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A GENERIC RESULT ON WEYL TENSOR

ANNA MARIA MICHELETTI — ANGELA PISTOIA

ABSTRACT. Let M be a connected compact C> manifold of dimension
n > 4 without boundary. Let MF be the set of all C* Riemannian metrics
on M. Any g € M* determines the Weyl tensor

WI: M =R, WI(E) = (W (€))i g ki=1,... -
We prove that the set
A= {ge MF WIE)|+ | DWI(E)| + |D*WI(E)| > 0 for any £ € M}

is an open dense subset of M¥.

1. Introduction

Let M be a connected compact C* manifold of dimension n > 4 without
boundary. Let MP* be the set of all C* Riemannian metrics on M. Any g € M*
determines the Weyl tensor

W9 M — R*™, WI(E) i= (W1(€))igka=1,...n-

Our goal is to prove that, for a generic Riemannian metric g, it holds true that
if Weyl tensor and its first derivative vanish at a point £ € M then the second
derivative at £ is not zero. More precisely, we prove that

THEOREM 1.1. The set

A= {g e Mk giﬂr}qwg(gn + [DWI(E)] + |D*WI(€)]) > 0}
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is an open dense subset of MF.

Our result is motivated by the study of the compactness of the set of solutions
of the Yamabe equation. Yamabe asked the question if there exists a metric g
conformal to g with constant scalar curvature. If g = ue g, the problem is
equivalent to finding a positive solution u to the equation
(1.1) —Agu+ n-2 Ryu = kum+2/ (=2 iy 0

4(n—1)
for some constant k. R, is the scalar curvature of g and 4(n —1)/(n — 2)k is
nothing but the scalar curvature of g. Yamabe problem has been completely
solved in the works of Yamabe [19], Aubin [1], Schoen [12] and Trudinger [17].

In particular, the solution is unique in the case of negative scalar curvature
and (up to a constant factor) in the case of zero scalar curvature. The uniqueness
fails in general in the case of positive scalar curvature. Indeed, Schoen in [13],
[15] and Pollack in [9] proved the existence of a large number of high energy
solutions of (1.1) with high Morse index for some suitable manifolds. Therefore,
the structure of the set of solutions to (1.1) becomes an interesting and intriguing
problem. Schoen in [14], [15] asks the question about the compactness of the full
set of positive solutions to (1.1).

Compactness of solutions is equivalent for finding an upper bound for the
C?%-norm of solutions to (1.1). The compactness does not hold in the case of
the round sphere S™ as Obata shows in [8]. Brendle in [2] and Brendle and
Marques in [3] build examples of manifolds with dimension n > 25 for which
compactness is not true.

On the other hand, the compactness issue is proved by Khuri, Marques and
Schoen [4] for manifolds of dimension n < 24 which satisfy the Positive Mass
Theorem. For a long time, the Positive Mass Theorem have been established
for spaces of dimension n < 7 (Schoen and Yau [16]) and for spin manifolds
(Witten [20]). Very recently, Lohkamp in [5] seems to have proved that it holds
in general manifolds.

The study of compactness is strictly related to the blow-up analysis of solu-
tions to (1.1). In particular, Schoen conjectured that the possible blow-up points
must be points where Weyl’s tensor and its derivatives up to order [(n — 6)/2]
vanishes. We refer to the survey [6] by Marques for a complete list of contribu-
tions to these problems. In particular, Khuri, Marques and Schoen proved that
compactness does hold, without assuming the Positive Mass Theorem, provided
6 <n <24 and

[(n—6)/2] i )
min kZ:O |DFW9(&)|” > 0.

Combining this result with Theorem 1.1 we get
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COROLLARY 1.2. Let 10 < n < 24. The set
C:= {g € M* : Yamabe problem (1.1) is compact}
is an open dense subset of MF.

The proof of Theorem 1.1 relies on the transversality argument described
in Section 2. The key transversality condition (namely (b) in Theorem 2.1) is
proved in Section 3.

2. Formulation of the problem and proof of the main result

We denote by S* the space of all C* symmetric covariant 2—tensors on M.
S* is a Banach space equipped with the norm || - ||, defined in the following way.
We fix a finite covering {V, }aer, of M such that the closure of V,, is contained
Uy, where {Uy, 1} is the open coordinate neighbourhood. If h € S¥ we denote
by h;; the components of h with respect to the coordinates (z1,...,z,) on V.

We define 8
. sup 2 Mi
IRl =2 D2 > AV

a€L |B|<k ij=1 Yo (Va
The set MF of all C* Riemannian metrics on M is an open set of S*.

In the following we will assume k > 4.

Given § € MP¥, it is possible to define an atlas on M whose charts are
(B5(&,R), ") where ¢: B(0,R) — Bg(&, R). Here Bj({,R) C M is the
ball centered at ¢ with radius R given by the metric g and B(0,R) C R™ is
the ball centered at 0 with radius R in the euclidean space R". Let B, :=
{h € 8% :||n|lx < p} the ball centered at 0 with radius p in S*.

For any £ € M and h € B,, with p small enough so that g+ h € MF | we
consider Weyl’s curvature tensor W9t (¢) of (M,§ + h) at the point £ € M
whose components are ngtg &).

Here and in the following we use the Einstein summation convention, i.e.
when an index variable appears twice in a single term, once in an upper (super-
script) and/or in a lower (subscript) position, it implies that we are summing

over all of its possible values.
Given & € M and the chart (Bg(&o, R), ¢~ !) we set

WIH (2) := WIt (p(x)) if 2 € B(0,R) and h € B,.
Now, for any choice of indices i, j, k, [ with i # j and k # [, we introduce
the Cl—map F: B, x B(0, R) C 8% x R" — R" defined by
(2.1) F(h,z) = Fy(h,z) == VWi (2).
We observe that Wg;‘lh = g'};g = 0 in M. We shall apply to the map F an

abstract transversality theorem (see [10], [11], [18]). We recall it (see Theorem 1.1
in [11]) in the following.
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THEOREM 2.1. Let X, Y, Z be three Banach spaces and U C X,V C Y
open subsets. Let F: U xV — Z be a C*—map with o > 1. Assume that

(a) foranyy €V, F(-,y): U — Z is a Fredholm map of index | with | < «;
(b) 0 is a reqular value of F, i.e. the operator F'(xo,y0): X XY — Z is
onto at any point (xo,yo) such that F(xg,yo) = 0;

—+oo

(c) the map woi: F~Y0) — Y is o-proper, i.e. F~1(0) = | Cs, where
s=1

Cs is a closed set and the restriction m o, s proper for any s. Here

i: F71(0) — X XY is the embedding and w: X XY — Y is the projection.

Then the set © := {y € V : 0 is a regular value of F(-,y)} is a residual subset

of V, i.e. V'\ © is a countable union of close subsets without interior points. In
particular, © is a dense subset of V.

By Theorem 2.1 we obtain the following result, which is crucial to deduce
Theorem 1.1. Let D := {g € M* : W9 #£0 on M}.

THEOREM 2.2. For any g € D there exist indices i, j, k, | such that Wiji
does not vanish identically on M. Then the set

Dijr = {h € B, : all the critical points & of Wg’,:lh are nondegenemte}
is a residual (hence dense) subset of the ball B, in S*.

PROOF. We are going to apply Theorem 2.1 to the map F defined in (2.1).
In this case we have X = R", Z = R4 and Y = S*F. We choose zo = 0. Since
X is a finite dimensional space, it is easy to check that for any h € B, the map
x — F(h,x) is Fredholm of index 0 and so assumption(a) holds.

Assumption (b) is verified in Lemma 3.1.

In order to prove (c) we set

+oo
F7H0)=JCs and C,=(B(0,R—1/s) x B,_1,5) N F~(0).
s=1

The map woi: Cy — S* is proper because the set B,_1/s C S* is closed and the
set B(0,R —1/s) C R™ is compact.
Finally, we are in position to apply Theorem 2.1 and we get that the set
(22) Dijkl(go) = {h € Bp : F;(h,l‘) R" - R"
is invertible at any point (h,z) such that F(h,z) =0}
={h € B, : all the critical points of Wg;glh in B;(&o, R)

are non degenerate}

is a residual subset of B,.
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Now, since M is compact, there exists a finite covering {B§(§t, R)}t:1 »
of M, where &1,...,§, € M. For any index t there exists a residual subset
D;jri(&r) (see (2.2)). Let

Dijr = ﬂ Dijr(&)-

t=1,...,v

It is immediate that D;jp; is a dense subset of B, such that the critical points of
Wigj;glh in M are non degenerate for any h € Djj. O

PrROOF OF THEOREM 1.1. It is clear that A is an open set. The density
follows by Theorem 2.2. If g € D there exist indices i, j, k, [ with i # j and [ # k
sucht that Wi’} 4 is not identically equal to zero on M. By Theorem 2.2, for any
h € Dyjr, we have

(VWL )| + VW) > 0 for any € € M.

Moreover, by Lemma 2.3, the set M* \ D is a closed subset without interior
points. O

LEMMA 2.3. The set M*\ D = {g € M* : [W9(&)| # 0 for any & € M} is
a closed subset without interior points.

PROOF. If W, (€) = 0 with i # j and k # [ then DyWZ,,(€)[h] # 0 if we
choose h € S* such that the map z — hab(expg(z)), with its first derivative, is
vanishing at the point 0, for any indices a and b’ i.e. hqp(0) = 0 and 9.hqp(0) =0
for any a, b, c. Indeed, by (3.11), together with (3.1), (3.7) and the derivative of
Christoffel symbols, we get

DWW (O[h] = DaRijri(§)[h] = Dp R ()[R gss + Rip(§)hs;
= DpoWT3(&)[h] — Do, ()[R]

1 1
5 OGlij(h, €) — 3 NGrij(h, )

1 1
5 OFituj — 05 hs) — 5 (s — Oy i)
and, if we choose hq, = 0 if (a,b) # (1,7) and hy;(z) = zpx;, we get

1
DhWZ%kl(g)[h] = 9 al%ihlj # 0. U

3. The transversality condition

3.1. Notation. Let us recall the definition of the Weyl tensor W9(£) of the
metric g at the point £ in local chart. We denote by ¢* the inverse matrix of Gij
and by d;; the Kronecker symbol.
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Let £ € M be fixed. Given a coordinate system, the Weyl tensor in a point
&(z) belonging to By(&, R) can be expressed as follows:

1
9 — Ri, - -
W‘jkl - Rzgkl n—

; 7 (Rikgji — Rugjk + Rjtgik — Rjrgi)

R

1) 2) g 9kga);

where R;jj; is the Riemann curvature tensor, R;; is the Ricci tensor and R is
the scal curvature. We agree that all the previous functions are evaluated at the
point . Namely, the Riemann curvature tensor reads as

Rijui = Riju(g,x) = RlYygnj,

R%cij = airék - 6]Fik + Fiar‘sjkv _Féa fkv

(3.1)

the Ricci tensor reads as R;; = R;;(g,7) = g Rix;i and the scalar curvature
reads as

(3.2) R=R(g,z) = ginij.

Here T'}; are the Christoffel symbols

(3:3) Flij = Féj(gvx) = %glmGijk
where Gijr. = Giji(9, %) := (9;9xi + Oigr; — Orgij)-

Given the metric g = g+ h with h € B, and a point £ € By(&, R), let us
consider the local normal coordinates on the Riemannian manifold (M, g) given
by the exponential map expg(z). Therefore, the metric g in normal coordinates
satisfies

g7 (0) = g;;(0) = 6;; and 0yg" (0) = 9kgi;(0) =0,

which implies Ffj (g,0) = 0 for any indexes i, j and k.
In particular, the functions G;ji defined in (3.3) have the following property

(3.4) 925Gijk(h, 0) = 03 il (0) + 93 5;hki (0) — 2 5. hi (0).

Moreover, we always choose h € S* such that the map z — h;; (expg(2)), with
its first and second derivatives, is vanishing at the point 0, for any indexes i
and j, i.e.

(3.5) hi;(0) =0, Ohi;(0)=0 and 0Fh;;(0)=0 for any i,jk,L.

3.2. Calculus. All the derivatives have been already computed in [7]. For
sake of completeness, we recall their expressions.
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3.2.1. The derivative of Christoffel symbols. By (3.3) a straightforward com-
putation gives

1 1
aarlij (9,7) = 5 aaglkGijk(gv T) + 5 glkaaGijk(ga ),
1 1
agzﬁFlij (g,7) = 5 8iﬂglkGijk(ga ) + 5 glkaiﬂGijk(gv )
+ 009" 05Gijr(g, ) + 089" 0aGiji(g, ),

1 1
Dgréj(gyx)[h] = glkGijk(hvx) -5 glshstgthijk(g; ),

2 2
1 1
aozDgFlij (97 ZL’)[h] = 5 aaglkGijk(hv CE) + 5 glkaozGijk(h, ZL’)

1 1
- 5804 (glshstgtk)Gijk(g, 1’) - iglshstgtkaaGijk(gv CL’)
1 1
8§ﬂDQFéj (9,2)[h] 25 aigglkGijk(ha T) + 5 3aglk3BGijk(h7 )
1 1
+ B 95906 Giji(h, ) + 3 glkaiﬁGijk(hy x)

1 , 1. .
) 259" hstg™) Giji(g, ) — 3 9a (9" hst9™) 05 Giji(g, )

1
2

S 1 S
glk hstgtkaZBGijk(gv .’IJ) - 5 aﬁ (gl hstgtk)aaGijk:<ga J))
In particular, if we assume (3.5) we get

Dhréj (ga x)[hhw:o =0, 8aDhF§j (97 x)[hhw:o =0,

(3.6) 1

02Ty (g, )Ml _, = 5 025Gisn(h,0).

3.2.2. The derivative of the Riemann tensor. By (3.1) a straightforward
computation gives
(3.7) Dy R}y (g, 2)[h] = Dpoklj;(g. x)[h]) — DpdiTy;(g, )R]
- Dhr?s(ga x)[h]rz] - FéthFZj (ga I)[h}

and

aaDhR;’kl(gv z)[h] = Dhagkrgj(ga x)[h] — Dhailrij (9,2)[h]
+ Dndalks (g, 2)[R]T; + DT (g, 2)[A] 0T
+ 0aTs Dul'y; (g, 2)[B] + Ty s DrdaT (g, ) 1]
— DdaTiy(g, 2)[PIT}; — Dal'ly(g,2)[h]0aT};
= 0oL}, Dil3; (g, w)[] = L1 Dndaly; (g, ) ().
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If we assume (3.5), by (3.6) we get

DhR;’kl(gvx)[h]\m:O =0,
(3.8) 1
2

aaDhRg‘kl(g?w)[h] ai

1
kGiji(h,0) — 5 92,Grji(h,0).

lo=0 —
Again, by (3.1) Rijm = g;sRiy;, a straightforward computation leads to

Dy Rijii(g,w)[h] = hjsRiy, + 955 DnRiy, (g, z)[R],
Oa Dy Rijii(g, ) [h] = Oahij Rjyy + hjsOa Ry
+ 009js Dn Ry (g, ) [B] + gjs DnOa Ry (g, x)[h].

In particular, if we assume (3.5), by (3.8) we get

DnRijri(g,z)h],_, =0,

and

1
OaDnRijri(g, x)[h)),_, = i(aikGiljUL’o) — 02,Gir;(h,0)).

3.2.8. The derivative of the Ricci tensor. By (3.1) Ri; = gF' Rixji. A straight-
forward computation gives
DyRij(g,2)[h] = k" Rigji + ¢"' Dy Rirju(g, z)[1],
6aD;LRij (g, a:)[h] = 8ahklRikjl + hklaaRikjl
+ 009" Dy Rikji(g, x)[h] + "' Dpoa Rixji(g, x)[h).

In particular, if we assume (3.5), by (3.9) we get

DynRij(g,2)[h]|,_, =0,
(39) 1 2 2
OaDRi(g, %)),y = 5 (02;Giu(h, 0) = 031Gz (5, 0)).

lz=0

3.2.4. The derivative of the scalar curvature. By (3.2) R = ¢g“R;; and
a straightforward computation gives
DyR(g,z)[h] =h" Rij + ¢" Dy Ryj(g, x)[hl,
OaDnR(g,2)[h] =0ah" Rij + h" 0o R;j
+ aozgithRij (gv m)[h] + githaaRij(ga (E)[h]

In particular, if we assume (3.5), by (3.9) we get

DhR(ga x)[h]|w:o = Oa

(3.10) 1, ., )
00 DnR(g, 2) 1)),y = 5 (0aiGinn(h, 0) — 95 Gia(h, 0)).
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3.3. The derivative of the Weyl’s tensor. Let us recall that

1
Wz%‘kl = Riju — ?(Rikgjl — Rugjr + Rjigi — Rjrgi)
R
+ m@jzgm = gjkgir)-
A straightforward computation shows that
(3.11)  DpW/,i(g,%)[h] = DpRijr(g, x)[h]
1
- 7(Rikhjl — Ryhji + Rjthi, — Rjkhil)
n—2
1
— —— (DnRik(g,2)[Plgsi — DrRa(g, x) h]gn
+ DiRji(g, %) [hlgir — DnRjk(g, ) hlgur)
R
+ m(h]wm + gjihik — hjkgi — gjuha)
1
t oD =gy DB DR Gigi = gaku)

and

Oa Dthkl( )[ ] = 8aDhRijkl(gvx)[h]

1
- m(aaRikhjl — 0o Rithji + 0o Rjihi — OaRjiha)

1

- m(Rikaahjl — Ryi0ohji + RjiOahir — RjrOahit)
1

- m(DhaaRik(gax)[h]gjl — Dy0aRit(g, ) [R]g;

+ Dy0aRji(9, 2)[h]gix — DhOaRjk(g, x)[h]gi)
1

— H(DhRik(g,z)[hw@gﬁ — DyRii(g,)[h|0ag;jk

+ DiRji(g, )[M0agir. — DnRjr(g,7)[h]|0agit)

+ W}?n% o (hjigi. + gjihi — hjkgi — gixhir)
+ maﬂ{(hﬂgik + gjthik — hjrga — gjrhi)
+ m Dy R(g,7)[h]0a(g19ik — 9jxit)
gy De0a a2 g ~ ).

In particular, if we assume (3.5), by (3.9) and (3.10) we get

DhWJk)l(g’ )[hhm:O =0
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and

0 DhW]kl(gv )[h]lax:O = [8ozkzhlj( ) aijkhll( ) aalzhkj( )+aa hlk( )]

- ﬁ{ [a(ikzhs ( ) aakeh’ls( ) 80491}7’5]6( ) + 8{§zsehlk(0)] 5jl

[ 0 8als ( ) atgxsz ( ) + 62453 (O)] 6jk
+ [ al] 0 aalshjs( ) agsyhls( ) =+ 6235 (O)} 6ik'
[ akj (O a(?;ks'h] (0) - 829]}%9( )+ a(?;es ]k(o)] 611}
1
- D=2

where we used (3.4), i.e.

+ [3§tthss( ) aasth ( )](5jl5ik _5jk5il)

(’waijk(h, 0) = aiﬁihkj(o) + 62/3jhki(0) - 325khij(0)-
3.4. The transversality condition: proof.

LEMMA 3.1. The map (h,z) — F}, (?L, ) [h] + F (ﬁ,f)x is onto on R™ for
any (EE) such that F(ﬁ,f) =0.

PROOF. Let g+ h with h € B, C S* with k > 4. The function F(h,z) =
Vng;lh(m) defined in (2.1) is of class C2. Let (h,Z) such that F(h,z) = 0.
We shall prove that the map Fy, (E, 7): SF — R™ defined by

Fy (0, @) 0] = (Dhos Wi @), .., Duo W3 @)

is onto.

We point out that the ontoness of the map h — Ff.(h,Z)[h] is invariant
with respect to a change of Variable x = ¥(z), where ¢ is a diffeomorphism.
Therefore, we compute DhaaAW/g,;h(i) [h] by choosing the normal coordinates
on the Riemannian manifold (M, g + E) given by the exponential map expg(z),
where §~ corresponds to T.

We choose h € S* such that the map z — hy; (expg(z)), with its first and
second derivatives, is vanishing at the point 0, for any indexes ¢ and j, so that
condition (3.5) holds. Therefore, we are lead to prove that the map 7': S* — R”
whose components T, o = 1,...,n, are defined by

Ta( ) [83k1hlj( )_aijkhzl( ) aalzhkj( )+aa hzk( )}

1
- m{ [8§4kih’85 (O) - agzkshi ( ) agzsz (0) + agzsshik (0)] 6jl

[aall (O) 8ozle ( ) 8;3191 ( )+ a(?;ﬁehll(o)} 6jk
[aal]hss(o) - ails Js ( ) aisjhlS( )+a§¢ssh]‘l(0)} 5ik



A GENERIC RESULT ON WEYL TENSOR

[aakj ( ) - ac?;kshj ( ) aasjhks( ) + aissh]k(o)] 611}
1
+ m [8(§ztth55( ) — 8asth +(0 )] (5jl5ik - 5jk5il)

is onto.

o All the indices i, j, k, | are different.
The operator T' = (11, ..., T,) reduces to

1
Ta(h) = 5[0l (0) = 02xhia (0) = Oquih (0) + Oz han (0)], =1,

For any £ =1,...,n we choose h'¥) € S* defined by

hl(f) (x) = xpwizy,  and h((ﬁ))(x) =0 if (a,b) # (1,7).

Therefore

To (b)) = —ai,ﬂh“() and T(h¥)=¢(0,..., 1,...,0).

P

for some positive constant c. That proves that T is onto.

267

o i =k and the three indices i, j, | are different, i.e. i # j, i #1 and j # L.

The operator T=(T1,...,T,) reduces to

T(X( ) [63411}”]( ) 6a]zhll( ) 6oclzh1]( )+6gl]h”(0)]
1

= 5 ) [Patsfss(0) = Datsha(0) = Bosshia(0) + O2si (0)):

For any ¢ =1,...,n we choose h©) € S* defined by
W(2) = zpzjey and B (z) =0 if (a,b) # (i, ).
Therefore

To(h9) = O;h(0) and T(h®)=c(0..., 1,...,0)

n—3
2(7’L o 2) alj'vii ) J
for some positive constant ¢. That proves that T is onto.
o i=k, j=landi#j.

The operator T' = (11, ..., T,) reduces to
3 3
Ta( ) [aan ( ) 2804]2 ( ) + aajjh“( )]
1

———[d3.:h 203, h 3

2(n_ )[ OéZ’L ( ) OéZS ( )+ ass ( )
+ aig] (0) 282]? ( ) + aisshjj (0)}

I S
Ty e (®) — Brher(0)]
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For any ¢ =1,...,n, £ #iand £ # j we choose h'¥) € S¥ defined by

L) () = xgxiz; and h((l?(x) =0 if (a,b) # (4,7),

)

if £ = i we choose

WD (@) = 2e; and h()(x) =0 if (a,b) # (i, )

and if £ = j we choose

h(j)(x) = 961335 and hg?(:v) =0 if (a,b) # (i,7).

ij
Therefore
n? —5n+5
T, (h ) = —m 92,h0(0) and T(O) = c(0,..., 10
-th
for some negative constant c. That proves that T is onto. U
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