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LOWER AND UPPER BOUNDS FOR THE WAISTS

OF DIFFERENT SPACES

Arseniy Akopyan — Alfredo Hubard — Roman Karasev

Abstract. In this paper we prove several new results around Gromov’s

waist theorem. We give a simple proof of Vaaler’s theorem on sections of
the unit cube using the Borsuk–Ulam–Crofton technique, consider waists

of real and complex projective spaces, flat tori, convex bodies in Euclidean

space; and establish waist-type results in terms of the Hausdorff measure.

1. Introduction

Using his version of Morse theory, Almgren showed that for any smooth map

f : Sn → Rk, under certain general position assumptions, there exists a y ∈ Rk

such that the Riemannian volume of the fiber f−1(y) is at least the Riemannian

volume of the sphere Sn−k (here Si := {x ∈ Ri+1 : |x| = 1}), and the bound on

inf
f

sup
y∈Y

voln−k(f−1(y))
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is achieved by a linear projection restricted to Sn. Almgren’s manuscript [4]

has never been published and actually the authors know its contents from other

sources only.

Almgren’s work was motivated by the quest for minimal submanifolds in

Riemannian manifolds. Gromov being focused on the inherent interest of the

aforementioned result observed its similarity to other geometric invariants like

the Urysohn width, the Alexandrov width, the Cheeger constant, etc. He coined

the term waist (sometimes called the width as both words translate from the

Russian “poperechnik”), and wondered if the same result holds true for all con-

tinuous maps. In the case of continuous maps fibers might not be rectifiable, so

a different way to measure volume is needed. Gromov first considered the waist

measured by the Hausdorff measure. He used his filling technique to show the

existence of a constant εn,k so that for every continuous map f : Sn → Rk there

exists a fiber f−1(y) with (n − k)-dimensional Hausdorff measure, denoted by

Hn−k(f−1(y)) is at least εn,kHn−k(Sn−k). It is an open problem if this statement

remains true for εn,k = 1. Years later [10], he considered the waist measured by

the Minkowski content, and introduced the t-neighbourhood waist (the t-waist

for briefness): given a measure metric space X, a topological space Y , and a

set of maps Γ from X to Y , the t-neighbourhood waist of Γ can be generally

defined by

inf
f∈Γ

sup
y∈Y

µ(νtf
−1(y)),

where νtf
−1(y) is the set of points at the distance from f−1(y) less than t.

Estimating t-neighbourhood waists of a space of maps is a challenging task even

for simple spaces of maps. In [10] Gromov showed that the t-neighbourhood

waist of continuous maps C(Sn,Rk) is at least vol(νtSn−k), where vol is the

Riemannian volume in Sn. From this theorem, Almgren’s theorem (for fibers

of a map to a manifold) can be recovered by taking t → 0, as it implies that

the lower Minkowski content (not a measure, strictly speaking) of a fiber is at

least that of an equatorial Sn−k sphere, where the lower Minkowski content is

defined as

Mn−kX = lim inf
t→+0

voln(νtX)

vktk
,

where vk = πk/2/(k/2)! is the volume of the unit Euclidean k-dimensional ball.

The Minkowski content of X evidently depends on the ambient Riemannian n-

dimensional manifold, but in this paper the ambient manifold can be guessed

from the context and is omitted from the notation.

1.1. This paper. In this note we consider analogous waist inequalities for

a number of other spaces. Firstly we observe that under a symmetry hypothesis

on the map f , the waist inequality for Hausdorff measure with εn,k = 1 can be

easily derived from topological considerations and Crofton’s formula. A variation
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of this technique provides a short proof of the famous theorem of Vaaler on the

linear waist of the cube: every central linear section of the unit cube has at least

unit volume.

This is followed by our study of the waists of a number of other spaces (1): real

and complex projective spaces, rectangular flat tori, and convex bodies. Many

of our results concern the waist measured by the Minkowski content developing

the ideas of [1], [21], where the waist of rectangular parallelotopes and ellipsoids

(in the sense of the lower Minkowski content) was determined.

Then we study a different generalization: waist inequalities in terms of topo-

logical invariants of the space of cycles of a space. We focus on the space of

cycles of spheres, balls, and cubes. Waist inequalities in terms of the space of

cycles are more general then the waist inequalites for smooth (and sufficiently

regular) maps. Non surprisingly the considerations that are previously used in

this paper for the Minkowski content carry to this context. Furthermore we put

together the recent work of Klartag [21] with the work of Liokumovich, Coda–

Marques and Neves [25] to slightly improve the estimates on the volume of other

cohomology classes of the space of cycles.

Finally, we come back to the Hausdorff measure. We generalize a result of

Lebesgue in the following way: we prove that there exist εn,δ > 0, such that

for every finite covering of the cube [0, 1]n by family of closed sets {Ci} so that

each set Ci intersects at most δ of the other sets, there exists k ∈ {0, . . . , n}, and

indices i0 < . . . < ik such thatHn−k(Ci0∩. . .∩Cik) > εn,δ, where as beforeHn−k

denotes the (n−k)-dimensional Hausdorff measure. We also generalize Gromov’s

waist theorem for the Hausdorff measure to the case of maps to arbitrary k-di-

mensional polyhedron in place of Rk.

1.2. Contribution and organization. With hindsight we suspect that

some of the results of this paper are folklore. This is probably the case for

Theorems 2.1, 2.11, Corollary 2.13 and Theorem 2.14. Many of our results seem

new and come up as natural corollaries and extensions of the technique used

in [1],[21], this is the case for the proofs of Theorems 2.4, 2.6, Corollaries 3.1

and 4.1, Theorem 4.2 and the results of Section 6.

A third type of results are new and combine LS-category type results with

geometric observations, this is the case for Theorems 2.9 and 5.5. Finally, Sec-

tion 7 involves a generalization of the Lebesgue lemma using Gromov’s filling

technique; this is also new although it mimics the analogous result for the dis-

crete cube from [19].

In Section 2.1 we describe our observation for the Hausdorff waist of odd maps

and our simplified proof of Valeer’s theorem; Sections 2–4 contain our results on

(1) For much more information on waist inequalities see Gromov’s papers, and Guth’s

essay [16] and papers.
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the waist in terms of Minkowski content of certain homogeneous spaces, mostly

real and complex projective spaces and orthogonal flat tori. In Section 5 we

give some new results on the waists of convex bodies. In Section 6 we consider

the waist in terms of family of cycles that sweepout a manifold (possibly with

boundary). We show that the techniques of [1], [21] extend to this case, and

improve the estimates for the higher waists of the cube. Section 7 presents our

results of Hausdorff-measure waists of maps from the cube to a polyhedra.

2. Real projective space (and odd maps on the sphere)

2.1. Odd maps. Let us start with a relatively simple result. It seems es-

sentially known, see for example [5], where a very similar argument is used to

give a lower bound on the number of vertices of a linear section of a cube, and

[15, Section 5], where a similar claim is made in terms of subspaces of the real

projective space.

Theorem 2.1. For any odd continuous map f : Sn → Rk,

Hn−k(f−1(0)) ≥ Hn−k(Sn−k).

Thus, for odd maps, there is a tight Hausdorff measure estimate for the waist

of the sphere.

Proof. Let E ⊂ Sn be any equatorial subsphere of dimension k. By the

Borsuk–Ulam theorem the restriction f |E : E → Rk has a zero, that is f−1(0) ∩
E 6= ∅. In fact, f−1(0) ∩ E contains at least two opposite points. Now recall

Crofton’s formula (2),

In−k(f−1(0)) :=
1

2
voln−k(Sn−k)

∫
E∈G(k+1,n+1)

#(E ∩ f−1(0)) dµ(E)

≥ voln−k(Sn−k),

here E is an equatorial subsphere of dimension k, µ is the probability measure on

such subspheres of Sn that is invariant under the action of the group SO(n+ 1)

on Sn (the Haar measure) and #(E∩f−1(0)) denotes the number of intersection

points between E and f−1(0).

Now we recall that Federer’s structure theorem [29, Theorems 3.17 and 3.16]

(referring to [8, Theorem 3.2.26 and 3.3.13]) implies that either the Hausdorff

measure Hn−k(f−1(0)) is infinite or

Hn−k(f−1(0)) ≥ In−k(f−1(0)) ≥ In−k(Sn−k) = Hn−k(Sn−k). �

(2) Crofton’s formula provides In−k(Z) = voln−k(Z) when Z is rectifiable. In our context

the formula provides the definition of the integral-geometric volume.
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Remark 2.2. The same argument substituting the integral geometry volume

by the estimate on the volume coming from the systolic inequality gives the

following more general statement (except for the sharp quantitative dependence):

For any Z2-invariant metric m on the sphere Sn and any piecewise smooth Z2-

continuous map f : Sn → Rk, we have

voln−k(f−1(0)) ≥ ε′n,k Sys(m)n−k.

It is conjectured that the extremal metric for the systolic inequality on the

projective space is given by the standard round metric. In the rest of the paper we

do not make allusion to non-canonical metrics. We always refer to the standard

round metric on the sphere or its Z2 quotient and to the Euclidean metric on

the cube.

2.2. The Borsuk–Ulam–Crofton approach to Vaaler’s theorem. Let

us make an observation about the usefulness of Theorem 2.1; here we apply it to

the maps that have smooth f−1(0) and may therefore speak about the Riemann-

ian volume instead of the Hausdorff measure. The idea is to use the Borsuk–

Ulam–Crofton argument to establish a version of the waist theorem for a radially

symmetric measure in Rn (we particularly need the case of the Gaussian mea-

sure); and then use the (folklore) trick of transporting the Gaussian measure to

the unit cube to infer Vaaler’s theorem.

Assume we have a density ρ : Rn → R+, which only depends on the distance

from the origin. We will actually discuss the ρ-weighted version of the Rie-

mannian volume, given by integrating this density by the Riemannian volume

measure.

Lemma 2.3. Let ρ be a radially symmetric density in Rn. For any odd

continuous map f : Rn → Rk, if the set Z = f−1(0) is a (piece-wise) smooth

(n−k)-dimensional manifold then we estimate its ρ-weighted Riemannian (n−k)-

volume as

volρn−kZ ≥ volρn−k R
n−k,

where we mean a standard linear subspace Rn−k ⊂ Rn.

Proof. For any sphere Sn−1
r of radius r centered at the origin, the Rie-

mannian (n − k − 1)-volume of Z ∩ Snr is at least voln−k−1Sn−k−1rn−k−1 by

Theorem 2.1. Integrating this we easily obtain:

volρn−kZ :=

∫
Z

ρ(x) voln−k ≥
∫ +∞

0

voln−k−1 Sn−k−1ρ(r)rn−k−1 dr = volρn−kR
k.

�

For example, taking the density ρ(x) = e−π|x|
2

, we have the estimate volρn−kZ

≥ 1 for the (piece-wise smooth) zero set of any odd map Rn → Rk, compare this
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with a much harder result for zeros of holomorphic maps in [22]. Now we show

that this simple approach also works in some cases without radial symmetry.

Theorem 2.4. Let g : (−1/2, 1/2)n → Rk be an odd continuous map, such

that Z=g−1(0) is piece-wise smooth and (n−k)-dimensional. Then voln−kZ≥1.

Proof. Let us transform the Euclidean space with the Gaussian density to

the cube with the uniform density, using the folklore trick that is mentioned in [6,

Remark before Section 4], [31, Theorem 7], and applied to the waist in [21]. Put

y(x) =

∫ x

0

e−πξ
2

dξ.

This function maps R to (−1/2, 1/2), has derivative at most 1 everywhere, and

the push-forward of the measure with density e−πx
2

is the uniform measure on

(−1/2, 1/2). The map

T : Rn → (−1/2, 1/2)n, T (x1, . . . , xn) = (y(x1), . . . , y(xn))

is 1-Lipschitz (does not increase the distances between pairs of points) and the

push-forward of the Gaussian measure under T is evidently the uniform measure

on the open cube (−1/2, 1/2)n.

Consider the composition f = g ◦T : Rn → Rk and the set Z ′ = f−1(0), then

T (Z ′) = Z. Since f is an odd map, we have by the above argument for Z ′ that

volρn−kZ
′ ≥ 1. It remains to examine how T transforms the (n− k)-dimensional

Riemannian volume.

The fact that T transforms the Gaussian measure to the uniform measure

in the cube is expressed with detDT = ρ. In order to check the transform of

the (n− k)-dimensional Riemannian volume we consider an (n− k)-dimensional

subspace L in the tangent space.

Since all eigenvalues of DT are no greater than 1 (this is a Lipschitz map),

its determinant cannot decrease when going to the subspace, that is detDT |L ≥
ρ (3). Indeed, when considering the quadratic form given by DT ∗DT on a linear

space V , we may write down the eigenvalues 0 ≤ λ1 ≤ . . . ≤ λ` ≤ 1. Pass-

ing to a subspace of one dimension smaller, we consider the new eigenvalues

µ1, . . . , µ`−1. Using the formula for the ordered eigenvalues of a quadratic form

Q : V → R on a Euclidean space V

λk(Q) = min
W⊂V, dimW=k

(
max
w∈W\0

Q(w)

|w|2

)

(3) Here we consider the determinant of a map L : V → W between Euclidean spaces of

different dimension as
√

detL∗L assuming the identifications W = W ∗ and V = V ∗ under the

Euclidean structure.
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we readily obtain the inequalities connecting the original eigenvalues and the

eigenvalues of a restriction:

0 ≤ λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ µ`−1 ≤ λ` ≤ 1.

From this it follows that

µ1 . . . µ`−1 ≥ λ1 . . . λ`−1 ≥ λ1 . . . λ`−1λ`

and therefore detDT ∗DT cannot decrease when restricting to a subspace.

The inequality detDT |L ≥ ρ means that the resulting (n − k)-volume is no

smaller that the original ρ-weighted (n−k)-volume, showing that voln−kZ ≥ 1.�

A particular case of the above theorem is Vaaler’s theorem [33] about sections

of a cube:

Corollary 2.5 (Vaaler, 1979). Every (n− k)-dimensional linear section of

the unit cube (−1/2, 1/2)n has Riemannian (n− k)-volume at least 1.

Compare the above argument to [21], where Vaaler’s theorem is inferred from

Gromov’s waist theorem for the Gaussian measure. The approach presented here

avoids the use of Gromov’s t-waist theorem which is a much harder result, we

use the Borsuk–Ulam theorem and Crofton’s formula instead.

In fact, the full version of Vaaler’s theorem gives an estimate for a linear

section of a Cartesian product of Euclidean balls of arbitrary dimensions, but all

of unit volume. The Borsuk–Ulam–Crofton approach produces the corresponding

generalization:

Theorem 2.6. Let g : K → Rk be an odd continuous map, such that Z =

g−1(0) is piece-wise smooth and (n− k)-dimensional, where K ⊂ Rn is a Carte-

sian product K = Bn1 × . . . × Bnk of open Euclidean balls, each Bni having

ni-volume 1. Then voln−kZ ≥ 1.

Proof. The scheme of the proof is the same as in Theorem 2.4; we only need

to transport the Gaussian measure with density e−π|x|
2

on Rni to the uniform

measure in a unit volume ball Bni with a map Ti. This transportation has to be

radially symmetric and the corresponding map of the radial coordinate x 7→ y is

determined by the equation∫ y

0

nrn−1 dr =

∫ x

0

nrn−1e−πr
2

dr,

or a bit more explicitly

yn =

∫ x

0

nrn−1e−πr
2

dr.

It is important for this map to be 1-Lipschitz. The Lipschitz property in direc-

tions orthogonal to the radial direction is guaranteed by the trivial observation
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y ≤ x. The radial direction requires differentiation of the defining relation to give

y′x =
nxn−1e−πx

2

nyn−1
=

yxn−1e−πx
2∫ x

0

e−πr
2

drn
≤ xne−πx

2∫ x

0

e−πr
2

drn
≤ xne−πx

2∫ x

0

e−πx
2

drn
= 1,

where we used y ≤ x and e−πr
2 ≥ e−πx2

(for r ∈ [0, x]) in the estimates.

After that we consider T = T1 × . . . × Tk, which 1-Lipschitz transports the

Gaussian measure to the uniform measure in K, apply the Borsuk–Ulam–Crofton

argument to g ◦ T precisely as in Theorem 2.4. �

Note that the estimate of Theorem 2.6 for the product of balls is not tight,

in particular, it is not tight in the case of a single ball. Of course, for odd maps

from the single unit ball Lemma 2.3 gives a tight estimate, and for arbitrary

maps the estimate (for the Minkowski content of a fiber) is produced in [1] by

considering the natural (Archimedes) projection Sn+1 → Bn and using the fact

that it pushes forward the uniform measure on the sphere to the uniform measure

on the ball in a 1-Lipschitz way.

2.3. Even maps. To make one further step we consider even maps g : Sn →
Y , where Y is a k-dimensional polyhedron. The map g factors through a map

f : RPn → Y . So estimates on the waist for even maps for the sphere are

equivalent to estimates on the waist for the real projective space. In [18] it was

shown, that for

m =

⌊
n

k + 1

⌋
,

there exists y ∈ Y such that wm does not vanish in the Čech cohomology of

f−1(y), where w ∈ H1(RPn;F2) is the cohomology generator. From here we

might proceed like in the previous section, but the problem is that m is usually

much smaller than n− k, the expected dimension of f−1(y). The equality m =

n− k only holds when k = n− 1. In this case we have:

Theorem 2.7. Let g : RPn → Y be a continuous map to a polyhedron drop-

ping the dimension by one. Then, for some y ∈ Y , the length of the fiber g−1(y)

is at least π.

Proof. From [18] we find a fiber g−1(y) such that the restriction of the

generator of H1(RPn;F2) to g−1(y) is nonzero. Therefore its lift to Sn, f−1(y),

intersects every rotated image of Sn−1 at least twice. Crofton’s formula implies

that the 1-Hausdorff measure of f−1(y) is at least 2π hence the 1-Hausdorff

measure of g−1(y) is at least π. �

Remark 2.8. This estimate is attained for the Hopf map S2n+1 → CPn and

its quotient RP 2n+1 → CPn. What about even-dimensional spheres?
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It seems that the same estimate on the 1-dimensional Hausdorff measure for

n = k + 1 should hold for not necessarily even continuous maps f : Sn → Y

with dimY = n − 1. Following [3, Theorem 7.3], we can use the estimate on

Alexandrov’s width to find y ∈ Y such that f−1(y) is not contained in an open

hemisphere of Sn, this is sufficient to conclude that

H1(f−1(y)) ≥ I1(f−1(y)) ≥ π,

but this estimate is half of what we expect. Notice that while the previous result

for odd maps is tight (4), the inequality H1(f−1(y)) ≥ π seems to not be tight.

Constructing a map with small waist is not immediate. In fact, we can prove

something particular under certain regularity assumptions:

Theorem 2.9. Let RP 2 → R be a real-analytic map and let ε > 0. Then,

for some y ∈ R, the length of the fiber f−1(y) is at least 2π − ε.

Proof of Theorem 2.9. As in the previous argument (referring to [18])

there exists y such that f−1(y) carries a nontrivial homology of H1(RP 2;F2).

Let this y be equal to 0 without loss of generality. Under the assumption that f

is real-analytic, the set f−1(0) is

• either 2-dimensional; then its length (1-Hausdorff measure) is infinite

and we are done;

• or a 1-dimensional graph, thus we restrict the argument to this case.

This graph has a simple cycle γ representing a nontrivial homology of RP 2.

Lifting the picture to S2 we see that the lift of γ, γ̃, breaks the sphere into two

congruent parts N and S, interchanged by the map x 7→ −x. From here on we

consider N with its boundary γ̃ instead of RP 2, the graph G that f−1(0) induces

on N and its boundary.

The graph G breaks N into open connected components, on every one of

them the function f is either positive or negative. If we consider f−1(y) for

a small positive y then its length will tend to the sum of the perimeters of the

positive components. If we consider f−1(y) for y negative of small absolute value,

then its length will tend to the sum of perimeters of the negative components.

Hence we are going to prove that one of the sums of the perimeters is ≥ 2π.

Assuming the contrary, that both sums of perimeters are less than 2π, let

us make some reductions. If an edge of G separates two components with the

same sign, positive or negative, remove it, decreasing the sum of the perimeters.

If a vertex of G has degree greater than 3 then perturb it without changing the

components so that it splits into a set of vertices of degree at most 3. Such

a perturbation can be made mantainig both perimeter sums less than 2π.

(4) The restriction of a linear projection f : Sn → Rk is an odd map.
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After the reduction process no vertex will have degree greater than 3. In

fact, no vertex in the interior of N will have degree 3, if this was the case some

edge incident to this vertex would separate two components of the same sign

and would have been removed. Eventually the topological picture becomes very

special: the edges of G are either parts of γ̃, edges in the interior of N from one

point of γ̃ to another point of γ̃, or loops inside N . If there is a loop we may just

drop it with everything in its interior, so we assume we only have γ̃ and several

pairwise non-intersecting chords of γ̃.

The curve γ̃ has the involution x 7→ −x induced from the sphere S2 and γ̃

with this involution can be viewed (more precisely: equivariantly homeomorphic)

as the ordinary 1-sphere S1 ⊂ R2 with the involution x 7→ −x. Let us call the

points x and −x interchanged by this involution antipodal. Call a segment of γ̃

short if it contains no pair of antipodal points.

Now we have two alternatives:

(1) Some closure of a component of the complement to G, let it be P , contains

two antipodal points a, b ∈ γ̃. Consider this situation on the sphere S2 and note

that the boundary ∂P contains two antipodal points and therefore its two parts,

passing from a to b, and from b to a both have length ≥ π. So the total perimeter

of Pi is at least 2π and we are done.

(2) Some closure of the component, let it be P again, intersects γ̃ by a col-

lection of segments I1, . . . , Im so that the complement γ̃ \ P consists of short

segments J1, . . . , Jm. Assuming that we are not in the first case, Ii∩−Ij = ∅ for

every i and j. In this case we return to the whole sphere S2 and note that f−1(0)

contains the graph G′ = γ̃∪∂P ∪−∂P and G′ intersects at least four times every

equatorial subpshere S1 ⊂ S2. Indeed, if S1 intersects γ̃ four times then we are

done. Otherwise it intersects γ̃ twice (because γ̃ is centrally symmetric and there

must be an intersection) and must also intersect some pair Ji,−Ji; two edges

of G′ \ γ̃ that are also intersected by S1 to the latter pair. Applying Crofton’s

formula, we conclude that f−1(0) itself has length at least 2π. �

Remark 2.10. The map S2 → R given by the square of the coordinate

g(x1, x2, x3) = x2
1 induces a map f : RP 2 → R showing that the estimate in

the previous theorem cannot be improved. Note that the standard method of

establishing waist estimates for real valued functions by taking the median m of

f and applying the isoperimetric inequality to the set {f(x) ≤ m} does not give

the right bound in this case.

It turns out that for n = 3 the isoperimetric inequality does provide the

correct estimate. As far as we know this is the only essential case where the

isoperimetric inequality of the projective space is understood:
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Theorem 2.11. Let f : RP 3 → R be a real-analytic map. Then, for some

y ∈ R, the area of the fiber f−1(y) is at least π2.

Proof. We choose the median value m such that the volume of

N = {x : f(x) ≤ m}

is half of the volume of RP 3. An isoperimetric inequality will give us a certain

estimate for the area of ∂N ⊆ f−1(m); and Ritoré and Ros [30] provide us such:

A subset of RP 3 with volume half of the full volume has boundary with area

greater of equal to the area of the quotient of the torus

S1

(
1√
2

)
× S1

(
1√
2

)
⊂ S3. �

Remark 2.12. Observe that the function f(z1, z2) = |z1|, satisfies

f−1(t) = S1(t)× S1
(√

1− t2
)

for t ∈ [0, 1],

an elementary calculation yields that the bound π2 in Theorem 2.11 is best

possible, i.e. for maps with enough regularity,

inf
f : RP 3→R

sup
y

vol2(f−1(y)) = π2.

The following is a trivial corollary of Gromov’s waist of the sphere theo-

rem [10], [28] (in view of [20]):

Corollary 2.13. For any continuous map f : RPn → N , where N is a k-

dimensional manifold, there exists a fiber f−1(y) with the following property:

vol(νtf
−1(y)) ≥ vol(νtRPn−k), for all t > 0,

the metric for RPn is assumed coming from the projection from the round sphere

Sn → RPn, and RPn−k is a standard geodesic (n− k)-subspace in RPn.

This follows from the spherical waist inequality by considering the quotient

map from Sn to RPn, but the estimate given by this corollary seems not always

tight. Let us think of examples of maps showing that the estimate is tight.

Unlike the case of the sphere, building such examples is not obvious. The most

symmetric way of having such is when there exists a map RPn → N with all

fibers isometric to RPn−k. We know of several such examples:

Theorem 2.14. The bound of Corollary 2.13 is tight for :

(a) n odd and k = n− 1;

(b) n = 7 and k = 4;

(c) n = 15 and k = 8.
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Proof. Case (a) follows from considering the usual projection map Sn →
CP (n−1)/2 which factors through RPn → CP (n−1)/2. Cases (b) and (c) follow

similarly from considering the Hopf maps S7 → S4 and S15 → S8 that also factor

through RP 7 and RP 15, respectively. �

Remark 2.15. Considering maps RP 3 → N with dimN = 1 we see that

the bound in the Minkowski content version of Corollary 2.13 is not necessarily

tight. This case is reduced to the case N = R, otherwise N is a circle R/Z,

but the map evidently lifts to a map f : RP 3 → R in this case, we find again

Theorem 2.11.

3. Complex projective space

The method of [1], [21] also gives the following corollary from considering

the projection S2n+1 → CPn:

Corollary 3.1. For any continuous map f : CPn → N , where N is a 2m-

dimensional manifold, there exists a fiber f−1(y) with the following property :

vol(νtf
−1) ≥ vol(νtCPn−m), for all t > 0,

where CPn−m is a standard complex projective (n−m)-subspace in CPn.

Proof. We consider the projection T : S2n+1 → CPn, which takes the uni-

form measure on S2n+1 to a multiple of a uniform measure on CPn and has

the property that the distance between the circles T−1(x′) and T−1(x′′) equals

the distance between x′ and x′′ (this can be viewed as a normalization of the

Riemannian metric on CPn, or the Riemannian submersion property for T ).

Applying Gromov’s waist of the sphere theorem [10], [28], [20] to the com-

position f ◦ T then gives the result. �

Remark 3.2. Evidently, for any continuous map f : CPn → N with a ma-

nifold N of odd dimension k, the same argument applies, but in this case we

cannot find a natural submanifold like CPn−k/2 in CPn to compare with.

To establish upper bounds we again start with the question: Is it possible to

foliate CPn into CPn−k? Here are some cases:

Theorem 3.3. The bound of Corollary 3.1 is tight for :

(a) n = 3 and m = 2;

(b) n = 15 and m = 4.

Proof. This again follows from considering the Hopf maps S7 → S4 and

S15 → S8, which factor through CP 3 and CP 7 respectively, because a quaternion

or an octonion subspace is a complex subspace too. �
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4. Flat tori

Several observations for flat tori follow from the result of [21]. Let us fix some

notation, for a full-dimensional lattice Λ ⊂ Rn we consider the torus TΛ = Rn/Λ
with the flat metric induced from Rn.

We call a torus orthogonal if Λ is an orthogonal Cartesian product of one-

dimensional lattices; if their covolumes are a1, . . . , an, we denote such an orthog-

onal torus by Ta1,...,an and order the sizes a1 ≤ . . . ≤ an. From [1, Corollary 9]

we infer:

Corollary 4.1. For any continuous map f : Ta1,...,an → N , where N is

a k-dimensional manifold, there exists a fiber f−1(y) with

Mn−kf
−1(y) ≥

n−k∏
i=1

ai.

The bound is attained at the natural projection Ta1,...,an → Tan−k+1,...,an .

Proof. Put the open parallelotope
∏
i=1

(0, ai) to the torus and apply [1,

Corollary 9] (in view of [20]). �

The case of a torus which is not orthogonal is less clear. An interesting

question arises if we only allow maps to Rk, not to arbitrary k-dimensional

manifold. As was pointed to us by Isaac Mabillard, there exists a smooth map

from the torus Tn to Rn with multiplicity at most 2, it is produced by embedding

Tn−1 → Rn (e.g. by induction), then taking a tubular neignbourhood of it and

doubling the neignbourhood, the double being diffeomorphic to Tn. Hence

Theorem 4.2. There exist maps f : Ta1,...,an → Rk with (n − k)-volume of

all fibers at most 2
n−k∏
i=1

ai.

Proof. Take the natural projection Ta1,...,an → Tan−k+1,...,an and compose

it with a map of multiplicity at most 2 from Ta1,...,an to Rk. �

So, for maps from orthogonal tori to the Euclidean spaces, we know the op-

timal waist up to a factor of 2. For the particular case Ta1,...,an → R (continuous

functions) the results are known since [17]. Hadwiger’s paper was in German, so

we provide an argument here for completeness.

Theorem 4.3. In the torus Ta1,...,an any subset M of half volume of the

torus has

Mn−1∂M ≥ 2

n−1∏
i=1

ai.

The equality is attained at M = Ta1,...,an−1 × [0, an/2] ⊂ Ta1,...,an .
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Proof. Applying a (cyclic) translation of the torus along its first coordinate

x1 it is possible to have

volnM ∩ {x1 ∈ (0, a1/2)} = volnM ∩ {x1 ∈ (a1/2, a1)}.

Now we take the two parts {x1 ∈ (0, a1/2)}, {x1 ∈ (a1/2, a1)} and continue to

translate them along the x2 coordinates independently, then take the four parts

and translate them independently along x3 and so on.

In the end we will split the torus into 2n open parallelotopes of size a1/2×. . .×
an/2 each having precisely half of its volume in M . Applying the isoperimetry

for parallelotopes (see Lemma 4.4) we obtain that each of them has at least

n−1∏
i=1

(ai/2) = 2−n+1
n−1∏
i=1

ai

of Mn−1∂M , summing up we obtain the required estimate. �

The isoperimetry for an orthogonal parallelotope follows (for example) from

the isoperimetric inequality of the Gaussian measure by the transportation trick

of [21] (or see [17]); let us provide a detailed argument of the following:

Lemma 4.4. Let a set M ⊂ (0, a1) × . . . × (0, an) have half volume of the

parallelotope, then for the lower Minkowski content

Mn−1∂M ≥
n−1∏
i=1

ai,

assuming a1 ≤ . . . ≤ an.

Proof. Construct the diffeomorphism τ : Rn → (0, 1)n as a Cartesian prod-

uct of one-dimensional maps

τ1 : R→ (0, 1), x 7→
∫ x

−∞
e−πt

2

dt.

The map τ transports the Gaussian measure (call it γ) with density e−π|x|
2

to

the uniform density in the cube and is evidently 1-Lipschitz.

Assume we have a set N ⊂ (0, 1)n of half the measure with boundary ∂N .

The set τ−1(N) has half of the Gaussian measure and by the isoperimetric in-

equality (concentration property) for the Gaussian measure [32]

γ(νtτ
−1(∂N)) ≥

∫ t

−t
e−πs

2

ds.

From the Lipschitz property of τ we obtain τ(νtτ
−1(∂N)) ⊆ νt∂N and therefore

voln(νt∂N) ≥
∫ t

−t
e−πs

2

ds.
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Now let us stretch the coordinate axes A : (0, 1)n → (0, a1) × . . . × (0, an)

and assume A(N) = M . The set νt∂N will get into νant∂M (an is the largest

of the ai) and the volume gets multiplied by a1 . . . an, hence we have

voln(νant∂M) ≥ a1 . . . an

∫ t

−t
e−πs

2

ds.

Replacing ant by u we have

voln(νu∂M) ≥ a1 . . . an

∫ u/an

−u/an
e−πt

2

dt.

Passing to the limit u→ +0 we obtain the estimate

Mn−1∂M ≥ a1 . . . an lim
u→+0

1

2u

∫ u/an

−u/an
e−πt

2

dt = a1 . . . an
1

an
=

n−1∏
i=1

ai. �

5. Waists of convex bodies

Let us introduce notation for the Minkowski content waist:

γn−k(X) = inf
f : X→Rk continuous

sup
y∈Rk

Mn−kf
−1(y).

Theorem 5.1. If K ⊂ Rn is a centrally symmetric convex body with volnK =

vn (the volume of the unit ball) then γn−k(K) ≤ γn−kBn = vn−k.

Remark 5.2. It is not clear if the same is true for not necessarily centrally

symmetric convex K.

Proof. In order to establish an upper bound for γn−k(K) we are going

to consider linear projections Rn → Rn−k with different (n − k)-dimensional

kernels L. A corollary of the Brunn–Minkowski inequality tells that the function

voln−k(L + v) ∩K is logarithmically concave in v, since it is also even in v, its

maximum is attained at v = 0. Therefore the waist for such a projection is just

voln−kK ∩ L.

Now we use Zhang’s result [23, Theorem 5.20] that implies that from volnK =

vn it follows, for some L, voln−kK ∩ L ≤ vn−k. �

Remark 5.3. The waist of a convex body of volume 1 can be arbitrar-

ily small. One might wonder which convex bodies of volume one minimize

max
T∈SL(n)

γn−k(T (K)) or which convex bodies in isotropic position K minimize

γn−k(K). For both problems, the smallest waist that we know of is that of the

cube.

Let us give a simple estimate for γ1(K) and then pass to its improved version

for the Hausdorff measure:

Theorem 5.4 (Bo’az Klartag, private communication). For centrally sym-

metric convex K ⊂ Rn, the value γ1(K) is just the minimal width w(K).
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Proof. Inflate a centered ball rBn ⊆ K until it touches the boundary ∂K;

this will occur at (possibly not unique) pair of points {x,−x} ⊂ ∂K. Evidently,

2r will be the width of K in this situation.

At any of these points the support hyperplane to rBn is also a support

hyperplane to K, hence K is between the hyperplanes with distance 2r between

them. So the projection whose kernel is the line in direction x establishes

γ1(K) ≤ 2r.

Also, the waists are inclusion-monotone and therefore

γ1(K) ≥ γ1(B) = 2r. �

As previously mentioned, the 1-Hausdorff measure of a compact set is at

most its 1-dimensional lower Minkowski content, see [7, Theorem 1.8]. Therefore

Theorem 5.4 follows from the following:

Theorem 5.5. For any convex body K ⊂ Rn and a continuous map f : K →
Rn−1 there exists a fiber f−1(y) of 1-Hausdorff measure at least w(K). The

estimate is tight for any K, in particular γ1(K) = w(K).

Proof. By the estimate on the Alexandrov waist [18, Theorem 6.2] there

exists a connected X ⊂ K such that f(X) is a single point y and X cannot be

covered by a smaller homothet of K. This X is a connected component of the

fiber f−1(y).

Let us first assume that the map f is real-analytic and the fibers of the map

are decent one-dimensional sets with length defined in any reasonable way; let

the length of X be `.

The argument is very similar to [2, Lemma 5.5]. Assume ` < w(K) and

choose ε > 0. Split X into small smooth curve segments I1, . . . , IN so that on

every such segment the unit tangent vector varies by at most ε. The difference

set K−K has width 2w(K) and, as in the proof of Theorem 5.4, it contains the

ball w(K)Bn; therefore K contains a line-segment of length w(K) in any given

direction. Hence it is possible to cover every Ii by a homothet αiK + ti so that

αiw(K) ≤ `(Ii)(1 + ε).

If two such homothets with factors αi and αj intersect then they can be together

covered by a single homothet with factor αi + αj . From the connectedness of

X we see that this process of merging will end up when X will be covered by

a single homothet αK + t with

αw(K) ≤ `(1 + ε) ⇒ α ≤ `(1 + ε)

w(K)
.

Choosing a sufficiently small ε and using the assumption ` < w(K) we obtain

a contradiction with the choice of X.
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Now pass to the case of a less regular component of the fiber X, this is just

a compact connected set. Assume

H1(X) = ` < W < w(K).

By the standard application of Helly’s theorem there exists a subset of at most

n + 1 points L ⊂ X such that L already does not fit into a smaller homothet

of K. Invoke the definition of the 1-Hausdorff measure, choose δ > 0 and cover

X with convex compacta X1, . . . , XN such that each has diameter < δ and the

sum of their diameters is < W .

Since X is connected then the intersections graph of the family {Xi} is

connected. Choose a minimal subgraph T spanning the vertices touching L; this

will be a tree with at most n − 1 branchings (vertices of degree > 2). Now for

any edge e ∈ T , corresponding to an intersecting pair Xi ∩ Xj , mark a point

pe ∈ Xi ∩Xj . Also mark all the points in L. Connect the marked points that

belong to the same Xi by straight line segments to obtain a connected graph G

spanning all marked points.

The graph G has length at most W + nδ, because its length is just the

sum of diameters of the respective {Xi} plus an error term that arises from

the branching. Choosing δ sufficiently small we obtain a connected graph G of

length < w(K); but since G contains the finite set L by construction, it cannot be

covered by a smaller homothet of K. We have reduced the problem to a regular

set G in place of X, considered above. �

Remark 5.6. Write

Bnp =

{
x ∈ Rn :

n∑
i=1

|xi|p ≤ rp,n
}
,

where rp,n > 0 is determined by the requirement that voln(Bnp ) = 1. Proposi-

tion 5.21 in [24] supplies an explicit transport map S̃p,n : Rn → Rn which pushes

forward the standard Gaussian measure on Rn to the uniform measure on Bnp .

When p ≥ 2, the Lipschitz constant of S̃p,n is bounded by the constant 18.

We may therefore deduce bounds for the waist of Bnp from the Gaussian waist

inequality. This provides a result similar to Theorem 1.3 from [21], for the par-

ticular case where K = Bnp and p ≥ 2.

6. Waists of sweepouts

6.1. The fundamental class. In [9] Gromov (referring to Almgren) de-

scribes another version of the waist inequality arising from the Lyusternik–

Schnirelmann-type theory for the space of cycles which is roughly the following:

For a k-dimensional family F of rectifiable (n − k)-dimensional cycles in the

round sphere Sn, passing through a generic point of Sn odd number of times,
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some cycle c ∈ F has (n − k)-volume greater or equal to the volume of the

equatorial Sn−k ⊂ Sn.

Here a k-dimensional family of cycles is understood as a singular k-cycle in

the space of cycles and the phrase passing through a generic point of Sn an odd

number of times is a heuristic which we will refer to a sweepout of Sn. Formally

we assume that F detects the fundamental class a(n−k, Sn) in the cohomology of

the space of (n−k)-cycles. More details about this will be given in Subsection 6.2

below. The differences with the waist inequalities we have discussed so far is that

two cycles of a sweepout F might intersect while two fibers of a map f cannot,

on the other hand, a general continuous function might have fibers which are

not cycles.

Let us show how to obtain similar Gromov–Almgren type results for other

spaces with the 1-Lipschitz technique of [1] and [21]. Consider the orthogonal

projection pm : Sn+m → Bn, where Sn+m and Bn are considered as the unit

(n+m)-sphere and the unit n-dimensional ball centered at the origin in Rn+m+1.

Let si denote a volume of Si and vi the volume of Bi, we know that si =

(i+ 1)bi+1.

The uniform Riemannian measure σ of Sn+m is mapped to a measure µm in

Bn with density sm(1− |x|2)(m−1)/2, the scaling factor can be seen working in a

neignbourhood of the fiber p−1
m (0). Note that∫

Bn

dµm = sn+m.

Since pm is a 1-Lipschitz map, we have for all t > 0

(6.1) p−1
m (νtX) ⊇ νtp−1

m (X),

where νt denotes the t-neignbourghod of the set in Sn+m. Therefore for any

X ⊂ Bn we have

µm(νtX) ≥ σ(νtp
−1(X)).

Note that, ifX a rectifiable (n−k)-dimensional subset then p−1
m (X) is a rectifiable

subset of the sphere with dimension n + m − k. We can then calculate the

(weighted) volumes as the Minkowski content by [8, 3.2.39]

(6.2) volµm

n−kX = lim
t→+0

µm(νtX)

vktk
≥ lim
t→+0

σ(νtp
−1
m (X))

vktk
= voln+m−kp

−1
m (X),

for X we use its weighted volume with the density of the measure µm as the

weight.

If X is an (n−k)-dimensional linear subspace, we obtain the equality in (6.2).

Indeed, in this case the directions orthogonal to p−1
m X are projected by the dif-

ferential of pm isometrically, hence we will have an approximate inverse of (6.1):

p−1
m (νt−o(t)X) ⊆ νtp−1

m (X).
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Going to the limit m → ∞ and scaling the Rn we may consider a Gaussian

measure γ (say, with density ρ = e−π|x|
2

) as the limit of such µm. This can

also be written explicitly. We have a statement for the projected density ρm =

sm(1− |x|2)(m−1)/2, and we want to scale hm : Rn → Rn with

y = hm(x) =

√
m− 1

2π
x

so that the density becomes

ρ′m =

(
2π

m− 1

)n/2
sm

(
1− 2π

m− 1
|y|2
)(m−1)/2

for |y| ≤
√

(m− 1)/(2π) and ρ′m = 0 otherwise. For this density we know that, if

X of codimension k has (n−k)-dimensional ρ′m-weighted volume at most that of

an (n−k)-dimensional linear subspace in Rn, then its preimage (hm ◦pm)−1(X)

has (n+m− k)-volume at most that of an equatorial Sn+m−k ⊂ Sn+m. Stated

this way, this property does not depend on multiplying ρ′m by a constant, so we

may take eventually

ρ′′m =

(
1− 2π

m− 1
|y|2
)(m−1)/2

for |y| ≤
√
m− 1

2π

and ρ′m = 0 otherwise. As m → ∞, this density converges to ρ = e−π|y|
2

in

a monotone increasing fashion. For this normalized density, the (n− k)-volume

of any (n− k)-linear subspace is always 1.

Now assume we have a family of cycles {X}X∈F in Rn with all (n − k)-

dimensional ρ-weighted volume less or equal to 1 − ε, the same (maybe with

smaller ε) is true for sufficiently large m and the measure ρ′′m. In order to deal

with cycles in Rn we just compactify it with one point at infinity and use the

cycles if thus obtained a topological sphere Sn = Rn ∪ {∞}. From (6.2) and the

explanations above we see that every cycle in the family

Fm = (hm ◦ pm)−1F =
{

(hm ◦ pm)−1(X)
}
X∈F

will then have (n + m − k)-dimensional volume strictly less than sn+m−k. If F
passes through a generic point of Rn odd number of times then Fm passes through

a generic point of Sn+m odd number of times. Thus the Gromov–Almgren result

for Fm applies and we obtain:

Theorem 6.1. For a k-dimensional family F of rectifiable (n−k)-dimensio-

nal cycles sweeping out Rn, some cycle c ∈ F has e−π|x|
2

weighted (n−k)-volume

greater or equal to 1.

Applying the construction of [21] we see:
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Theorem 6.2. For a k-dimensional family F of rectifiable (n − k)-dimen-

sional cycles sweeping out Q = [0, 1]n (the cycles are considered relative to ∂Q),

some cycle c ∈ F has (n− k)-volume greater or equal to 1.

Theorem 6.3. For a k-dimensional family F of rectifiable (n − k)-dimen-

sional cycles sweeping out Tn = Rn/Zn, some cycle c ∈ F has (n − k)-volume

greater or equal to 1.

The next theorem is obtained without going to the limit, just putting m = 1:

Theorem 6.4. For a k-dimensional family F of rectifiable (n − k)-dimen-

sional cycles sweeping out the unit ball Bn (the cycles are considered relative

to ∂B), some cycle c ∈ F has (n− k)-volume greater or equal to vn−k.

Evidently, all the estimates in the above theorems are tight for k-dimensional

families of translation of an (n− k)-dimensional linear subspace.

6.2. Volume of cup products. Let us discuss the volume of cohomology

classes in the space of cycles of the cube, we follow Section 2 of Guth’s paper [14].

We recommend the introduction of that paper to build intuition on the space

of cycles. To define Zn−k([0, 1]n, ∂[0, 1]n), the space of relative (n− k)-cycles of

the cube, let C`(M) be the set of formal sums with Z2 coefficients
∑

ai∈Z2

aifi(σ`)

of Lipshitz maps fi : σ` → M from the `-dimensional simplex σ` to a space M .

Let ∂ be the usual boundary operator from singular homology. A chain z ∈
Cn−k([0, 1]n) is a relative cycle if ∂z ∈ Cn−k−1(∂[0, 1]n). Given two homologous

relative cycles z1 and z2, their flat distance is the smallest volume of a chain

testifying that they are homologous (5), i.e.,

d(z1, z2) := inf
∂c=z1+z2+b

vol(c),

where c is an element of Cn−k+1([0, 1]n), and b is an element of Cn−k(∂[0, 1]n).

The space of cycles Zn−k([0, 1]n, ∂[0, 1]n) is the completion of this metric space

after identifying any two cycles that are at distance 0.

By a family of cycles we mean a continuous map from a simplicial complex

Y to the space of relative cycles Zn−k([0, 1]n, ∂[0, 1]n). Almgren showed that

a family of cycles

F : Y → Zn−k([0, 1]n, ∂[0, 1]n)

induces well defined, homomorphisms Hi(Y ) → Hi+n−k([0, 1]n, ∂[0, 1]n), the so

called gluing homomorphisms. To build such homomorphisms pick a fine trian-

gulation of Y and perturb F slightly to obtain a map G defined on the 0 skeleton

of the triangulation of Y that takes each vertex to a (n−k)-Lipschitz cycle. Then

(5) The general definition of the flat norm of a chain is more complicated but Guth [14,

Appendix A] proves the equivalence with this version for the case of cycles.
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extend this map to the whole triangulation, working inductively in the dimen-

sion. More precisely, the continuity of F , the fact that d(F (y), G(y)) is small

for all y ∈ Y , and the assumption on the triangulation imply that neighbouring

vertices in the triangulation x and y, are mapped to cycles G(y) and G(x) which

bound a chain c of small volume, i.e. ∂c = G(x) + G(y). So we extend G to

the 1-skeleton letting G(e) := c, where e is the edge (x, y). So far G defines

a chain map from the 1-skeleton of the triangulation of Y to a n − k + 1 com-

plex. For every 2-face σ in the triangulation of Y , its boundary ∂σ is mapped

by G to a (n− k + 1)-relative cycle in ([0, 1]n, ∂[0, 1]n) of small volume. By the

isoperimetric inequality there exists a Lipschitz (n− k+ 2)-dimensional relative

chain c′ of small volume such that ∂c′ = G(∂σ) so we extend G to the 2-skeleton

defining G(σ) := c′. In general, working dimension up ensures that each i-face of

the triangulation of Y maps to a Lipschitz (n− k+ i)-dimensional relative chain

in [0, 1]n so that boundary maps commute. Since boundary maps commute, the

map G defines chain maps Ci(Y )→ Ci+n−k([0, 1]n, ∂[0, 1]n) that factor through

Ci(Zn−k([0, 1]n, ∂[0, 1]n)) and induce homomorphisms

G∗ : Hi(Zn−k([0, 1]n, ∂[0, 1]n))→ Hi+n−k([0, 1]n, ∂[0, 1]n).

If the triangulation was chosen sufficiently fine, the isoperimetric inequality can

be used to show that any two such discretizations G1, G2 (gluings maps) of

F give rise to chain homotopic maps, G1 ∼ G2, so the corresponding ho-

mology homomorphisms depend only on F . The case i = k corresponds to

Hn([0, 1]n, ∂[0, 1]n) = Z2, so we have a map

F∗ : Hk(Zn−k([0, 1]n, ∂[0, 1]n))→ Z2,

which, by the universal coefficients theorem, can be identified with a class in

a(n − k, n) ∈ Hk(Zn−k([0, 1]n, ∂[0, 1]n)). Let us describe this class a little bit

more: A k-dimensional family of (n− k)-dimensional cycles

F : Y → Zn−k([0, 1]n, ∂[0, 1]n)

detects the class a(n− k, n) if, after gluing F into an n-cycle, we obtain a non-

trivial homology class in Hn([0, 1]n, ∂[0, 1]n) = Z2. In other words, we say that

the family of cycles F is a sweepout if F ∗a(n− k, n) 6= 0.

More generally, given a singular cohomology class

α ∈ Hi(Zn−k([0, 1]n, ∂[0, 1]n)),

we will say that a family of cycles F detects α if F ∗α 6= 0 ∈ H∗(Y ). We define

the waist of a family as the largest of the volumes in the image. We define the

volume of a class α, as the infimum of the waist among families of cycles F that
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detect α:

vol(α) := inf
F : X→Zn−k([0,1]n,∂[0,1]n)

F∗(α) 6=0

sup
x∈X

vol(F (x)).

This construction makes rigorous the concept of sweepout by a family of cycles

on the previous section. Moreover, the fibers of a smooth function f : [0, 1]n →
Rk detect the fundamental class, where we set Y = Rk ∪ {∞} to be the one

point compactification of Rk and the fiber over ∞ is a zero cycle. So the waist

inequality in terms of families of cycles is more general then the waist inequality

in terms of (sufficiently regular) functions.

Now we are ready to discuss the volume of the cup product class a(n−k, n)p.

Heuristically, a family of relative cycles F detects a(n − k, n)p if for a generic

p-tuple of points x1, . . . xp ∈ [0, 1]n, there exists a cycle z ∈ F that passes an

odd number of times through each xi. The explanation behind this heuristic lies

on the following result from Lusternik–Schnirelmann theory: If classes α and β

vanish on open sets A and B respectively, then their cup product α∪β vanishes

on A∪B. We would like to apply this lemma to open sets in the space of cycles.

Let U correspond to a regular enough subdomain of the cube [0, 1]n, we apply

the Lusternik–Schnirelmann lemma to the inverse image of the open interval

(0, γk(U)) under the volume functional as follows.

If the volume was a continuous real valued function on the space of cycles

with the flat topology, then {z ∈ Zn−k(U, ∂U) : vol(z) < γk(U)} would be an

open set in the space of cycles. Choosing disjoint domains U, V the cup product

class a(n− k, n)2 would vanish on the union of the corresponding subsets of the

space of cycles

{z ∈ Zn−k(U, ∂U) : vol(z) < γk(U)} ∪ {z ∈ Zn−k(V, ∂V ) : vol(z) < γk(V )},

and therefore it will also vanish on Zn−k([0, 1]n, ∂[0, 1]n), which would yield

a contradiction, implying that the volume of a(n− k, n)2 is larger than γk(V ) +

γk(U). However the volume function is lower semicontinuous but is not contin-

uous in the space of cycles with the flat norm topology. For example, a closed

curve of large perimeter that bounds a very thin region is very close to having 0

flat norm, but has large 1-volume. Gromov and Guth deal with this issue using

the filling volume instead of the volume. To go back to the volume they apply

the isoperimetric inequality. Very recently [25] Liokumovich, Coda-Marques,

and Neves found an alternative way to deal with the continuity issue. Following

Pitts, they use the mass topology on the space of cycles which makes the vol-

ume into a continuous function. Roughly, Corollary 2.13 of [25] claims that the

family of cycles that minimizes the waist of the families detecting a(n − k, n)p

can be assumed to be continuous in the mass-topology. Beyond this lemma that
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appears in previous work of Coda-Marques, and Neves extending the Almgren–

Pitts theory, the cup product context requires a technical lemma to deal with

the restriction of a family of cycles to a subdomain (Lemma 2.15 of [25]) (6).

Each of the works [21, 25] improve technical details in the original lower

bound on vol[a(n− k, n)p]/pk/n by Gromov. Our goal here is to record the best

lower bound we could obtain from these improvements. We also record minor

variations on the arguments of [14], [13] to obtain an upper bound to get some

perspective.

Theorem 6.5. If p is of the form `n, and a(n − k, n) is the fundamental

class of the space of relative cycles of the cube, then

2n+k

(
n

k

)
pk/n ≥ vol[a(n− k, n)p] ≥ pk/n.

In the case k = 1, the upper bound can be improved to

n2p1/n ≥ vol[a(n− 1, n)p]

for p large with respect to n. Guth conjectures that the volumes of cup product

classes a(n − 1, n)p of the round ball relative to its boundary are achieved by

families of zeros of n variable polynomials. He shows that if p =
(
d+n
d

)
− 1 then

the family of polynomials of degree d detects this class. For the cube a similar

reasoning gives the claimed improvement. The argument goes back at least

to Gromov [11] and is as follows (adapted to the cube), by Crofton’s formula

the surface area of a hypersurface is proportional to the expected number of

intersections with a random line. Any line that intersects the interior of [0, 1]n,

intersects its boundary exactly twice and intersects a curve of degree d at most

d times, it follows that the (n − 1)-dimensional volume of the intersection of

such a curve with the cube is at most d 2n/2, where the 2n term corresponds to

the surface area of the boundary of the cube. Unlike Guth’s bend construction

(explained below) that gives the result up to factor of cn, these families have

small volume also as cycles with integer coefficients. A careful computation for

the case k = 1, n = 2 gives vol[a(1, 2)p] ≤ 2
√

2p1/2.

Proof of the lower bound in Theorem 6.5. Partition [0, 1]n into p =

`n equal cubes. Given a family of cycles F that detects a(n− k, n)p of minimal

waist, consider for each cube Qi, the subfamily of cycles S(i) := {x ∈ X :

vol(F (x) ∩Qi) < (1− ε)vol(Qi)
(n−k)/n}. By the waist inequality S(i) does not

detect the fundamental class of Qi. By the vanishing lemma of LS-theory and

the aforementioned results of [25] the cohomology class F ∗(a(n−k, n))p vanishes

(6) In [25] the continuity is used to confirm a conjecture of Gromov: vol[a(n− 1, n)p]/p1/n

converges to an absolute constant as p goes to infinity. This holds for any Riemannian manifold,

and the constant depends only on the volume of the manifold, which is an analogue to the

celebrated Weyl law.
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on
p⋃
i=1

S(i). Since by assumption F detects a(n− k, n)p then there is a cycle z0

not in
p⋃
i=1

S(i) but in F , that for each i, vol(z ∩ Qi) ≥ (1 − ε)vol(Qi)
(n−k)/n.

Summing up the p cubes and taking the supremum provides the estimate. �

Let us explain the upper bounds for the case a(1, 2)p, this is an essential

particular case with a clear geometric picture. Consider the family of relative

cycles Fα that consist of all p parallel lines with slope α, (heuristically) this

family detects a(1, 2)p, since for any x1, . . . xp, there is a set of p lines with slope

α such that each point xi is contained in one line of this set.

The next step is to deform this family so that each relative cycle is a sum

of p relative cycles (the images of the lines) that overlap a lot. More precisely, we

consider Ψ(Fα) where Ψ: ([0, 1]2, ∂[0, 1]2)→ ([0, 1]2, ∂[0, 1]2) is a degree one map

fixing the boundary. A linear interpolation between the identity and Ψ shows

that they are homotopy equivalent, from which it follows that Ψ(Fα) also detects

a(1, 2)p. The map Ψ will push almost all of the unit cube to the 1 skeleton of

a scaled lattice. Specifically, subdivide the cube as before using the grid of side

length p−1/2. Let Qi be a small cube as before and let εQi be a homothet of

Qi with the same center and side length εp−1/2. Consider an irrational slope α,

and choose ε > 0 so that no line with slope α intersects two homothets ε[0, 1]2

now define ψ on each sub square Qi. On Qi− εQi consider the map that pushes

radially from the center of Qi to ∂Qi, on εQi, consider the homothety εQi → Qi.

Let us now estimate the length of the image under Ψ of a p-tuple of lines

with slope α. We denote this relative cycle by z and write it as z = z1 + z2

where z1 is supported in the 1-skeleton of the grid, and z2 is supported on the

union of the interiors of the squares Qi. Since we are dealing with Z2 cycles

the length of z1 is smaller than the length of the 1-skeleton of the grid, which is

2(p+ p1/2)p−1/2 = 2p1/2 + 2. On the other hand by the choice of the slope and

ε each line of a family contributes at most 2p−1/2 to the length of z2 so the total

length of z2 is bounded above by 2p1/2. In total we have vol[a(1, 2)p] ≤ 4p1/2 +2.

The previous argument generalizes to higher dimensions. We again refer the

reader to Guth’s papers [14], [13] for more details, and recall enough to analyze

the constant.

Proof of the upper bound in Theorem 6.5. Let P be a k-flat, let

prP be the orthogonal projection onto P . Consider the set of p-tuples of points

x1, . . . xp ∈ P . The corresponding set of p-tuples of paralllel flats pr−1
P (x1), . . . ,

pr−1
P (xp), is a family of relative cycles that detects a(n−k, n)p. The family that

we will construct is the image of FP under a map Ψε. In pages 33–35 of [14]

Guth shows that the family of relative cycles FP that consists of all sets of at

most p (n− k)-flat perpendicular to a given k-flat detects the cohomology class
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a(n − k, n)p. The idea is build a class that detects a(0, k) and iterate n − k

suspensions that can be realised by a product of each 0 cycles with Rk.

Again we will deform the family FP applying a degree 1 transformation from

the cube to itself that leaves the boundary fixed and is homotopic to the identity.

We denote by Γ the integer grid scaled to have side length p−1/n. Abusing nota-

tion we denote also by Γ the induced cell structure. The transformation pushes

almost all of the cube to the (n− k)-skeleton of Γ. Let Γ∗ := Γ + (1/2, . . . , 1/2)

and skelk−1(Γ∗) its k − 1 skeleton. Define Ψ: [0, 1]n → [0, 1]n so that the com-

plement of νε skelk−1(Γ∗) is mapped to skeln−k(Γ) and νε skelk−1(Γ∗) is mapped

to [0, 1]n. Specifically, let φ be a (n− k)-face of Γ, let φ∗ be the unique k-face of

Γ∗ that is perpendicular and transversal to φ. To ease notation put l = p−1/n.

After applying a global isometry φ can be assumed to be,

{x : 0 ≤ xi ≤ l for 1 ≤ i ≤ n− k and xi = 0 for n− k ≤ i ≤ n},

and a facet η of ∂φ∗, then can be assumed to be,{
x : xi =

l

2
for 1 ≤ i ≤ n− k + 1 and − l

2
≤ xi ≤

l

2
for n− k + 1 ≤ i ≤ n

}
.

Now consider the join

K = φ ∗ η = {(1− t)x+ ty : t ∈ [0, 1], x ∈ φ and y ∈ η}.

This is a convex polyhedron, as we let φ vary over skeln−k(Γ) and consider the

join with the corresponding 2k facets of φ∗ we obtain a tiling of space by tiles

isometric to the one we just described in coordinates. To define Ψε we define it

on each tile of the tiling so we might use barycentric coordinates for K as before.

Ψε((1− t)x+ ty) =


x if t > ε,(

1− t

ε

)
x+

t

ε
y if t ≤ ε.

Notice that this is well defined because φ and η sit on disjoint, perpendicular

affine spaces whose dimensions sum to (n− 1).This defines a map on one tile, it

is easy to check maps on neignbouring tiles piece together into a global map from

Rn to Rn that restctricts to a map from the cube to the cube. Varying ε > 0

provides a homotopy equivalence between Ψε and the identity. Let z be a cycle

in the family Ψε(FP ), we cut it into two pieces z1 + z2, where z1 is supported

in skeln−k(Γ) and z2 in the complement. Since we are working with modulo 2

coefficients if vol(z1) is finite then

vol(z1) ≤ p
(
n

k

)
p(k−n)/n =

(
n

k

)
pk/n.

The cycle z2 is the image under Ψε of the intersection between νεΓ
∗ and pr−1

P (x1)

∪ . . . ∪ prP−1(xp). We begin bounding the number of connected components of

this intersection. Assume again that P is in general position with respect to Γ,
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and consider the projection prP [skelk−1(Γ∗)]. It is a finite union of (k − 1)-flats

in general position in the k-flat P , therefore at most k of them have a non empty

intersection. We can conclude that the (n − k)-flat pr−1
P (xi) intersects Γ∗, at

most k times. Choosing a sufficiently small ε > 0, we obtain that pr−1
P (xi) ∩

[νεskelk−1(Γ∗)] has at most k connected components. We fix xi for the rest of

the proof. In one connected component of pr−1
P (xi)∩ (νεΓ

∗), pr−1
P (xi) intersects

the interior of at most 2n − 1 tiles isometric to K = φ ∗ η. Now let K̇ be the

interior of K, we claim that

voln−k
(
Ψε[(pr−1

P (xi)] ∩ K̇
)
≤ 2k voln−k(φ).

The same estimate holds for other tiles. The set Ψε[(pr−1
P (xi)] ∩ K̇ can be

described as,

V :=
{

((1− t)x+ ty) ∈ K̇, such that for v1, v2 . . . vk, 〈(1− εt)x+ εty) · vj〉 = 1
}
.

Where the collection of vectors {vj} is such that

pr−1
P (xi) =

k⋂
j=1

{z ∈ Rn : z · vj = 1}.

Rewritting these conditions in cartesian coordinates it is clear that each vector

vj defines a quadratic conditions. Therefore a k-dimensional affine space can

intersect V in at most 2k points, while it intersects φ at most once, applying

Cauchy-Crofton’s formula now yields the estimate. When we put together our

estimates we obtain that

vol(z2) ≤ p
(
n

k

)
(2n − 1) 2k p(k−n)/n,

from which we obtain the claimed bound

vol(z) ≤
(
n

k

)
2n+k pk/n. �

Remark 6.6. The same proof is the key step to show that for any set U ⊂ Rn

the (n − k)-waist of U is bounded above by
(
n
k

)
2n+k vol(U)(n−k)/n. By scaling,

one can assume that vol(U) = 1. One then chooses a translation of Γ such

that voln−k(U ∩ skeln−k(Γ + x)) ≤
(
n
k

)
. Crofton’s formula implies that this is

possible because the right hand side corresponds to the expected volume of the

intersection when x is chosen at random. Using the bending construction as just

explained on FP with p = 1 yields Guth’s width-volume inequality.

7. Coloring the cube and waists of maps to polyhedra

7.1. Statement of the results about the cube. Let us state theorems

already mentioned in the introduction of the paper. Remark that while the

objects and results are of a different nature than those from the previous section,

the main idea of their proofs is essentially the same.
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Theorem 7.1. There exists a constant εk,n > 0 such that for every continu-

ous map f : [0, 1]n → Y from the unit cube [0, 1]n to a k-dimensional polyhedron

Y there exists y ∈ Y such that the set f−1(y) has (n − k)-Hausdorff measure

Hn−k(f−1(y)) ≥ εk,n.

If we allowed the constant εk,n to depend on Y then this sort of result would

follow from the case Y = Rk, because any k-dimensional Y can be mapped to

Rk with bounded multiplicity. A similar theorem was considered by Gromov

in [9, Appendix 2, B2′], see also [16, Section 7]; we report our similar proof to

emphasize the connection to colorings of the cube that we discuss next.

In the case k = 1, it was observed by Gromov that the Hausdorff measure

estimate is established for f : Sn → R by taking y to be the median value of f

and applying the spherical isoperimetric inequality for the Hausdorff measure.

In the case k = n− 1, Alexandrov’s width (waist) theorem (see [18, Section 6])

guarantees that a connected component of some fiber f−1(y) cannot be covered

by a smaller homothet of the cube, hence its 1-Hausdorff measure is at least

εn−1,n = 1; this estimate is evidently tight. In general the result in [12, Sec-

tion 1.3] establishes this result for some constant εk,n for maps into the Euclidean

space, here we generalize it for maps to arbitrary k-dimensional polyhedra. In

general we have no evidence suggesting that the constant εk,n has to be less than

1 in the case of general target spaces Y .

7.2. Coverings of the cube. Lebesgue’s lemma claims that for any colour-

ing of the n dimensional cube with n colors there exists a color intersecting op-

posite faces of the cube. A discrete version of this theorem goes by the name of

the hex lemma. Inspired by these results, Matoušek and Př́ıvĕtivý [27] raised the

question of what happens when the number of colors k is smaller than the dimen-

sion n. They conjectured a lower bound on the number of cubes on a monochro-

matic connected component of the discrete cube {0, . . .m}n with the topology

of the standard lattice graph. Specifically, they conjectured that the number of

cubes in such component is of the order of mn−k where k is the number of colors.

This conjecture was confirmed by [19], and independently by [26]. The following

theorem is a continuous analogue of that theorem.

Theorem 7.2. Suppose [0, 1]n is covered by a finite family of closed sets {Ci}
with degree of the intersection graph (7) bounded by δ. Then there exist εn,δ > 0,

k ∈ {0, . . . , n}, and indices i0 < . . . < ik such that the (n−k)-Hausdorff measure

of the intersection Ci0 ∩ . . . ∩ Cik is at least εn,δ.

We cannot derive this theorem from Theorem 7.1, but the core of both proofs

is the same.

(7) The intersection graph of a covering is the 1-skeleton of its nerve.
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7.3. Proof of Theorem 7.2. We will prove Theorem 7.2 by the same

method as in [19], in fact, the proof here will be even simpler. Define the k-

Hausdorff measure using covering by open cubes with edge-lengths d1, . . . , dN
and considering the sum

N∑
i=1

dki .

We minimize such a sum over all coverings by cubes of size at most η, and then

go to the limit η → 0. The sum we use differs from the sum in the standard

definition of the Hausdorff measure by a constant depending on n and k.

First, for every set I of indices i0 < . . . < ik with k ≤ d we consider

CI = Ci0 ∩ . . . ∩ Cik
and cover it by open cubes with edge-lengths {dj,I}1≤j≤NI

. Arguing in the

counter positive, for any ε > 0, there exists a cover such that∑
j

dn−kj,I < ε

for every non-empty I; this inequality also implies that the covering is sufficiently

fine. The sets we cover are compact and the cubes we cover with are open, hence

we may assume every CI is covered by a finite number of cubes.

Now we follow the proof in [19], and put the Ci in general position in a cer-

tain sense. We choose an open Ui ⊃ Ci for every Ci, so that the respective

intersections UI =
⋂
i∈I

Ui are still covered by the collections of cubes we start

with. Then we take a partition of unity {fi}i subordinate to Ui that can be

viewed as a continuous map f from [0, 1]n to the nerve N of the covering {Ci}.
We take the barycentric subdivision N ′ of the nerve and consider the stars Di

in N ′ of every vertex vi ∈ N . Every set f−1(Di) is contained in its respective

Ui. Then we approximate f by a PL-map g, transversal to the partition {Di},
and substitute Ci by the PL-sets C ′i = g−1(Si). The new sets C ′i are polyhedra

still contained in their respective Ui, they give a partition of the cube, and every

intersection C ′I is still contained in its respective union of open cubes of edge-

lengths {dj,I}j . The general position assumption on g also implies that every

intersection C ′I has dimension at most n + 1 − |I| and, in particular, is empty

for |I| > n+ 1. In what follows we denote the modified C ′i by Ci again.

Now we are going to fill PL-cycles of the pair ([0, 1]n, ∂[0, 1]n) and use an

appropriate modification of [19, Lemma 2.3]. If a subset X ⊂ [0, 1]n is covered by

a collection of cubes of sizes {dj} with
∑
j

dkj < ε we say that X is k-dimensionally

ε-covered ; this is a part of the definition of k-dimensional Hausdorff measure.

Lemma 7.3. For any cycle z ∈ Zk([0, 1]n, ∂[0, 1]n) with 0 ≤ k < n, k-di-

mensionally ε-covered, one can find its filling H(z) ∈ Ck+1([0, 1]n, ∂[0, 1]n) such
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that ∂H(z) = z (mod ∂[0, 1]n) and H(z) is (k+ 1)-dimensionally Ak,nε-covered

for some Ak,n > 0. Additionally, the Ak,nε-cover of H(z) will only depend on

the ε-cover of z and not on z itself.

The proof of the lemma is a minor adaptation of the argument in [19], so we

postpone it and continue with the theorem. We take ε < 1 and, since every point

has 0-dimensional Hausdorff measure 1, CI must be empty for |I| > n + 1. Let

m be the maximal |I| corresponding to a nonempty CI . The general position of

the map g and the parts Ci implies

∂CI =
∑
i 6∈I

C{i}∪I ;

this formula is understood as an equality of chains modulo 2, relative to the

boundary of the cube. The idea behind this formula is that, under the gen-

eral position {Ci}, the intersection CI is locally a PL-submanifold of codimen-

sion |I| − 1, unless it touches its sub-intersection C{i}∪I , see [19] for further

explanations. Every CI with maximal |I| = m is, by the boundary formula,

an (n + 1 −m)-dimensional relative cycle and by Lemma 7.3, we fill it with an

(n+2−m)-dimensional chain FI . Since CI is (n+1−m)-dimensionally ε-covered

then FI is (n + 2 −m)-dimensionally An+1−m,nε-covered by some collection of

cubes. After that we proceed by descending induction on |I| and continue filling

FI = H

(
CI −

∑
i 6∈I

F{i}∪I

)
to have ∂FI = CI −

∑
i 6∈I

F{i}∪I .

The expression we fill is a cycle because we calculate by induction

∂

(
CI −

∑
i 6∈I

F{i}∪I

)
=
∑
i 63I

C{i}∪I −
∑
i6∈I

C{i}∪I +
∑
i,j 6∈I

F{i}∪{j}∪I = 0,

the last double sum cancels modulo 2, because the summands go in pairs of equal

F{i}∪{j}∪I and F{j}∪{i}∪I .

All such sets FI are (n + 2 − |I|)-dimensionally A|I|ε-covered for some big

constant A|I|. Here we use the fact that the degree of the intersection graph is

bounded and therefore the sum, the argument of H, has a bounded number of

summands. We remark that it is not clear to us if the assumption of bounded

degree in Theorem 7.2 is necessary. Eventually, the cycles

Xi = Ci −
∑
j 6=i

Fi,j

will be n-dimensionally Aε-covered for some accumulated constant A. If we chose

ε < 1/A then every such cycle Xi has volume less than 1 and is therefore zero in

Hn([0, 1]n, ∂[0, 1]n). So their sum must also be zero in homology, but from the
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evident equality Fi,j = Fj,i, working modulo 2 we obtain∑
Xi =

∑
i

Ci −
∑
i 6=j

Fi,j =
∑
i

Ci,

which is the nontrivial generator of Hn([0, 1]n, ∂[0, 1]n). This contradiction

proves Theorem 7.2. �

7.4. Proof of Theorem 7.1. Assume we have a small ε > 0 such that

every f−1(y) is (n− k)-dimensionally ε-covered by a set of open cubes (the ter-

minology is the same as in the above section). Then f−1(y) is covered along with

its neignbourhood and from compactness it follows that there exists a neighbour-

hood Uy 3 y such that f−1(Uy) is (n− k)-dimensionally ε-covered.

Such open sets Uy cover Y and we are going to find a partition Y = D1 ∪
. . . ∪DN of Y into compact sets such that no point of Y is covered more than

k + 1 times and every Dj is contained in certain Uy. In order to have every

Dj contained in Uy we just take a triangulation T of Y and make barycentric

subdivisions of it many times setting Tm = T ′m−1. Put Dj to be the stars of

vertices of Tm in Tm+1 = T ′m. We claim that for sufficiently large m each star

Dj must be contained in a single open set Uy. Otherwise we subdivide infinitely

many times, since the diameter of the stars is strictly decreasing, compactness

implies that some sequence of sets Dm must converge to a point y0. But then

Uy0 contains Dm for sufficiently large m.

Put Cj = f−1(Dj), from the above construction every such set and every

intersection of several of them is m-dimensionally ε-covered, for every m ≥ n−k.

Now the proof of Theorem 7.2 would work if we guaranteed that the incidence

graph of the covering {Dj} (and therefore {Cj}) has degree bounded (in terms

of k). In general the bounded degree cannot be achieved, but we modify the

argument to remedy this. In the formula

(7.1) FI = H

(
CI −

∑
i 6∈I

F{i}∪I

)
.

the number of summands is not bounded, but we observe that the proof of

Lemma 7.3 works independently of the cycle z, the filling can be made to depend

only on the collection of cubes covering z. We need to guarantee that the right

hand side of (7.1) only invokes a bounded number of such collections of cubes.

The collections of cubes we use are in the correspondence with the sets Ci. We

need a scheme of assigning such collections to every index sets I∪{i} so that only

a bounded number of the collections is invoked in the formula (7.1) for every I.

Such a scheme is guaranteed by the following:

Lemma 7.4. Let T be a triangulation of a k-dimensional polyhedron and let

T ′ be its barycentric subdivision. For every face σ of T ′, it is possible to assign
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a vertex, v = f(σ), of T ′ so that v ∈ σ and all the sets of vertices

Nv = {f(σ) : σ 3 v}

have sizes bounded in terms of k.

Proof. Note that a vertex v of T ′ is a face of T by definition, and a face of

T ′ is a collection of faces of T linearly ordered by inclusion, that is σ = {v0 <

. . . < vm}. Let the function f just assign to every σ its minimal element, v0 in

the above expression. Now the assumption σ 3 v and w = f(σ) implies w < v.

In terms of T , this means that the face w is a subface of v. But for a given v the

number of such subfaces w is at most 2k − 1, that is bounded in terms of k. �

7.5. Proof of Lemma 7.3. Here we follow the proof of [19, Lemma 2.3]

almost literally. Let z be covered by the cubes Q1, . . . , QN of sizes d1, . . . , dN .

Consider all possible intersections zt = z∩{x1 = t} with a hyperplane orthogonal

to the 0x1 axis. Put

J(t) = {i : Qi ∩ {x1 = t} 6= ∅}, S(t) =
∑
j∈J(t)

dk−1
j .

It is easy to see that ∫ 1

0

S(t) =
∑
j

dkj < ε

and therefore, for some t, S(t)<ε. Hence the set zt is (k−1)-dimensionally ε-co-

vered by {Qj}j∈J(t), for generic t this zt must be a (k−1)-cycle in ([0, 1]n, ∂[0, 1]n).

Now we cut the cycle z into two chains z = z≤t+ z≥t, where z≤t corresponds

to x1 ≤ t and z≥t corresponds to x1 ≥ t. The cutting is applicable because after

cutting every simplex of z we may triangulate the cut parts to make it again

a simplicial chain. It is clear that

∂z≤t = zt (mod ∂[0, 1]n) and ∂z≥t = −zt (mod ∂[0, 1]n).

Let F0 and F1 be the facets of [0, 1]n with x1 = 0 and x1 = 1, respectively.

If a chain y ∈ C`([0, 1]n, ∂[0, 1]n) is given as a PL image of a simplicial complex

y : K → [0, 1]n then we construct a PL map I0(y) : K× [0, 1]→ [0, 1]n by sending

p×1 to y(p), p×0 to the projection of y(p) onto F0, and p×s to the corresponding

combination of I0(y)(p × 0) and I0(y)(p × 1). If y does not touch F1 then we

have:

∂I0(y) = y + I0(∂y) (mod ∂[0, 1]n).

Similarly we define I1(y) with the projection onto F1 for those y that do not

touch F0 with

∂I1(y) = y − I1(∂y) (mod ∂[0, 1]n).

Now return to our cycle z = z≤t + z≥t and put

H(z) = I0(z≤t) + I1(z≥t)−H(zt)× [0, 1].
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For the boundary we have (modulo ∂[0, 1]n):

∂H(z) = ∂I0(z≤t)+∂I1(z≥t)−zt×[0, 1] = z≤t+I0(zt)+z≥t−I1(zt)−zt×[0, 1] = z,

because I0(zt)−I1(zt) obviously equals zt×[0, 1]. It remains to make an economic

covering of H(z) by cubes.

The parts I0(z≤t) and I1(z≥t) will we covered if we extend the cubes in the

original collection {Qj} so that x1-coordinate spans [0, 1], making every cube Qj
a long box, that is coverable by at most⌈

1

dj

⌉
≤ 2

dj

cubes of size dj . If those new cubes are denoted by Q′j,` with ` from 1 to

something at most 2
dj

then for their sizes we have∑
Q′j,`

dk+1
j ≤

∑
j

2

dj
dk+1
j = 2

∑
j

dkj ,

so I0(z≤t) + I1(z≥t) is (k + 1)-dimensionally 2ε-covered.

The cycle zt is considered to be in the cube Q′ = Q∩{x1 = t} of lower dimen-

sion; it has (k−1)-dimensional and ε-covering by the choice of t. H(zt) is defined

by the inductive assumption and is k-dimensionally Ak−1,n−1ε-covered by some

cubes. The multiplication by the segment [0, 1] produces (k + 1)-dimensional

chains in Q from chains in Q′ in an obvious way. Again, every covering cube of

size dj after this has to be replaced by approximately⌈
1

dj

⌉
≤ 2

dj

cubes of the same size, so the cylinder H(zt) × [0, 1] gets (k + 1)-dimensionally

2Ak−1,n−1ε-covered.

In conclusion, if we put Ak,n = 2Ak−1,n−1 + 2 then H(z) is (k+ 1)-dimensio-

nally Ak,n-coverable. This completes the proof of the lemma. �
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[5] I. Bárány and L Lovász, Borsuk’s theorem and the number of facets of centrally sym-

metric polytopes, Acta Math. Hungar. 40 (1982), 323–329.

[6] F. Barthe and B. Maurey, Some remarks on isoperimetry of Gaussian type, Ann. Inst.
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