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CONLEY INDEX CONTINUATION
FOR A SINGULARLY PERTURBED PERIODIC
BOUNDARY VALUE PROBLEM

MARIA C. CARBINATTO — KRzYSZTOF P. RYBAKOWSKI

ABSTRACT. We establish spectral convergence and Conley index continu-
ation results for a class of singularly perturbed periodic boundary value
problems.

1. Introduction

This paper is a sequel to our previous articles [2] and [3]. In the paper [3]
we considered, with € > 0 small, a family

up = (aey)y + ge(z,u), 0<ax <1, t>0,
(Ee,Se) pu— (1 —placuy, =0, =0, t>0,
ou+ (1—0)acu, =0, z=1,t>0

of semilinear boundary value problems.

Here, 0 < p,o0 < 1 and g.(z,u) is a nonlinearity satisfying certain (mild)
regularity assumptions. The diffusion coefficient a. is large except in some small
neighbourhood of each of the n+1 subdivision points of [0, 1] in which a., divided
by the length of the neighbourhood, is small as € — 0. Moreover, there is some
transitory behavior between such neighbourhoods.
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The precise conditions on a. are presented in [3, Assumption 2.1], which
generalizes an earlier condition introduced in [5], [4].

Let A. be the set of all pairs (u,w) with v € H'(0,1) and w € L?(0, 1) such
that a.u € HY(0,1), pu(0) — (1 — p)a=(0)u'(0) = ou(1) + (1 — o)a-(1)u'(1) =0
and w = —(acu')".

It is known that A. is (the graph of) a densely defined nonnegative self-
adjoint linear operator in L2(0,1). If f. is the Nemytski operator defined by the
function g.(z,u), then problem (E.,S.) can be written as the abstract parabolic
equation

U+ Acu = fo(u)
which generates a local semiflow on 7. on H'(0,1).

Now, by results in [3], there is n x n matrix Ag which is symmetric with
respect to some scalar product on R™ and such that the first n eigenvalues A,
I € [1..n], of A. converge, as ¢ — 0T, to the corresponding eigenvalues \; o,
I € [1..n], of Ay, while \; . — oo for { > n. One can also choose corresponding
eigenfunctions @ . of A, converging, in some sense, to a corresponding eigen-
function @; o of Ao, I € [1..n]. This is the contents of the spectral convergence
result [3, Theorem 2.6], which extends the corresponding spectral convergence
result from [4].

If there is a limit go(x,u) for the family g.(x,u), then we may consider the
limit ordinary differential equation

Z+ Aoz = fo(2)

generating a local (semi)-flow on R™. Here, fj is obtained by properly averaging
go on [0, 1].
We can now define the linear e-dependent embedding

(1.1) Jo:R™ — H'(0,1) by @0+ ¢1e, L€[Ll..n].

It turns out that, with this embedding, the abstract Conley index continuation
principles established in [2, Theorems 2.4 and 2.5] are applicable in this situation
and yield singular continuation results for the concrete family 7., e > 0, ase — 0,
see [3, Theorem 5.3], cf also [2, Theorem 4.5].

In the present paper we extend the results from [3] to the technically more
difficult case with periodic boundary conditions, i.e. to the family of equations

up = (actiz)r + ge(z,u), 0<z<1,t>0

(Ec,P)
u(t,0) = u(t, 1), t>0.

To our knowledge, the periodic case was not considered in this context before.

Our hypotheses on the diffusion coefficients (ac).¢jo,¢,[ are similar to [3, As-
sumption 2.1}, see Assumption 2.1 below. The hypotheses on the nonlinearity
ge(x,u) are as in [2], [3], see Assumption 4.3 below.
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The map u — —(acuy), with periodic boundary conditions again generates
a linear operator A. in L?(0,1). The spectrum of A. consists of a sequence of
eigenvalues which, however, do not have to be simple, cf. Proposition 2.7.

As we shall describe now, it is the very lack of simplicity of eigenvalues
which, compared to the situation in [3], leads to a more restrictive statement
of the spectral convergence result and more involved proofs of the Conley index
continuation results.

Let (A;,¢)i be the repeated sequence of eigenvalues of A, i.e. the nondecreas-
ing sequence of eigenvalues of A, in which each eigenvalue is repeated according
to its multiplicity. Choose an L?-orthonormal sequence (), such that ¢; . is
an eigenfunction of A, corresponding to A;., [ € N. We prove, in Theorem 2.5
below, that there exists a linear operator Ay on R", symmetric with respect to
some scalar product (-, - )L, with repeated sequence of eigenvalues (A;0)ie[1..n]
(some of which may be double) and such that, for e — 0, \; o — Ao for i € [1..n]
and ;. — oo for [ > n.

Moreover, we prove that for each null sequence (g,,)m, in |0, 0[ there is a sub-

1

sequence (g,

)m Of (€m)m and an (-, -)p-orthonormal sequence (2;)ie1..,,) Such
that, for each | € [1..n], z is an eigenvector of Ay corresponding to A\, and
such that in some sense, ¢; .1 — z; as m — oo.

We may then consider a limit problem
(Eo) 24+ Agz = go(z).

Here, similarly as in [2], [3], the function go(z) is obtained from go(z,u) by an
averaging procedure.

In order to compare problem (Eg) to problem (E.,P), we again have to find
an appropriate embedding. Unfortunately, in the present case an embedding
cannot be defined as in (1.1), since the families (¢; ). do not necessarily have a
unique limit for ¢ — 0F. Fortunately, we are able to construct an appropriate
embedding J., see the beginning of Section 4, but the procedure is more involved.

The boundary value problem (E.,P) generates a local semiflow 7. on the
space HJ..(0,1) of 1-periodic H'-functions. Moreover, the ODE system (E)
generates a local (semi)flow w9 on R™.

Using the constructed family J. of embeddings we now proceed as in [2], [3]
to establish Conley index and homology index braid continuation results for the
family 7., € > 0 small, showing in particular that isolated invariant sets .Sy of
7o continue, for small € > 0, to isolated invariant sets S. of 7. with S ‘close’ to
J-(Sp) and such that Sy and S. have the same Conley index, see Theorems 4.5
and 4.8. In particular, some aspects of the dynamics of the simpler flow 7y can
be found in the more complicated semiflow ..

The above ‘closeness’ is with respect to certain e-dependent Hilbert norms

||| on the space H,(0,1) and it implies C([0, 1])-closeness. On the other hand,
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the embedding J., though necessary for the applicability of Conley index theory,
is not very explicit. A more natural, e-independent and explicit embedding ©
is obtained by interpreting each element of R™ as a step function relative to the
decomposition of [0, 1] given in Assumption 2.1 below.

It turns out that, as a consequence of || - ||.-closeness and our construction
of Jg, the set Sc actually is L"(0, 1)-close to ©(Sp) for any r € [1, o[, see Propo-
sition 4.7.

Our proof methods are kept at an abstract level and permit applications to
other types of singularly perturbed infinite dimensional dynamical systems with
a finite dimensional limit. This will be treated in a subsequent publication.

In this paper, all linear spaces are defined over the real numbers field.

2. The spectral convergence result

In this section we will state one of the main results of this paper, the spec-
tral convergence theorem. Throughout this paper, m is the one-dimensional
Lebesgue measure.

We begin by stating our linear hypothesis:

ASSUMPTION 2.1.

(1a) n € N, g9 € ]0,00] and xg, Tp11 € R with xg < 2,41;

(1b) (ac)ee)o,e, is a family of continuous positive functions on [zq, Z,41];

(1c) (2;)jeq..m) is a strictly increasing sequence in |xo, Tny1, (75)jeq..n] is
a sequence in |0, 00 and & _, & ¢, Cje, (. are families in |xg, 2,41 with
Ge <&je <Tj < (e < (o JE[L.n], e €]0,e0].

Furthermore, (. < &, if j <n —1. For each j € [1..n], m([§}_,(; .]) = 0
ase — 0.

(2a) If (I'z)cej0,e0[ is any of the following families:
([0, &1 Decjoeols (e Eirr.lectoeol O ([Cher Tnril)eelo.cols
for j € [1..n — 1], or else any of the families
(&5, &iDectoenls  ([Gies CGel)eeoeols

for j € [1..n], then

inf a,
Le — 00 ase—0.
m(I'.)
(2b) For each j € [1..n] and € € ]0,&9], set T'c = [{; ¢, (j.e]. Then
inf a. Sup ae
Le 7, and —< —71; ase—0
m(I'.) ! m(I'.) ! .
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Notation. In the sequel, we write

Kje=[Ger&irrels Kie =[G &iprels Kj =[xy, x501],
for j € [1..n — 1], and
Kne = [Crertnt1]Ulzo, &1els Koo = [Cos Taa] U lzo, &1 ],
K, = [zn, zpy1] U [zo, 21], L; =m(K;), jell..n].
REMARK 2.2. These notations and Assumption 2.1 are best understood by
viewing the above number families in the interval |xg, ,41[ as number families

in the one-sphere S = [zg, Zn+1] /{T0, Zn+1}. Then, for j € [1..n — 1] we have
the following picture:

Eie  Eie Tj Cie Ce Eir1,e&it1e Tjw1 Girre Gigre

while, for j = n with the identification of x¢ with x,,41 we have the following
picture:

541,5 gn,s Tn Cn,s C;z,a To = Tn+41 gi,a 51,6 1 Cl,f Ci,s

In particular, the set K, . (resp. K, _, resp. K,,) is the interval in S from
Cne t0 &1 ¢ (vesp. from (), _ to & , resp. from z,, to z1).

Let j € [1..n] be arbitrary. Since m(Kj ) — L; > 0 as ¢ — 0, part (2a) of
Assumption 2.1 implies that a. — oo for € — 0, uniformly in K ;8 Moreover,
by part (2b), on the small intervals [&; ., ;] around x;, a. is of the same order
as the measure of these intervals so a. — 0 for ¢ — 0, uniformly in [§; ., (]
Finally, there is some transitional behavior on the remaining small intervals
[{;ya,fj,s} and [, CJ/»,E] around z;, as a. is of lower order than the measure of
these intervals.

The following result further clarifies the above hypothesis.

PRrROPOSITION 2.3. If Assumption 2.1 holds, then
m([¢] ., &j.e]) + m([Ge, G ])
m([&je, Gel)
Conversely, if parts (1a), (1c) of Assumption 2.1 together with estimate (2.1)

hold, then there is a family (a:)zcjo,,[, such that parts (1b), (2a) and (2b) of
that assumption are also satisfied. In addition, we may assume that each function

(2.1)

—0 ase—0,j€][l..n].

ae can be extended to a (x,41 — xo)-periodic C*-function defined on all of R.

Proor. If Assumption 2.1 holds, then, for each j € [1..n] by (2a),

a(Ge) ac(&je)

m([Gj e, GG ] m([§ ., &je])

—00 ase—0
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while, by (2b),

aE(Cj,a)
m([&je, Ciel)

These estimates imply estimate (2.1).

Qe (gj,a)
m([&j.e; Gjiel)

—71; and —7; ase—0.

Conversely, if parts (1a), (1c) of Assumption 2.1 together with estimate (2.1)
hold, then define, for each € € 0, g[ the uniquely determined continuous function
ae: [Zo,Zny1] — R such that, for each j € [1..n],

ac(r) =¢e ! on K,
as(z) =7 -m([§e, Gel) on [§e, el

and a. is affine on [} _,&;c] and on [(j, () ]. With this choice of (a:)cejo,c]
and estimate (2.1) it is easily proved that parts (1b), (2a) and (2b) of Assump-
tion 2.1 also hold. Each function a. is constant on K, . so it can be extended
to a continuous (z,41 — o)-periodic function defined on all of R. Applying
to the latter function the usual smoothing procedure via mollifiers, we obtain,
for every b. € ]0,00[ a smooth (z,4+1 — o)-periodic function a. on R, which
differs from a. by at most b. on [, Z,41]. Choosing (bc)ee)o,c,[ S0 small that
be < inf a. and b./m(K.) — 0, where (K.).cjo,c,[ is any family occurring

[z0,Zn+1]
in Assumption 2.1, we see that with the choice of the family (a.).cjo,c,[, Parts
(1b), (2a) and (2b) of Assumption 2.1 also hold. O

Define H!, = H!, (70,2, 11) (see the Appendix). For each ¢ € 0, o[ define

per per
the bilinear form b, := b,,. Let

< Tyt >L2 = < Tyt >L2(zo,zn+1)
be the standard scalar product on L? = L?(zg, 2,41) and

let As: Dg = D(As) C H;er
the pair (be, (-, - )r2).

In this paper we will consider the following norm in Hécr:

— L? be the linear operator defined by

(2.2)

(2.3) llul|? == bo(u,u) + ||ul|2:, uwe HE

per*

Let (A1¢); be the repeated sequence of eigenvalues of A, i.e. the nondecreas-
ing sequence of eigenvalues of A. in which each eigenvalue is repeated according
to its multiplicity. Choose an L2-orthonormal sequence (¢;c); such that ¢y ¢ is
an eigenfunction of A, corresponding to A;., !l € N.

Now define the ‘limit’ bilinear form bg: R™ x R — R by

n

bo(y, 2) = T1(y1 — Yn) (21 — 2n) + ij(yj —yj—1)(25 — 2j-1)



CONLEY INDEX AND A PERIODIC BVP 35

and the scalar product (-, - )1, on R™ by
n
W, 2)L =Y Livizi, v =U)jern) 2= (2)jeir.n € R™.
j=1

(2.4) Let Ap: R™ — R™ be the linear map defined by the pair (bg, (-, - )1.).
The map Ay is (-, - )p-symmetric.

REMARK 2.4. Note that, unlike in the boundary value case considered in [5]
and [4], the operator Ay may have a double eigenvalue as the following example

shows: Let L; = 1/3 and 7; = 1 for j € [1..3]. Then the matrix of Ay relative
to the canonical basis of R? takes the form

6 -3 -3
-3 6 -3
-3 -3 6

Thus A = 0 is an eigenvalue of Ay with geometric multiplicity 1 and A =9 is an
eigenvalue of Ay with geometric multiplicity 2.

Now let (A10)ic[1..n) be the repeated sequence of eigenvalues of Ag. Define
also the following norm on R™:

(2.5) 2113 := bo(z,2) + ll2[If, =€ R™
We can now state our spectral convergence result.

THEOREM 2.5. With the notation introduced above the following assertions
hold:

(a) Apy1,e > 00 ase — 0.

(b) For eachl e [1..n], \jc — Ao ase — 0.

(c) For each null sequence (gm)m in |0,e0[ there is a subsequence (gl)m
of (em)m and an (-, - )L-orthonormal sequence (2;)1ep..n) such that, for
eachl € [1..n], z; is an eigenvector of Ay corresponding to Ao and such
that for each j € [1..n]

sup |@pe1 (z) — 25| =0, asm — oo,
xeK, 1

J:Em

where z ; is the j-th component of the vector z;.

Theorem 2.5 extends the main part of [3, Theorem 2.6] to the periodic case.
We will give a proof of Theorem 2.5 in the next section.

In the remaining part of this section we will show that, if Assumption 2.1 is
satisfied and some additional periodicity hypotheses hold, then the corresponding
operators A. have double eigenvalues which remain bounded as ¢ — 0.

For the rest of this section suppose n, €g, £o = 0, zn41 = (1/3), ac, z;,
iy & s &jes Ge and (G, e € ]0,e0[, j € [1..n], satisfy Assumption 2.1.
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Additionally assume that a.(0) = a.(1/3) for each ¢ € ]0,¢0[ (cf. Proposi-
tion 2.3) and let a.: [0,1] — R be the (1/3)-periodic extension of a.. Let
A.: D(A) € H].(0,1/3) — L?(0,1/3) be the linear operator defined by a.
with (1/3)-periodic condition.

Let 7 = 3n. Let € € ]0,¢¢[ be arbitrary. Whenever «;, j € [1..n], is any
of the sequences z;, 5},5’ &jer Ge and C§7E, j € [1..n], define the sequence &;,
Jjel..n], in]0,1[ by @; = oy, dnyy; = o + (1/3) and qong; = o + (2/3),
J € [1..n]. Moreover, define the sequence 7;, j € [1..7n], in R by 7; = 75,
Tnt; =T and Topt; =75, j € [1..n]. o

It is easy to show that n, €9, Zo = 0, Try1 = 1, e, Tj, 75, & oy &jey Gje and
~]’-7E, e €]0,e0[, j € [1..n], satisfy Assumption 2.1.

Let A.: D(A.) C H}..(0,1) = L?(0,1) be the linear operator defined by a.
with 1-periodic condition.

Let (A;,c); be the repeated sequence of eigenvalues of A, in which each eigen-
value is repeated according to its multiplicity. Choose an L?(0, 1/3)-orthonormal
sequence () such that ¢; . is defined and continuous on [0,1/3] and is an
eigenfunction of A. corresponding to A;., [ € N.

Let (Xl@) 1 be the repeated sequence of eigenvalues of ZE in which each eigen-
value is repeated according to its multiplicity. Choose an L?(0,1)-orthonormal
sequence (¢ ¢); such that ¢ . is defined and continuous on [0, 1] and is an eigen-
function of EE corresponding to XZ’E, leN.

For each p € N and ¢ € 10, g¢], let Uy« be the span of the eigenfunctions ¢y ¢,
for I € [1..p] and let U, . be the span of the eigenfunctions @, for [ € [1..p].

Theorem 2.5 implies that there exist an £ € ]0,e0[ and an M € ]0, oo[ such
that

(26) Aﬁ,e <M< )\n+1,€’ for all e € ]ng]

LEMMA 2.6. With the notation introduced above, for each ¢ € 0,€] there
evists a l. € [1..7] such that @i . is not (1/3)-periodic or ¢)__ is not (1/3)-

periodic.

PROOF. Suppose that there exists an e € ]0,£] such that for all [ € [1..7],
@1 and @ _ are (1/3)-periodic.

Since ¢y ¢ is a (1/3)-periodic continuous function for all [ € [1..7], it follows
that ¢ is (1/3)-periodic and continuous (on [0,1]) for all ¢ € (7%,5. Define
I: 17575 — C([0,1/3]) by L' = pljo,1/3, ¢ € [7%78. It is clear that I is a linear
map. Moreover, I' is injective. Indeed, let ¢ € (75,5 be such that 'y = 0. Then
o(x) =0 for all € [0,1/3]. Since ¢ is (1/3)-periodic, it follows that ¢ = 0.

Fix [ € [1..n] and set ¢ = I'g; .. Since ¢ # 0, it follows that ¢ # 0.
Moreover, we claim that A.p is defined and A, = Xl,scp.
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Indeed, since ¢ € D(;L;) and ;. is an eigenfunction of Zs and is con-
tinuous on [0, 1], it follows that 25(5175 is continuous and so the result in the
Appendix implies that @; . is of class C! on [0, 1], both @; . and 9526 (in the clas-
sical sense) are 1-periodic functions and a.&; . € C*([0,1],R) with (a.4; .)'(z) =
—N.ePre(z) for all z € [0,1].

Since ¢ = @1.c|[0,1/3), it follows that ¢ is of class C* on [0,1/3] and a.¢’ =
(@) o173 € C([0,1/3]). Since & . and &, are (1/3)-periodic, it follows
that G1-(0) = F1e(1/3) and F_(0) = F(1/3) and s0 p(0) = @(1/3) and
¢©'(0) = ¢’(1/3). Therefore, ¢ and ¢’ are (1/3)-periodic. Moreover,

(a-¢')' () = (@-3}.) (x) = N, Pre(2) = —Nep(x),  for all z € [0,1/3].

Hence, the result in the Appendix implies that ¢ € D(A.) and A.p = Xl’scp.
The claim is proved. Therefore, ¢ is an eigenfunction of A..

Formula (2.6) implies that Xl,g < M and that there exists a j € [1..n] such
that Ao = A; .. Therefore, ¢ € U, .. This implies that F(fjﬁ’g) CUp,e. Since T
is injective and dim U, . =n < n = dim (75,8, we obtain a contradiction. O

PROPOSITION 2.7. With the notation introduced above, for each ¢ € |0,€] let
le € [1..7] be as in Lemma 2.6. Then A = N\ ¢ is a double eigenvalue of Ae.

PRrROOF. Let € € ]0,£] be fixed and let I, € [1..7] be as in Lemma 2.6. Set
¢ = @1, The result in the Appendix implies that ¢ € C1([0,1]), ©(0) = (1),
©'(0) = ¢'(1), v :=a.’ € C1([0,1]) and v'(z) = —Ap(x) for all z € [0,1]. Let
G:: R — R be the (1/3)-periodic extension of a., which is also the 1-periodic
extension of a.. Let ¢: R — R be the 1-periodic extension of . It follows that
ae’ is the 1-periodic extension of v and so (a.@') (x) = —Ap(zx) for all z € R.
Let v: R — R be the (1/3)-translate of ¢, v(z) = ¢(z + (1/3)), € R. Thus
v € C1(R), and since . is (1/3)-periodic, we also have that (d.7")'(z) = —\y(x)
for all z € R. Since ¢ is 1-periodic, so is v and therefore 7/ is 1-periodic as well.
Therefore, we have proved that 1) = 70 1] is an eigenfunction of ZE corresponding
to the eigenvalue A.

We claim now that ¢ and v are linearly independent. Suppose this does
not hold. Since ¢ # 0 and ¥ # 0, there exists a p € R such that ¢ = py.
Since [|¢[|z2(0,1) = 1 and ¢ is the 1-periodic extension of ¢ to R, it follows that
19l 20,1y = 1. Hence p =1 or p = —1. Suppose first that p = 1 s0 ¢ = ¢ on
[0,1]. In particular,

0(0) =(0) = (1/3) and ¢'(0) ='(0) = ¢'(1/3),

which contradicts the choice of .
Thus p = —1 and so

P(x) = —p(x +1/3), forall z € [0,1].



38 M.C. CARBINATTO — K.P. RYBAKOWSKI

Let x € [0,1]. We have

Ple+2/3) = —p(x +1/3) = =(=¢(2)) = p(z)

which implies that

p(r) = p(z +1) = —p(x +2/3) = —p(x).
We have proved that ¢(z) = 0 for all x € [0, 1] which is a contradiction. There-
fore, the claim is proved and this concludes the proof of the proposition. O

3. Proof of Theorem 2.5

This section is devoted to the proof of Theorem 2.5. We will consider the
case xg = 0 and x,41 = 1. The general case follows by a simple change of
coordinates.

We follow the proof of the spectral convergence result from [3] but, for brevity,
omit those steps in the proof which are very similar to the ones given in [3]. The
following lemma was proved in [3, Lemma 3.1].

LEMMA 3.1. If M € ]0,00[, I C [0,1] is a compact interval, a: I — R is
a continuous positive function and ¢ € H*(0,1) is such that [;a-(¢')*dz < M,

then
m([)

infa
I

o(a) = (y))? < M—=*,  forz,yel.
For each ¢ € ]0,¢0[ and j € [1..n] define ¢;.: [0,1] — R as the uniquely
determined continuous function such that
(1) if j € [1..n—1], then ¢; () = 1 for © € [(j.,&j+1,e]s Yje(x) = 0 for
z ¢ [&e,Cir1,e) and ¢; . is affine on each of the intervals [¢; ., (j.] and
(41,65 G,
(2) wn,e($> =1lforx € [ngl,e]U[Cn,a 1]; "/}n,e(-r) =0forz ¢ [0, CI,E]U[E’H,,E7 1]
and vy, . is affine on each of the intervals [&1 ¢, (1,e] and [€n.e, Cnel-
For each € € ]0,¢¢[, let W, be the span of the functions v, ., j € [1..n], ie.
the n-dimensional subspace of H}.(0,1) given by

W = { Zuﬂ/h‘,s

uj € R, for j € [1n}}
j=1

LEMMA 3.2. There exists a C] € ]0,00[ and an €} € ]0,eo[ such that
be (u, u)

[ullZ:

< Cy foralle €]0,&}] and all w € W, with u # 0.

PROOF. There is a ¢ € ]0,00[ and an &1 € ]0, [ such that

¢ < min (je[ﬁr.l.ir?q](gjﬂ’s - Cj,6)7§1,5 +1-— Cn,e)
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for all € € ]0,e1]. Let ¢ € ]0,1] and let u € W, be arbitrary with [|Jul[2, = 1.

Hence u = ) u;1;. with u; € R, for j € [1..n]. Thus
j=1

51 §7+1€
1:Hu||2LgZ/ uda:—l—Z/ udm+/ u? dzv
0 G

n,e

:un§1,5+zuj §j+1,a—Cj,s)+u Cng >CZUJ7
j=1
so |u;] < ¢™¥/2 for all j € [1..n]. Notice that u/(z) = 0 for z € [0,&;.] U
n—1
U [¢er&j+1,6] U [Cne, 1]. Moreover, for j € [1..n] and = € [§;., (e, u(z) =
j=1
U165 10(2) + () with [9_y (@) = [0 (@)] = (1/(Gie — &52). Here,

we set ug = u,, and Yo = ¥ . It follows that

bs(u,u):/ d:ﬂZ/:JJr1 de/CJE

[}

I
M=

C] e
Qe - (ujflw;'—l,s + ujw;,s)2 dx
i—1 Y&
Cj,s ( 4
sup ag) S —
i—1 Y& (£5,2:C5,e] C(Cjﬁ _§j76)2

<
I

dxr

M=

<
I

M=

sup a) S 2% 7 €10,00
1 [€5,e:Ce] : (CJE 5]5 Z J ’

J
SO
n
4
sup Qe

(o) ey

for some C] € ]0,00[, some €] €]0,e1] and all € € ]0,&]. O

<

Notation. For C' € ]0,00] and & € ]0,¢[ let B..¢ be the closed ball in H].,,
with center in zero and radius C' with respect to the norm || - ||..

LEMMA 3.3. The following two assertions hold:

(a) There exist an ey € ]0,e0[ and a Ch € 10, 00| such that, for everyv € H}

per
and every e € ]0,¢€h],

(3.1) sup |v(z) — v(y)| < Chbe(v,v)/?,
z,y€10,1]

(3:2) sup [v(z)| < Callv]..
z€[0,1]

(b) Let M €]0,00][ be arbitrary. For each j € [1..n] we have

(3.3) sup  sup |u(z) —v(y)| =0, ase—0.
v€Be pr TYEK



40 M.C. CARBINATTO — K.P. RYBAKOWSKI

PROOF. By our assumptions there are an € € |0,¢9[ and a C; € |0, 0o[ such
that, for ¢ € ]0,¢4],

m(I'.)

infr_ a.

where T is any of the £ = 4n + 1 intervals [0,&] ], [(} . &1 c)s [Ches 1], J €

[1..n — 1] or else any of the intervals [¢} ., &;cl, (65 Ciels [Ger Gy 7 € 1.2 7).

Thus, whenever € € ]0,¢1] and v € H}

per»

diam v(T;) < (Cyb.(v,v))*/2.

<y,

it follows from Lemma 3.1 that

The above £ intervals can be ordered to form a sequence (1) ;e such that for
Jj € [1..£ — 1] the endpoint of I; is the initial point of I;;,. Consequently,

diam v([0,1]) < (4n + 1)(C1b.(v,v))*/2,
S0
[0(2)] < [u(y)] + (4n + 1)(Cbe(v,0)) 2, @,y € [0,1]
which implies
()] < Cellvlle, @ €[0,1],

where Cy = 1+ (4n + 1)C} /2. These estimates prove part (a) of the lemma.
Now, let M € ]0, oo[ be arbitrary and for each € € )0, ] let 5. be the maximum
of all the values

M(.m(FE) )1/27
infr_ ac
where I'c is any of the intervals [0,¢] ], [(} ., &1 )5 [Ghen 1), 7 € [1..n—1] or

else any of the intervals [¢] _,&jcl, [Ce, (G els J € [L..n]. For j € [1..n—1] it

!
J,€?
follows from Lemma 3.1 that

sup  sup |v(z) —v(y)| < 3p-.
vE€B. v TYEK .

T, =[0,&.¢) or I'c = [Cpe, 1] we have

sup  sup |v(z) —v(y)| < 28..
vEB. a TYEL:

Finally, since v(0) = v(1) for each v € H},,, it follows that

per>’

sup  sup  [v(z) —v(y)| < 46..
'UEEE,JM T,YEKn e
Now Assumption 2.1 implies that 8. — 0 as € — 0. This proves part (b) of the
lemma. O

LEMMA 34. Let (em)m be a null sequence in 10,&0[. Let (tm)m, (Vm)m

be sequences in Hl_  such that u,, € B

per M and vy, € Be o for some M,

Em;
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M’ €]0,00[ and all m € N. Let (7Vjm)je[1..n),men be such that vjm € Kj., for
m €N and j € [1..n]. Then

(U U ) 2 — ZL U (Vj,m)Vm (Vj,m) = 0, as m — oo.
Jj=1

PrOOF. For each m € N we have

/umvmdx—Zm e ) Ui (V5,m ) U (Vj,m) —|—Z/ Uy U, AT

[€),em Ciiem]

+ Z/ (U Vi, — um(’Yj,m)Um(’Yj,m)) dx

=: Z m(Kj,am)um (7j,m)vm(’7j,m) + Tl,m + TZ,m'
j=1
It follows from Lemma 3.3 that all functions u,, and v, are uniformly bounded
by the same constant C'. Thus

n
|T17m| S 02 Z(<j7€7n - §j75m)
j=1
and Assumption 2.1 implies that
(3.4) Ty — 0, asm — oo.

For z € K., we have

[t (€)0m () = i (Vj.m ) Om (Vj,m)]
< um (2) = tm (Vm) | - [0m (@) + [0m (@) = v (Vm)| - [t (Vj,m)]
< Clum (@) = wm(vj,m)| + [om(€) = vm (Vjm)])-

Therefore

Tom| < CZ Kjen) sup (Jum (@) = wm(Vjm)| + [om(2) = 0m(35.m)]) -

r€Kjc,,
Again, Lemma 3.3 implies that
(3.5) Ty — 0, asm — oo.

Moreover, it follows from Assumption 2.1 that m(Kj., ) — L; = 0, as m — oo,
for each j € [1..n]. This together with (3.4) and (3.5) implies the assertion of
the lemma. 0

COROLLARY 3.5. Let M' € 0,00 and (em)m be a null sequence in ]0,eo].
Let (Vm)m and (Yjm)m, J € [1..n], be sequences such that vy, € Be , v and
YViim € Kje, form €N and j € [1..n]. Then for each j € [1..n],

<¢j,5m77)m>L2 - Ljvm('yj,m) — 07 as m — 00.
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PRrROOF. Lemma 3.2 and the fact that the functions u,, = ¢, , j € [1..n],
m € N, are nonnegative and bounded by 1 imply that u,, € Esm’ m for some
constant M € ]0,00[ and for all m € N. Hence the assumptions of Lemma 3.4
are satisfied. Now that lemma implies that, for each j € [1..n],

1 n
/ Vi ey Um dx — Z Livje,, (7l7m)vm(7l,m) — 0, asm — oo.
0 1=1

The definition of the map ;.. , m € N, implies that ¢, ., (vim) =1if j =1
and 9. (V,m) = 0 otherwise and so

Z Litje,, ('Yl,m)vm('n,m) = Ljvp, (Vj,m)'
=1

Passing to the limit as m — co we complete the proof. O

LEMMA 3.6. Let e}, €]0,e0] be as in Lemma 3.3. Then, for every M € ]0, 00|,
there is an ey = ey (M) €10, €}] such that v ¢ W2 for allv € B. ar with ||v]ly = 1
and £ € 10,e4]. (Here, the orthogonal complement is taken with respect to the
L2-scalar product.)

PROOF. Suppose the conclusion of the lemma does not hold. Then, for some
M €10, 00, there exists a null sequence (g, ), in ]0, 5] such that for each m € N
there exists a vy, € Esm’M N W with with ||o,]l2 = 1. Let m € N. Hence
(Um, ¥je, )2 = 0 for all j € [1..n].

For each j € [1..n — 1] choose v; € |z, z;41[ and choose v, € ]0, x1[U]z,, 1]
independently of m € N. Then there exists an mo € N such that v; € K., for
all j € [1..n] and m > mg. Now Corollary 3.5 implies that, for each j € [1..n],

U () = 0, asm — oo

and so Lemma 3.3 implies that v,,(z) — 0 as m — oo for each z € |0, 1[\ | {z;}.
j=1
Moreover, it follows from Lemma 3.3 that there exists an my € N such that the

functions v,,, for all m > mgq, are pointwise bounded by the same constant. This
implies that

1
/ v dr —0 asm — oo.
0

However, this is a contradiction as
1
/vfndazzl for all m € N. O
0
LEMMA 3.7. The following statements hold:
(a) Apy1,e > 00 ase — 0.
(b) There exists an ) € ]0,&0[ and a C4 € 10, 00] such that

A <CL foralle €]0,)].
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PRrROOF. For each positive integer p and ¢ € ]0, g¢[ let Up, . be the span of the
eigenfunctions ¢, ., for [ € [1..p]. Moreover, let Uy . = {0} C L2. If assertion (a)
is not true, then there is a null sequence (&,,)n, in ]0, o[ such that (Ant1.e,,)m
is bounded by some C' € 0, co].

We claim that Upy1., N Wz = {0} for all m € N large enough. If this
is not true, then there is a subsequence (¢l,), of (€m)m such that for each
m € N there is a v, in Upyqe1 N WEJ}-” with ||vp, ||z = 1. It easily follows that
ber (Vm,vm) < C 80 vy € EE;WK for all m € N, where K? = C + 1. However,
this contradicts Lemma 3.6 and the claim is proved.

The claim implies that n + 1 < n, a contradiction which implies the first
assertion. Let D be the set of all nonnegative integers ¢; such that, for some
£ € ]0,&0[ the eigenvalue family (Mg, c)-cjo,5 is bounded by some Cy € ]0,00].
Let ¢ be the supremum of D if D is nonempty and ¢ = 0 otherwise. From what
we have proved so far, we have £ < n. If { < n, then Uéfe NW, # {0} and so, for
each € € ]0, o[ there is a w. # 0 lying in Uﬁs N W.. It follows that

bs(w7w) bE(wﬁ?wE)

)\@4_1,5 = inf S O{

weH N0} wevt, [lwllze T flwe] 2

per

for all € € ]0,¢)], where C] € [0,00[ and &} € ]0,e0[ are as in Lemma 3.2.
This shows in particular, that D is nonempty. Moreover, this also shows that
{+1 € D, a contradiction proving that £ = n. Since D is nonempty and finite,
we have ¢ € D. This proves assertion (b). O

In the sequel

for each € € ]0,[ fix an arbitrary L2-orthonormal sequence (¢ c);

(3.6)

such that ¢ . is an eigenfunction of A, corresponding to A; ., I € N.

LEMMA 3.8. Let (€1 )m be a null sequence in |0, o[ and (V;m)m be a (double)
sequence with v, € Kj.  , form € N and j € [1..n]. For each i, j € [1..n],
we then have

(@) (Vjems Piem)r2 — Lipie,, (Vim) = 0 as m — oo.

(b) Zl Lj @i, (Viim)Phem (Vism) = dik as m — oo.
J:

PRrROOF. This follows from Lemma 3.7, Corollary 3.5 and Lemma 3.4. O

Notation. For each € € ]0,¢q[, define ¥.: W, — R" by
U (u) == := (uj)jepn.n), foru= Zujwjvg cW..
j=1

Consider the n x n matrix B, = (bi,j,s):zj‘:l given by

bi,j,s = <¢i,571/}j,6>L27 for ia J € [1 . ’I’L]
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Assume that

(3.7)

(@j.e) ()€1, m]x]0,e0[ 1S an arbitrary family such that a;. € Kj_,
for (j,¢) € [1..n] x]0,¢&0[.

Let || - || be the norm on R™ induced by the scalar product (-, -)r. In what
follows (-, ) (respectively, || - ||) denotes the canonical inner product (respec-
tively, the induced norm) on R™. Let a, b € ]0, 0o[ such that

allzll. < |lz]| < bl|z||L, for all z € R™.

LEMMA 3.9. Let &) € ]0,e0] be as in Lemma 3.7. There is an ef € ]0,&}]
such that for each € € ]0,¢et], there are constants c., Ce € 10, 00[ such that

cellWe(u)n < flullz: < Cel|Ve(u)|lL, ue€ We.
Moreover, c. — 1, C. — 1 ase — 0.
The proof is identical to the proof of [3, Lemma 3.9].

Notation. Define the n xn matrix Ge = (gi,j,c)i j=1 bY gij.e = (Pies Yje) L2
for i, j € [1..n] and € € ]0,e¢[. Clearly

(38) GE\I’&‘(U) = (<u7 gpi,a‘)Lz)iG[l‘.nh €€ ]0760[7 u € WE'

LEMMA 3.10. There exists an i € 10, 5] and for each k € [1..n] there exists
a family (vke)eelo,ey) Such that vg . € W, =1 fore €]0,eq] and

(Vger0ie) =0 fori#k.

Moreover, if (3.7) holds, then vge(aje) — @re(aje) = 0 ase — 0.

The proof is identical to the proof of [3, Lemma 3.10].

LEMMA 3.11. Let €} € ]0,0[ be as in Lemma 3.7 and let (ue)cejo,c;) be such
that u. € W, and ||ucl|pz = 1 for each € €]0,e)]. Then

be (ue, ue) — bo (Ve (ue), Ue(ue)) = 0, ase — 0.

PrROOF. Set u. = VU.(u.), where u. = Zuwz/}js € W.. Thus, u. =

(Ue,j)jeqn..m)- We also set U g = U, and Y = wn <. We then have

n

< (e, Uue) Z/ ul)? dx<z sup ag/ (ul)? dx
&5 €5.2:Ce]

3, 57C] & ji=1 [gjyfvgjws]

= Z sup CLE/ (a&j*lw;’fl,e +a€’j 3,5)2 da.
j:l [5]',57(]’,5] [6] Eng 5]

Notice that

1
1/’;—1,5(3”) - and 7/’;,5( )

C]7 5], for z € [Ej,&(j,s]

1
Gie =&
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and so
sup a.
be (e, ) < [€5,6:¢5.e] (aa,j _ aa,j—1)2
j=1 Cj,s - gj,s
n n
= (14 hje) (e —Uejo1)’ =Y 7i(le — e j1)® + hae,
j=1 j=1

with hyj. — 0, j € [1..n], and ha, — 0 as ¢ — 0. This follows from As-
sumption 2.1, the assumption that |luc|L2 = 1, for € € ]0,¢}], and Lemma 3.9.
Similarly, working with ‘inf’ instead of ‘sup’, we show that

n
be(ue,ue) 2 Y 7j(e,y = e j—1)* + hae,
j=1

with hs . — 0 as € = 0. Therefore

(3.9) be(ue,ue) = Y 7i(fiej — Tejo1)” =0, ase 0.
j=1
Now estimate (3.9) and the definition of by and u. imply the assertion. O

COROLLARY 3.12. Let e € ]0,£0[ be as in Lemma 3.10 and k € [1..n] be
arbitrary. Then
{be(u,w) [u € We, |lullrz =1, we Uy .} #0,
{bo(We(w), Walw)) [ w € W, [Jullgs = 1w € Ui} 0

for all € €]0,e5]. Moreover, as ¢ — 0, the following holds:

inf{b:(u,u) |ue W, |lullrz=1, u e Ukl_lﬁ}
—inf{by(Ve(u), Ve (u)) |u e W, |lullrz=1, ue Uk{LE} — 0.

LEMMA 3.13. Let g5 € ]0,&0[ be as in Lemma 3.10 and, for each k € [1..n],

let the family (vk.c)ecjo.ey) be also as in Lemma 3.10. Then
Aie —Inf{bo (Vo (u), Ue(u)) |u € We, |lullpz =1, u€ Uiy .} =0, ase—0,
Ak — ba(vk,g,vk,g) — 0, ase—0.
PrOOF. Lemma 3.10 implies that {bo(V.(w), ¥e(u)) | u € We, |julrz = 1,
u € UkL_Ls} # () for all € € ]0,&5]. Tt follows from Lemma 3.10, choosing first

aje =& for (j,¢) € [1..n]x]0, &0 and then o . = ¢ . for (j,¢) € [1..n]x]0,¢e0],
that

Uk e(&e) — Pre(§e) =0 ase—0,

(3.10)
Vie(Ce) — Pre(Ce) -0 ase—0.
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Thus

b ‘Pksﬂpka Z/ o ] ‘pka)zd
> inf a / "2 da
Z oo f )

6y c % ’
>y et / @} ed$>
Z CjE ij ( [€5,6:Cj.e] "
3 m@f ]ag
Z L (ke (Ge) — Pre (&)
CJE €J5

Define hy j ¢, ho j- and hs j ., j € [1..n], such that

ka,s(fj,a) = Uk,e(gj,e) + hl,j,Ea QDk,E(Cj,E) = Uk,a((j,s) + h2,j,a7

inf a.
[5j,e»Cj,s]

Cj,s - gj,s
Assumption 2.1 and (3.10) imply that hije— 0, hoj e — 0 and hg ;. — 0 as
¢ — 0. Therefore

=7j+hsje

be(@k,s»@ks Z T]+h3]s)(vk E(CJ 5)+h2]6 Vi s(gj 6) hl]s)

75 (Vk,e(Gire) = Vr,e(&.e))? + Pae

M: i

<.
I
—

T (Okej = Ukej—1)" + hae,

M:

<.
Il
—

where hy . — 0 as ¢ — 0. Here, we write U = U.(vg ) and Vg . is the i-th
component of Ty . € R™. We also set Uy . o = Uk,e,,. By Lemma 3.11,

ZTj (ak,a,j - i]\k,E,j—l)2 = bO(\IJE(Uk,E), \Da(vk,s)) = bE(U]f767vk,£) + hse

j=1
with hs . — 0 as e = 0. Thus,
(311) be(‘pk,av @k,a) - h6,a > ba(vk,avk,e)
with hge — 0 as € — 0. For ¢ € ]0,£0[ small enough and for all k € [1..n] we
have

be(Pre, Pr,e) = inf{be(0,0) | ¢ € Hyer, llllzz =1, 0 € Uiy .}
<inf{b.(u,u) [u€We, |lullrz =1, ue UkL—l,s}'



CONLEY INDEX AND A PERIODIC BVP 47

It follows from (3.11) that
be($ker Pre) — Poe > be(Vk e, Uk e)
> inf{be(u,u) |u € We, ||ullp2 =1, ue U,CL_I,E}.
Since be (e, Phe) = Ak,e, We have
Ao e —inf{be(u,u) |u e We, |lull2 =1, u e U,CL_LE} —0, ase—0,
Moe — be(Vke, Uke) = 0, ase— 0.
Now Corollary 3.12 completes the proof. U

LEMMA 3.14. Let ¢ € 10,e0[ be as in Lemma 3.10. Let (€4)m be a null
sequence in ]0,eg] and suppose that there exists a sequence (21)ie[1..n) 1 R" such
that for each l € [1..n] and j € [1..n],

sup |@re,. (@) — 25 =0, asm — oo.
r€Kj e,

Here z1 = (215)jen.n] € R™. Then (21)iep.n) s an (-, - )L-orthonormal se-

quence. Define Yy = {0} C R™ and for each p € [1..n], let Y, be the span of the

vectors z, forl € [1..p|. Moreover, let YPJ‘, p € [0..n], be the (-, - )1-orthogonal

complement of Y,,. Then, for each k € [1..n],

(3.12) inf{bo(Pe,, (u), Ve, (0) [uwe W, llullpz =1, ue Uiy .}
—inf{bo(y,y) |y €R", |yl =1 and y € Y31} =0,

as m — 0o. Moreover, Age, — bo(zk,2k), as m — 0o.

The proof is identical to the proof of [3, Lemma 3.14].

LEMMA 3.15. Let (€1)m be a null sequence in |0,eq] and suppose that there
exists a sequence (z1)iep..n) i R™ such that for alll € [1..n] and j € [1..7],

sup  |¢ue,. () — 215 =0, asm — oo.
116ijng

For each k € [1..n] consider the following statement (Py):
(Pr)  Foreachl e [l..k], z; is an eigenvector corresponding to A .
Then (Py) holds for each k € [1..n]. Moreover, for each k € [1..n],
Ak = Ak,0s @S T — 00.
The proof is identical to the proof of [3, Lemma 3.15].

LEMMA 3.16. For every null sequence (€, )m in 10, o[ there are a subsequence
(et )m of (Em)m and a sequence (z)ie.n) in R™ such that for each | € [1..n]
and j € [1..n],

sup |(Pl,g}n (z) — Zz,j| — 0, asm — oo.

Z'Eije}n
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The proof is identical to the proof of [3, Lemma 3.16].

PROOF OF THEOREM 2.5. Part (a) of the theorem was established in Lem-
ma 3.7. Now Lemmas 3.16, 3.14 and statement (P, ) from Lemma 3.15 shows
part (c) of the theorem. The arbitrariness of the sequence (&), in part (c¢) and
Lemma 3.14 imply part (b) of the theorem. O

4. Conley index continuation for scalar reaction-diffusion equations
with periodic boundary conditions

In this section we will extend the Conley index continuation results from [2]
and [3] to the present more general case. We assume the reader’s familiarity with
the papers [2], [3]. Moreover, for the rest of this section, assume Assumption 2.1
for xp = 0 and x,, 41 = 1, with the ensuing definitions and notation of Section 2.

Let g9 € ]0,00] be as in Assumption 2.1. For each ¢ € |0, eo[ define H® = L2,
(+, Yge =(+,)p2 and A as in (2.2). Define also H® = R", (-,-)pgo = (-, )L
and Ay as in (2.4). Notice that for each € € ]0, o[ it follows that Hf = H}, and
|- |az = || - |le. Moreover, H{ = R™ and | - lgo = |- llo-

To prove the existence of an embedding family (J:)co,7, for some € € |0, go],
let us introduce some notation and establish some preliminary estimates.

Define B to be the set of all (-, -)L-orthonormal sequences Z = (21)i[1..n]
such that Agz; = Moz, | € [1..n]. For each Z = (21)1e[1.n) € B and ¢ € ]0, 0]
define I z: R™ — Hf = H!_ by

per

n

I 7(u) = Z(u,zp>L “Qpe, u€R™
p=1
It follows that I. 7 is R-linear. Suppose that I. z(u) = 0. Since ¢, ., p € [1..7]
is linearly independent, we have (u, z,)1, = 0 for all p € [1..n]. Recall that Z is

an (-, -y -orthonormal basis of R™. Therefore, u = > (u,2z,)L2p, = 0. Thus I, z
p=1
is injective.
Let uw € R” and v = I, z(u) € H{. We have

oo

ol12 = >~ (e + DIv, pre) 2]

1=1
so a quick calculation shows that

n

ol = (e + Dlu, )/

=1

Moreover,
n

ulls =D~ (Ao + Dl (u, 2wl

=1



CONLEY INDEX AND A PERIODIC BVP 49

Now it follows from Lemma 3.7 and Theorem 2.5 that there are a constant
C € ]1,00[ and an &} €]0,eg] such that 0 < X\ . +1 < C? and 0 < N o+ 1 < C2,
Me+1<C?*(No+1)and \jg+1<C?*(N+1)forl €[l..n] and ¢ € ]0,&4].
Therefore

(4.1) [ulld < C* e z@)lIZ and [T z(u)]1Z < C®[|ull3

for allu € R, Z € B and ¢ € ]0,¢%]. For each Z = (21)ic1..n) € B and € € ]0, 0]
define

(4.2) Tiz == sup  sup [pie(z) — 21,5
l,je[l..n]weKj.e
Note that
(4.3) Sl[lp ]\Zl,j—zl’,ﬂ <T.z4+T.z,, Z=(2)icp.n)y Z = (2)iep.m) €B.
l,je[l.n

The set B is compact in (R™)™ and, for each € € ]0,e¢[, the map T.: B — R,
Z +— T 7 is continuous, so there is a

(4.4) Z(e) = (2(e)i)iep.n) € B
such that

(4.5) TE,Z(E) = ZiréféTs,Z~
Set

(4.6) Je = I‘g’Z(E), €c ]0,60[.

LEMMA 4.1. For every k € N there exists an " = €"(k) € ]0,¢¢[ such that,
for all € €10,¢"], there exists a Z € B with T, z < 1/2k.

PROOF. Suppose the conclusion does not hold. Then there exists a kg € N
such that for all £” € ]0, e[ there exists an ¢ € ]0,”] such that 7. z > 1/2%, for
all Z € B. Thus, there exists a sequence (€., ) in ]0, o[ with €, - 0 as m — 0
such that for all Z € B

1
7z > —, forallmeN.

(4.7) T, o

Em,

Now, Lemma 3.16 and Lemma 3.15 imply that there are a subsequence (g,),, of
(ém)m and a Z € B such that T, 7z — 0, as m — oo. This contradicts (4.7). O

Lemma 4.1 and formula (4.5) imply that
(4.8) T. 76 —0 ase—0.

In the next result we will establish, for the present case, the validity of
condition (FSpec) introduced in [2].

THEOREM 4.2. The family (H®, (-, - )me, Ac, Je)cejo,e;) satisfies (FSpec).
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PrOOF. It is clear that (1) and (2) of condition (FSpec) hold. Inequali-
ties (4.1) imply (3) and (4) of condition (FSpec).

For every ¢ € ]0,¢%], let (\;c); be the repeated sequence of eigenvalues of A,
and (¢;.¢); be a corresponding He-orthonormal sequence of eigenfunctions. Fur-
thermore, let (A 0)ie[1..n] be the repeated sequence of eigenvalues of Ag. Let
(Em)m be an arbitrary null sequence in ¢ € ]0,7].

It follows from Theorem 2.5 that (5)(a) and (5)(b) of condition (FSpec)
hold. To complete the proof we need to show that (5)(c) and (5)(d) of condition
(FSpec) also hold. Lemmas 3.15 and 3.16 imply that there are a subsequence
(eL)m Of (€m)m and a Z = (21)i€[1..n) € B such that

m

(4.9) T, —0, asm — oo.

el Z
Formulas (4.3), (4.9) and (4.8) imply that

(4.10) sup |z(ep )i — 214l — 0, asm — occ.
l,j€[l..n]
Let [ € [1..n] be arbitrary. We have
Plel, — Js}ﬂ (Zl) = Plel, — Is}n,Z(s}n)(zl)

n

n
= Z 6[,1)()017,5}” - Z<Zl7 Z(Evln)p>l90p,e}”
p=1

p=1

I
M=

(B1.p — (21, 2(E0)p)L) Pl -
1

3
Il

Thus

M=

1
m

”‘pl,e}n - Je}n (Zl)”E},, < |5l,p - <Zl7 Z(£:n)p>L|||50p,E}n €

Il
-

P

NE

|61,p — (21, Z(E}n)P>L|()‘p7€}n + 1)1/2-

Il
—

p

Since, by estimate (4.10), (z;,z(eh,)p). — &1p and for each p € [1..n], the
sequence (A, .1 +1),, stays bounded as m — oo, we see that (5)(c) of condition
(FSpec) holds. For u € R® = HY and m € N we have

<Js}nu7 (Pl,s},)HE}n = <Js}nua ‘pl,s}n,>L2

=Y (u,2(e0)p)L{@pet > rer V2 = (u, z(e5, )i)L-
p=1

Thus (Jer u, @11 ) et — (u, 21) o as m — oo. Therefore (5)(d) of condition
(FSpec) holds. O

For the rest of this section assume the following nonlinear convergence hy-
pothesis:
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ASSUMPTION 4.3. (a) For each ¢ € [0, o[ the function g.: [0,1] x R — R is

continuous and such that for each M € ]0, 00 there exists a Lys € |0, 00| such
that for |s| < M and |s'| < M

lge(z,8) — ge(z,8")| < Lals — s'|, forall x € [0,1], € € [0,&0].
(b) There is an €§ € ]0,&0[ such that

sup  sup |ge(x,0)| < oo.
e€(0,e5] z€[0,1]

(c) For each z € [0,1] and s € R, g.(z,s) = go(x,s) as € — 0.

Let € € ]0,&0[. Note that each u € H!,, is (uniquely represented by) a con-

per

tinuous function. So the map g.(u): [0,1] — R defined by

@}(u)(m) = ga(l‘vu(m»’ U [07 1] )

is continuous and bounded. Moreover, g.(u) is Lebesgue measurable and so it
lies in L?(0,1). Therefore for each e € ]0,e0[ we obtain a well defined map
fe: Hr.l)er — L? given by f.(u) = g-(u), u € H},.. Moreover define fo: R" — R"

per*
by fo(u) = (fo(u);)je[1..n, Where
fo(u); = %/K.go(x,uj)dx,

J i

u = (uj)jen..n), for j € [1..n].
In the next result we will establish, for the present case, the validity of
condition (Conv) introduced in [2].

THEOREM 4.4. Let (H®, (-, )me, Ac, Je)ecpo,er) be as Theorem 4.2. There
exists an g € |0,e7] such that the family (f:)cc(o,c;) satisfies condition (Conv).

PROOF. Let g = min{eh, ef,e5}. Part (1) of condition (Conv) has just been
proved. Let M € ]0,00] be arbitrary. Let € € ]0,£§] and u, v € Hf be such that
|u| =, |v| e < M. Tt follows from Lemma 3.3 that

sup |u(z)] < CLM  and  sup |v(z)| < CLM.
z€[0,1] z€[0,1]

Hence
1 1
2 2 2 2 2
/0 192 (2, () — g (&, v(z)) [P da < L2 / ju(w) — v(@)|? dw < L2 Ju — |2,

where M = C}M. This implies that

|fe(u) — fe(v)|me < Lyplu— v|Hls, for all £ € )0, g].
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Moreover, let u,v € HY satisfy [ulgo, [v]go < M.

Il fo(u) = fo(v)|I = Z i(folw); — fo(v);)?

= Lj(/K(go(x’uj)—go(x’vj))dﬂ?)z

J

/ lgo(z,uj) — go(z,v;)] dx>2

K;

L
n L2 2
< Ml(/ U; — U dm)
Z -L‘7 % | J ]|

J

n
< Lip ) Lyluy —vo* = Lipllu — o)l < Lipllu—oll3,

—1
where M’ = M ( n[llm | L; ) . This implies that
JjE n

| fo(uw) = fo(v)[mo < Lar|u — v[go.

It follows that part (3) of condition (Conv) holds.
Let C be as in formula (4.1). Let € € ]0,£5] be arbitrary. Then

1fe(Je()llzz < [[f=(Je(u)) = f(0)l|z> + ([ f=(0) |2
< L[| J=(w)lle + [1£(0) |2
< Ly Cllulln + 1£2(0) |22 < L Cllullw + K,
where M = Cllu|L and K = sup sup,cp,1)|g:(z,0)|. This implies that state-

€€[0,eg]

ment (4) of condition (Conv) holds.
To complete the proof we need to show that (2) of condition (Conv) holds.
To this end we will use [2, Theorem 2.2], which holds in the present case in view
of Theorem 4.2. We claim that:
Let u € HY = R™ and ¢ € ]0,00[. Then
(4.11) lm [e~ " fo(Jou) — Jo(e7H fo(u)

e—=0t

‘HE =0.

Let (€;)m be a null sequence in ]0,e4]. Notice that J. u € H for all m € N.
It follows from (4) of condition (Conv) that
(4.12) sup |fe, (Je,, u) | gem < 00.

meN

Theorem 2.5 implies there are a subsequence (L), of (€,)m and a sequence
Z = (21)i[1..n) in R™, where z; is an eigenvector corresponding to A; g, such that

(4.13) T, = sup sup |¢ (x) =2 =0, asm— oco.
Lj€[l.n] z€K; 1 "
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Let [ € [1..n]. We will show that
<fa}n(']s

For each m € N we have
1 n
<f61 (J el u), %Ol,a}n> :/ ga}n(xa (Js}nu)(x))@l,a}n(x) do =: Z/ Tj(x) da
0 YK

where Tj(z) = go1 (z, (Jor u)(2))prer (), © € Kj, j € [1..n]. For m € N,
xz € K; and j € [1..n] we have
Tj(x) = (ge1, (z, (Jor w)(2)) — ge, (2, 45)) Pr.en, (@)
+ ger (2, u5) (@rer (2)—215) 4 (9e1 (2, u5)—go(@, u)) 21,5 + gol@, uj)z
=2 57 (@) + 83 (2) + 8] 1 (2) + 55, ().

Let M € ]0,00[ be a positive constant such that for all € € ]0,eg], j € [1..n],
z€0,1] and m € N

w), prer ). = (U, z)L as m — oo.

m

| Je(u)(2)] < M, |pre()] < M,
luj| <M, ge(z,u;)] < M.
Therefore,
\S{m(m)\ < Ly |Jer u(x) —uy|M, for all j € [1..n], z €[0,1] and m € N,
\Sém(m)\ < My a1 (2) = 214, for all j € [1..n], z € [0,1] and m € N.
Recall that J.1 = I.1 71 ). Therefore

n

Jor u(x) = Z(u, 2(e)pILPp et i (z), forx€[0,1] and m € N.
p=1
Let j € [1..n]. Since u; = > (u, 2p)1L2p,; We obtain
p=1

n

Je}nu Z —(u, ZP>IL)<F7p,a}n (l‘)JrZ(u, Zp>]L(§0p,a}n (I)*Zp,j)'
1

p= p=1
It follows from (4.3), (4.8) and (4.13) that

sup |Jo u(w) —u;[ =0, asm— oo and sup sup |Jo u(r) —u;| < oo.

IEKJ el meN zGK

Since m(K; \ K1 ) — 0 as m — oo it follows that
81 (z)dr —0, asm — occ.
K;

Similarly we show that

sup |S§m($)| —0 asm—oo and sup sup |S§m(x)| < 0.

z€K; 1 meNzeK;
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Hence

/ Sim(a:) dr — 0 asm — oo.

K;

Since ge(z,s) = go(x,s) as € — 0 and

sup sup |ge1 (@, u;)| < 00,
meNzeK;

the Lebesgue Dominated Convergence Theorem implies that

/ Sg’m(x) dr —0 asm — oo.

KJ
Finally
/ S (@) dz = / go(,uj)z5 dw = Ljfo(u)j2,5-
K; K;

Thus

3 / S (@) da = (o), 20)r.

i=1"K;
and so

<f5}n(J€}nu)a<pl,s}n>L2 — <f0(u)7zl>]L as m — oQ.
This together with (4.12) and [2, Theorem 2.2] imply that

’e_tAfm e (Je, u) — Je, (e_tA"fO(u)){HlEm —0 asm — oo.

Em

This proves claim (4.11) and completes the proof. O

For each ¢ € ]0,¢eq], consider the abstract parabolic equation

(4.14) =—Au+ fe(u)
on H}.. This equation generates a local semiflow 7. on H],. Equation (4.14)

is an abstract formulation of the periodic boundary value problem

ur = (aety)s + ge(z,u) for 0 <ax <1, t >0,

(Ee, P)
u(t,0) = u(t, 1) for t > 0.

Moreover, we may also consider the system of ordinary differential equations

(4.15) i=—Agz+ fol2)

on R™. This system generates a local (semi)flow w9 on R™. For ¢ € ]0,¢ep], let

Q:: Hf — H$ be the Hf-orthogonal projection of Hf onto (its closed subspace)

Je(HY). Moreover, let R.: J.(HY) — HY be the inverse of J.: HY — J.(HY).
We can now state the following Conley index continuation principle:
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THEOREM 4.5. Let N be a closed and bounded isolating neighbourhood of an
invariant set So relative to my. For e € )0,e5] and, for every n € 10, 00|, set

Ney:={u€ Hi | R-Q:u € N and |(I — Qc)ulg: < n}

and Se 5 = Invy (N. ) i.e. S, is the largest m -invariant set in N.,. Then,
for every n € ]0,00[, there exists an ¢ = €°(n) € |0,eq] such that, for every
€ €]0,e°, the set N.,, is a strongly admissible isolating neighbourhood of Se ,
relative to . and

]7,(71'67 Ss,n) = h(ﬂ'o, So)

Here, as usual, h(m,S) denotes the Conley index of an isolated invariant set S
relative to a local semiflow w. Furthermore, for every n € ]0,00[, the family
(Se.n)eeioec(n)) of invariant sets, where So, = So, is upper semicontinuous at
e = 0 with respect to the family | - |g: of norms i.e.

lim sup inf |w— J.ulgs =0.

e—0t wESI:,n u€So ‘ c |H1
The family (Scn)eelo,cc(n)] 5 asymptotically independent of n, i.e whenever m
and 12 € ]0,00[ then there is an &' € 10, min(e®(n1),e%(n2))] such that S.,, =
Se.n, fore €]0,€'].

PrOOF. This is an application of the abstract result [2, Theorem 2.4] using
Theorems 4.2 and 4.4. O

REMARK 4.6. Note that
sup sup |w|gs < oo and sup  sup |Jou|gs < oo.
€€]0,e¢(n)] wENe e€]0,ec(n)] ueN

In particular, by Lemma 3.3, we also have that

4.16 li inf — Jeu|po = 0.
( ) ELISI‘*' wselgrj,n ulélso |’LU U|L

The embedding J., ¢ € ]0,4], is somewhat artificial. A more natural em-
bedding can be defined by the map

n

O: R"” — L, u = (Uj)jen.n — Zulej.
=1

This map is clearly linear injective. Note that

(4.17) U=

n
p=

(u, 2(g)phnz()p, uw€R™ and € €]0,eq].
1

It follows that

Ou(z) := (Ou)(xz) =u; for je[l..n] and z € Kj,
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(4.18) Jeu(@) — Ou(w) = Y (u, 2(e)p)L(pp.e(x) = 2(e)p.)
p=1

and so

(4.19) sup sup |Jeu(x) — Ou(xz)| < nfulLT; 7).

JjEl.n]zeKj e
PROPOSITION 4.7. Under the assumptions of Theorem 4.5 the following upper

semicontinuity results hold:

(4.20) lim sup inf sup sup |w(z)—Ou(z) =0
e—0+ wWESe n u€So jE[l.n]z€EK; ¢

and, for allr € [1,00],

(4.21) lim sup inf |w— Oulr- =0.

=0t yes, , wESo
Proor. For w € S, , and u € Sy we have

(4.22) sup sup |w(z)— Ou(z)]
jell..n] 2€K; .

< sup sup |w(z)— Jou(x)|+ sup sup |Jou(z) — Ou(z)]
jE€[l.n]z€K; - jE€[l.n]z€K; -

< sup  sup |w(z) — Jeu(z)| + nONT 2o
jE[l..n] €K

< |w — Jeulpe +nCNT: z(e),

where Cy = sup |u|, < co. Thus
u€EN

(4.23) sup inf sup sup |w(xz)— Ou(x)]
wESe .y ueSOje[lun]xeKj,E

<nCnT; z()+ sup inf |w — Jou[pes,

weSe , u€So

so (4.20) follows from (4.16) and (4.8). Now estimate (4.21) follows from esti-
mate (4.20) and Remark 4.6. O

Finally, we have the following homology index braid continuation principle:

THEOREM 4.8. Assume the hypotheses of Theorem 4.5 and for every n €
10, 00[ let €(n) € ]0,e4] be as in that theorem. Let (P, <) be a finite poset. Let
(Mp0)pep be a <-ordered Morse decomposition of So relative to my. For each
p € P, let V, C N be closed in R"™ and such that
Mpo = Invy,(Vp) C Intgo(Vp).
(Such sets V,, p € P, exist.) Fore €]0,e4], for everyn € 10,00 and p € P set

My i=Inv, (Vpen), where

Vpen ={ue H] | R:Q:u eV, and |(I — Qe:)ulms < n}.
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Then, for every n € 10,00[, there is an € = £(n) € ]0,e°(n)] such that for every
€06l andp € P, My, C Intye(Vy o) and the family (M. n)pep is a <-
ordered Morse decomposition of S, relative to . and the homology index braids
of (o, So, (Mp,0)pep) and (e, Se.yy, (Mp c.n)pepr)), € € ]0,€], are isomorphic and
so they determine the same collection of C'-connection matrices. For eachp € P,
the family (My.cn)eejo.z0m)), where My o, = My, is upper semicontinuous at
e = 0 with respect to the family | - |gs of norms and the family (Mp < n)zcjo,z(n)]
is asymptotically independent of 7.

PROOF. This is an application of the abstract result [2, Theorem 2.5] using
Theorems 4.2 and 4.4. (|

REMARK 4.9. Of course, the analogue of Proposition 4.7 holds for each of
the families (Mpﬁ,’r])ee[o,g(n)]'

Appendix

Let a, 8 € R be arbitrary with a < 8. Let Héer(oz, B) be the set of all p €
H'(a, B) with u(a) = u(B), where u = u, € C([o,8]) is the unique continuous
representative of .

Let a: [a,8] — R be continuous and positive. Define the bilinear form

b= ba: le)er(avﬁ) X Héer(a’ﬁ) - R by

(0,9) = ag'y)’ d.
]a713[
Define D = Dy, be the set of all ¢ € H, (c, 8) for which there is a w = w,, €
L?(a, B) such that

b(@a w) = <w7’(/)>L2(a,ﬁ) for all w € le)er(aaﬁ)'

Then, for ¢ € D the element w = w, is uniquely defined and writing Ay =
w we obtain a map A: D — L?(a,f), called the map defined by the pair
(b,(-, - )12(a,5)) and denote D by D(A).

It is easy to prove that D is the set of all ¢ € H] (o, 8) such that ap’ €
H}. (a,) and then Ap = —(ag')".

Moreover, if a(a) = a(f), then the following conditions are equivalent for
each ¢ € H'(a, B):

(1) ¢ € D and Ay has a continuous representative w.

(2) The continuous representative u of ¢ lies in C!([e, 8]) and in classical

sense, u(a) = u(f), v'(a) = v/(B) and (av') () = —w(zx) for all = €

[a, B].
This follows by an application of [1, Theorem 8.2].
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