}
.

Observe that ‖hn(t) − h∗(t)‖ → 0 as n → ∞, so it follows by Lemma 4.3 that

Θ ◦ SF is a closed graph operator. Further, we have hn(t) ∈ Θ(SF,yn). Since

yn → y∗, therefore, we have

h∗(t) = ρIαv∗(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv∗(ξ)− ρIαv∗(T )

}
,

for some v∗ ∈ SF,y∗ .

Step 5. We show that there exists an open set U ⊆ C([0, T ],R) with y /∈
νF(y) for any ν ∈ (0, 1) and all y ∈ ∂U . Let ν ∈ (0, 1) and y ∈ νF(y). Then,

there exists v ∈ L1([0, T ],R) with v ∈ SF,y such that, for t ∈ [0, T ], we have

y(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ)− ρIαv(T )

}
.

As in the second step, one can obtain

|y(t)| ≤ ρIα|v(T )|+ tρ(α−1)

|Λ1|
{
|λ| ρIα|v(ξ)|+ ρIα|v(T )|

}
≤ Φ(‖y‖)

(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

})
,

which implies that

‖y‖

Φ(‖y‖)
(
ρIαp(T ) +

T ρ(α−1)

|Λ1|
{
|λ| ρIα+βp(ξ) + ρIαp(T )

}) ≤ 1.

In view of (B3), there exists K̂ such that ‖y‖ 6= K̂. Let us set

U =
{
y ∈ C(I,R) : ‖y‖ < K̂

}
.

Note that the operator F : U → P(C(I,R)) is a compact multi-valued map,

u.s.c. with convex closed values. From the choice of U , there is no y ∈ ∂U such

that y ∈ νF(y) for some ν ∈ (0, 1). Consequently, by the nonlinear alternative

of Leray–Schauder type (Lemma 4.4), we deduce that F has a fixed point y ∈ U
which is a solution of the problem (1.2) and (1.3). �
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4.2. The Lipschitz case. In this subsection we prove the existence of solu-

tions for the problem (1.2) and (1.3) with nonconvex valued right hand side by ap-

plying a fixed point theorem for multivalued maps due to Covitz and Nadler [10].

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Con-

sider Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a; b) and d(a,B) = inf
b∈B

d(a; b). Then (Pcl,b(X), Hd) is

a metric space (see [18]).

Definition 4.7. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γ d(x, y) for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 4.8. ([10]) Let (X, d) be a complete metric space. If N : X → Pcl(X)

is a contraction, then FixN 6= ∅.

Theorem 4.9. Assume that

(C1) F : [0, T ]×R→ Pcp(R) is such that F ( · , y) : [0, T ]→ Pcp(R) is measur-

able for each y ∈ R,

(C2) Hd(F (t, y), F (t, y)) ≤ m(t)|y − y| for almost all t ∈ [0, T ] and y, y ∈ R
with m ∈ C([0, T ],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, T ].

Then the problem (1.2) and (1.3) has at least one solution on [0, T ] if ‖m‖A1 < 1,

i.e.

(4.2) δ := ‖m‖
[

T ρα

ραΓ(α+ 1)

+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
< 1.

Proof. Notice that the set SF,y is nonempty for each y ∈ C([0, T ],R) by

the assumption (C1). So F has a measurable selection (see [9, Theorem III.6]).

Now we show that the operator F defined by (4.1) satisfies the assumptions

of Lemma 4.8. Firstly we show that F(y) ∈ Pcl((C[0, T ],R)) for each y ∈
C([0, T ],R). Let {un}n≥0 ∈ F(y) be such that un → u (n→∞) in C([0, T ],R).

Then u ∈ C([0, T ],R) and there exists vn ∈ SF,yn such that, for each t ∈ [0, T ],

un(t) = ρIαvn(t) +
tρ(α−1)

Λ1

{
λ ρIα+βvn(ξ)− ρIαvn(T )

}
.
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As F has compact values, passing to subsequences if necessary, we obtain that

vn converges to v in L1([0, T ],R). Thus, v ∈ SF,y and for each t ∈ [0, T ], we have

un(t)→ u(t) = ρIαv(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv(ξ)− ρIαv(T )

}
.

Hence, u ∈ F(y).

Next we show that there exists δ < 1 (defined by (4.2)) such that

Hd(F(y),F(y)) ≤ δ‖y − y‖ for each y, y ∈ C([0, T ],R).

Let y, y ∈ C([0, T ],R) and h1 ∈ F(y). Then there exists v1(t) ∈ F (t, y(t)) such

that, for each t ∈ [0, T ],

h1(t) = ρIαv1(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv1(ξ)− ρIαv1(T )

}
.

By (C2), we have

Hd(F (t, y), F (t, y)) ≤ m(t)|y(t)− y(t)|.

So, there exists w ∈ F (t, y(t)) such that

|v1(t)− w| ≤ m(t)|y(t)− y(t)|, t ∈ [0, T ].

Define U : [0, T ]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|y(t)− y(t)|}.

Since the multivalued operator U(t) ∩ F (t, y(t)) is measurable ([9, Proposi-

tion III.4]), there exists a function v2(t) which is a measurable selection for U . So

v2(t) ∈ F (t, y(t)) and for each t ∈ [0, T ], we have |v1(t)−v2(t)| ≤ m(t)|y(t)−y(t)|.
For each t ∈ [0, T ], let us define

h2(t) = ρIαv2(t) +
tρ(α−1)

Λ1

{
λ ρIα+βv2(ξ)− ρIαv2(T )

}
.

Then

|h1(t)− h2(t)| ≤ ρIα|v1(t)− v2(t)|

+
T ρ(α−1)

|Λ1|
{
|λ| ρIα+β |v1(ξ)− v2(ξ)|+ ρIα|v1(T )− v2(T )|

}
≤‖m‖

[
T ρα

ραΓ(α+ 1)

+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
‖y − y‖.

Hence

‖h1 − h2‖ ≤ ‖m‖
[

T ρα

ραΓ(α+ 1)

+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
‖y − y‖.
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Analogously, interchanging the roles of y and y, we can obtain

Hd(F(y),F(y)) ≤ ‖m‖
[

T ρα

ραΓ(α+ 1)

+
T ρ(α−1)

|Λ1|

{
|λ| ξρ(α+β)

ρα+βΓ(α+ β + 1)
+

T ρα

ραΓ(α+ 1)

}]
‖y − y‖.

So F is a contraction. Therefore, it follows by Lemma 4.8, that F has a fixed

point y which is a solution of (1.2) and (1.3). �

Example 4.10. Consider the following boundary value problem

(4.3)

1/2D7/5y(t) ∈ F (t, y(t)), t ∈ [0, 2],

y(0) = 0, y(2) = 1/3 1/2I4/5y(3/2),

where ρ = 1/2, α = 7/5, λ = 1/3, β = 4/5, ξ = 3/2 and T = 2 and F (t, y(t))

will be fixed later.

Using the given data, we find that |Λ1| = 0.5526156533, A1 = 12.67699740,

where Λ1 and A1 are respectively given by (2.3) and (3.2). For illustrating

Theorem 4.6, we take

(4.4) F (t, y(t)) =

[
1

250 + et

(
|y|
|y|+ 1

+
1

2

)
,

(1 + t)

30

(
tan−1 y + y +

1

8

)]
,

which, in view of (B2), implies that p(t) = (1 + t)/30 and Φ(‖y‖) = ||y|| +
(4π + 1)/8. By condition (B3), it is found that K̂ > 2.668611421. Thus all

conditions of Theorem 4.6 are satisfied and consequently, there exists at least

one solution for the problem (4.3) with F (t, y(t)) given by (4.4) on [0, 2].

In order to demonstrate the application of Theorem 4.9, let us consider

(4.5) F (t, y(t)) =

[
sin t

250

(
|y|
|y|+ 1

+ 1

)
,

(t+ 1) tan−1 y + t

50

]
.

Clearly

Hd(F (t, y), F (t, y)) ≤ (t+ 1)

50
‖y − y‖.

Letting m(t) = (t+ 1)/50, it is easy to check that d(0, F (t, 0)) ≤ m(t) holds for

almost all t ∈ [0, 2] and that δ ≈ 0.760619844 < 1 (δ is given by (4.2)). As the

hypotheses of Theorem 4.9 are satisfied, we conclude that the problem (4.3) with

F (t, y(t)) given by (4.5) has at least one solution on [0, 2].
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[19] M.A. Krasnosel’skĭı, Two remarks on the method of successive approximations, Uspekhi

Mat. Nauk 10 (1955), 123–127.



Generalized Fractional Differential Equations and Inclusions 1073

[20] V. Lakshmikantham, S. Leela and J.V. Devi, Theory of Fractional Dynamic Systems,

Cambridge Academic Publishers, Cambridge, 2009.

[21] A. Lasota and Z. Opial, An application of the Kakutani–Ky Fan theorem in the theory

of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.

13 (1965), 781–786.

[22] B. Lupinska and T. Odzijewicz, A Lyapunov-type inequality with the Katugampolafrac-

tional derivative, Math. Meth. Appl. Sci. (2018), 1–12.

[23] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential

Equations, John Wiley, New York, 1993.

[24] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

Manuscript received April 11, 2018

accepted September 23, 2018

Sotiris K. Ntouyas

Department of Mathematics
University of Ioannina

451 10 Ioannina, GREECE

and
Nonlinear Analysis and Applied Mathematics

(NAAM)-Research Group

Department of Mathematics
Faculty of Science

King Abdulaziz University

P.O. Box 80203
Jeddah 21589, SAUDI ARABIA

E-mail address: sntouyas@uoi.gr

Bashir Ahmad, Madeaha Alghanmi and Ahmed Alsaedi

Nonlinear Analysis and Applied Mathematics

(NAAM)-Research Group
Department of Mathematics, Faculty of Science

King Abdulaziz University

P.O. Box 80203
Jeddah 21589, SAUDI ARABIA

E-mail address: bashirahmad qau@yahoo.com

madeaha@hotmail.com

aalsaedi@hotmail.com

TMNA : Volume 54 – 2019 – No 2B


