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A GENERIC RESULT ON WEYL TENSOR

Anna Maria Micheletti — Angela Pistoia

Abstract. Let M be a connected compact C∞ manifold of dimension

n ≥ 4 without boundary. LetMk be the set of all Ck Riemannian metrics

on M . Any g ∈Mk determines the Weyl tensor

Wg : M → R4n, Wg(ξ) := (W g
ijkl(ξ))i,j,k,l=1,...,n.

We prove that the set

A :=
{
g ∈Mk : |Wg(ξ)|+ |DWg(ξ)|+ |D2Wg(ξ)| > 0 for any ξ ∈M

}
is an open dense subset of Mk.

1. Introduction

Let M be a connected compact C∞ manifold of dimension n ≥ 4 without

boundary. LetMk be the set of all Ck Riemannian metrics on M . Any g ∈Mk

determines the Weyl tensor

Wg : M → R4n, Wg(ξ) := (W g
ijkl(ξ))i,j,k,l=1,...,n.

Our goal is to prove that, for a generic Riemannian metric g, it holds true that

if Weyl tensor and its first derivative vanish at a point ξ ∈ M then the second

derivative at ξ is not zero. More precisely, we prove that

Theorem 1.1. The set

A :=
{
g ∈Mk : min

ξ∈M
(|Wg(ξ)|+ |DWg(ξ)|+ |D2Wg(ξ)|) > 0

}
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is an open dense subset of Mk.

Our result is motivated by the study of the compactness of the set of solutions

of the Yamabe equation. Yamabe asked the question if there exists a metric g̃

conformal to g with constant scalar curvature. If g̃ = u
4

n−2 g, the problem is

equivalent to finding a positive solution u to the equation

(1.1) −∆gu+
n− 2

4(n− 1)
Rgu = κu(n+2)/(n−2) in M,

for some constant κ. Rg is the scalar curvature of g and 4(n− 1)/(n− 2)κ is

nothing but the scalar curvature of g̃. Yamabe problem has been completely

solved in the works of Yamabe [19], Aubin [1], Schoen [12] and Trudinger [17].

In particular, the solution is unique in the case of negative scalar curvature

and (up to a constant factor) in the case of zero scalar curvature. The uniqueness

fails in general in the case of positive scalar curvature. Indeed, Schoen in [13],

[15] and Pollack in [9] proved the existence of a large number of high energy

solutions of (1.1) with high Morse index for some suitable manifolds. Therefore,

the structure of the set of solutions to (1.1) becomes an interesting and intriguing

problem. Schoen in [14], [15] asks the question about the compactness of the full

set of positive solutions to (1.1).

Compactness of solutions is equivalent for finding an upper bound for the

C2,α-norm of solutions to (1.1). The compactness does not hold in the case of

the round sphere Sn as Obata shows in [8]. Brendle in [2] and Brendle and

Marques in [3] build examples of manifolds with dimension n ≥ 25 for which

compactness is not true.

On the other hand, the compactness issue is proved by Khuri, Marques and

Schoen [4] for manifolds of dimension n ≤ 24 which satisfy the Positive Mass

Theorem. For a long time, the Positive Mass Theorem have been established

for spaces of dimension n ≤ 7 (Schoen and Yau [16]) and for spin manifolds

(Witten [20]). Very recently, Lohkamp in [5] seems to have proved that it holds

in general manifolds.

The study of compactness is strictly related to the blow-up analysis of solu-

tions to (1.1). In particular, Schoen conjectured that the possible blow-up points

must be points where Weyl’s tensor and its derivatives up to order [(n − 6)/2]

vanishes. We refer to the survey [6] by Marques for a complete list of contribu-

tions to these problems. In particular, Khuri, Marques and Schoen proved that

compactness does hold, without assuming the Positive Mass Theorem, provided

6 ≤ n ≤ 24 and

min
ξ∈M

[(n−6)/2]∑
k=0

∣∣DkWg(ξ)
∣∣2 > 0.

Combining this result with Theorem 1.1 we get
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Corollary 1.2. Let 10 ≤ n ≤ 24. The set

C :=
{
g ∈Mk : Yamabe problem (1.1) is compact

}
is an open dense subset of Mk.

The proof of Theorem 1.1 relies on the transversality argument described

in Section 2. The key transversality condition (namely (b) in Theorem 2.1) is

proved in Section 3.

2. Formulation of the problem and proof of the main result

We denote by Sk the space of all Ck symmetric covariant 2−tensors on M .

Sk is a Banach space equipped with the norm ‖ · ‖k defined in the following way.

We fix a finite covering {Vα}α∈L of M such that the closure of Vα is contained

Uα, where {Uα, ψα} is the open coordinate neighbourhood. If h ∈ Sk we denote

by hij the components of h with respect to the coordinates (x1, . . . , xn) on Vα.

We define

‖h‖k :=
∑
α∈L

∑
|β|≤k

n∑
i,j=1

sup
ψα(Vα)

∂βhij

∂xβ1

1 . . . ∂xβnn
.

The set Mk of all Ck Riemannian metrics on M is an open set of Sk.

In the following we will assume k ≥ 4.

Given ĝ ∈ Mk, it is possible to define an atlas on M whose charts are

(Bĝ(ξ,R), ϕ−1) where ϕ : B(0, R) → Bĝ(ξ,R). Here Bĝ(ξ,R) ⊂ M is the

ball centered at ξ with radius R given by the metric ĝ and B(0, R) ⊂ Rn is

the ball centered at 0 with radius R in the euclidean space Rn. Let Bρ :={
h ∈ Sk : ‖h‖k < ρ

}
the ball centered at 0 with radius ρ in Sk.

For any ξ ∈ M and h ∈ Bρ, with ρ small enough so that ĝ + h ∈ Mk, we

consider Weyl’s curvature tensor W ĝ+h(ξ) of (M, ĝ + h) at the point ξ ∈ M

whose components are W ĝ+h
abcd (ξ).

Here and in the following we use the Einstein summation convention, i.e.

when an index variable appears twice in a single term, once in an upper (super-

script) and/or in a lower (subscript) position, it implies that we are summing

over all of its possible values.

Given ξ0 ∈M and the chart
(
Bĝ(ξ0, R), ϕ−1

)
we set

W̃ ĝ+h(x) :=W ĝ+h(ϕ(x)) if x ∈ B(0, R) and h ∈ Bρ.

Now, for any choice of indices i, j, k, l with i 6= j and k 6= l, we introduce

the C1−map F : Bρ ×B(0, R) ⊂ Sk × Rn → Rn defined by

(2.1) F (h, x) = Fijkl(h, x) := ∇xW̃ ĝ+h
ijkl (x).

We observe that W ĝ+h
iikl ≡ W ĝ+h

ijkk ≡ 0 in M . We shall apply to the map F an

abstract transversality theorem (see [10], [11], [18]). We recall it (see Theorem 1.1

in [11]) in the following.
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Theorem 2.1. Let X, Y , Z be three Banach spaces and U ⊂ X, V ⊂ Y

open subsets. Let F : U × V → Z be a Cα−map with α ≥ 1. Assume that

(a) for any y ∈ V , F ( · , y) : U → Z is a Fredholm map of index l with l ≤ α;

(b) 0 is a regular value of F , i.e. the operator F ′(x0, y0) : X × Y → Z is

onto at any point (x0, y0) such that F (x0, y0) = 0;

(c) the map π ◦ i : F−1(0) → Y is σ-proper, i.e. F−1(0) =
+∞⋃
s=1

Cs, where

Cs is a closed set and the restriction π ◦ i|Cs is proper for any s. Here

i : F−1(0)→ X×Y is the embedding and π : X×Y → Y is the projection.

Then the set Θ := {y ∈ V : 0 is a regular value of F ( · , y)} is a residual subset

of V , i.e. V \Θ is a countable union of close subsets without interior points. In

particular, Θ is a dense subset of V .

By Theorem 2.1 we obtain the following result, which is crucial to deduce

Theorem 1.1. Let D :=
{
g ∈Mk :Wg 6≡ 0 on M

}
.

Theorem 2.2. For any ĝ ∈ D there exist indices i, j, k, l such that Wijkl

does not vanish identically on M . Then the set

Dijkl :=
{
h ∈ Bρ : all the critical points ξ of W ĝ+h

ijkl are nondegenerate
}

is a residual (hence dense) subset of the ball Bρ in Sk.

Proof. We are going to apply Theorem 2.1 to the map F defined in (2.1).

In this case we have X = Rn, Z = R4n2

and Y = Sk. We choose z0 = 0. Since

X is a finite dimensional space, it is easy to check that for any h ∈ Bρ the map

x→ F (h, x) is Fredholm of index 0 and so assumption(a) holds.

Assumption (b) is verified in Lemma 3.1.

In order to prove (c) we set

F−1(0) =

+∞⋃
s=1

Cs and Cs =
(
B(0, R− 1/s)× Bρ−1/s

)
∩ F−1(0).

The map π ◦ i : Cs → Sk is proper because the set Bρ−1/s ⊂ Sk is closed and the

set B(0, R− 1/s) ⊂ Rn is compact.

Finally, we are in position to apply Theorem 2.1 and we get that the set

Dijkl(ξ0) :=
{
h ∈ Bρ : F ′x(h, x) : Rn → Rn(2.2)

is invertible at any point (h, x) such that F (h, x) = 0
}

=
{
h ∈ Bρ : all the critical points of W ĝ+h

ijkl in Bĝ(ξ0, R)

are non degenerate
}

is a residual subset of Bρ.
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Now, since M is compact, there exists a finite covering
{
Bĝ(ξt, R)

}
t=1,...,ν

of M , where ξ1, . . . , ξν ∈ M . For any index t there exists a residual subset

Dijkl(ξt) (see (2.2)). Let

Dijkl :=
⋂

t=1,...,ν

Dijkl(ξt).

It is immediate that Dijkl is a dense subset of Bρ such that the critical points of

W ĝ+h
ijkl in M are non degenerate for any h ∈ Dijkl. �

Proof of Theorem 1.1. It is clear that A is an open set. The density

follows by Theorem 2.2. If ĝ ∈ D there exist indices i, j, k, l with i 6= j and l 6= k

sucht that W ĝ
ijkl is not identically equal to zero on M . By Theorem 2.2, for any

h ∈ Dijkl, we have∣∣∇W ĝ+h
ijkl (ξ)

∣∣+
∣∣∇2W ĝ+h

ijkl (ξ)
∣∣ > 0 for any ξ ∈M.

Moreover, by Lemma 2.3, the set Mk \ D is a closed subset without interior

points. �

Lemma 2.3. The set Mk \D =
{
g ∈ Mk : |Wg(ξ)| 6= 0 for any ξ ∈ M

}
is

a closed subset without interior points.

Proof. If W g
ijkl(ξ) = 0 with i 6= j and k 6= l then DhW

g
ijkl(ξ)[h] 6= 0 if we

choose h ∈ Sk such that the map z → hab
(

expξ(z)
)
, with its first derivative, is

vanishing at the point 0, for any indices a and b’ i.e. hab(0) = 0 and ∂chab(0) = 0

for any a, b, c. Indeed, by (3.11), together with (3.1), (3.7) and the derivative of

Christoffel symbols, we get

DhW
g
ijkl(ξ)[h] = DhRijkl(ξ)[h] = DhR

s
ikl(ξ)[h]gjs +Rsikl(ξ)hsj

= Dh∂kΓjli(ξ)[h]−Dh∂lΓ
j
ki(ξ)[h]

=
1

2
∂kGlij(h, ξ)−

1

2
∂lGkij(h, ξ)

=
1

2

(
∂2kihlj − ∂2kjhli

)
− 1

2

(
∂2lihkj − ∂2ljhki

)
and, if we choose hab ≡ 0 if (a, b) 6= (l, j) and hlj(x) = xkxi, we get

DhW
g
ijkl(ξ)[h] =

1

2
∂2kihlj 6= 0. �

3. The transversality condition

3.1. Notation. Let us recall the definition of the Weyl tensorWg(ξ) of the

metric g at the point ξ in local chart. We denote by gij the inverse matrix of gij
and by δij the Kronecker symbol.
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Let ξ0 ∈M be fixed. Given a coordinate system, the Weyl tensor in a point

ξ(x) belonging to Bg(ξ0, R) can be expressed as follows:

W g
ijkl = Rijkl −

1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gjlgik − gjkgil),

where Rijkl is the Riemann curvature tensor, Rij is the Ricci tensor and R is

the scal curvature. We agree that all the previous functions are evaluated at the

point x. Namely, the Riemann curvature tensor reads as

(3.1)
Rijkl = Rijkl(g, x) = Rhiklghj ,

Rlkij = ∂iΓ
l
jk − ∂jΓlik + ΓlisΓ

sjk,−ΓljsΓ
s
ik,

the Ricci tensor reads as Rij = Rij(g, x) = gklRikjl and the scalar curvature

reads as

(3.2) R = R(g, x) = gijRij .

Here Γlij are the Christoffel symbols

(3.3) Γlij = Γlij(g, x) =
1

2
glmGijk

where Gijk = Gijk(g, x) :=
(
∂jgki + ∂igkj − ∂kgij

)
.

Given the metric g = ĝ + h with h ∈ Bρ and a point ξ ∈ Bg(ξ0, R), let us

consider the local normal coordinates on the Riemannian manifold (M, g) given

by the exponential map expξ(z). Therefore, the metric g in normal coordinates

satisfies

gij(0) = gij(0) = δij and ∂kg
ij(0) = ∂kgij(0) = 0,

which implies Γkij(g, 0) = 0 for any indexes i, j and k.

In particular, the functions Gijk defined in (3.3) have the following property

(3.4) ∂2αβGijk(h, 0) = ∂3αβihkj(0) + ∂3αβjhki(0)− ∂3αβkhij(0).

Moreover, we always choose h ∈ Sk such that the map z → hij(expξ(z)), with

its first and second derivatives, is vanishing at the point 0, for any indexes i

and j, i.e.

(3.5) hij(0) = 0, ∂khij(0) = 0 and ∂2klhij(0) = 0 for any i, j, k, l.

3.2. Calculus. All the derivatives have been already computed in [7]. For

sake of completeness, we recall their expressions.
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3.2.1. The derivative of Christoffel symbols. By (3.3) a straightforward com-

putation gives

∂αΓlij(g, x) =
1

2
∂αg

lkGijk(g, x) +
1

2
glk∂αGijk(g, x),

∂2αβΓlij(g, x) =
1

2
∂2αβg

lkGijk(g, x) +
1

2
glk∂2αβGijk(g, x)

+ ∂αg
lk∂βGijk(g, x) + ∂βg

lk∂αGijk(g, x),

DgΓ
l
ij(g, x)[h] =

1

2
glkGijk(h, x)− 1

2
glshstg

tkGijk(g, x),

∂αDgΓ
l
ij(g, x)[h] =

1

2
∂αg

lkGijk(h, x) +
1

2
glk∂αGijk(h, x)

− 1

2
∂α
(
glshstg

tk
)
Gijk(g, x)− 1

2
glshstg

tk∂αGijk(g, x)

∂2αβDgΓ
l
ij(g, x)[h] =

1

2
∂2αβg

lkGijk(h, x) +
1

2
∂αg

lk∂βGijk(h, x)

+
1

2
∂βg

lk∂αGijk(h, x) +
1

2
glk∂2αβGijk(h, x)

− 1

2
∂2αβ

(
glshstg

tk
)
Gijk(g, x)− 1

2
∂α
(
glshstg

tk
)
∂βGijk(g, x)

− 1

2
glshstg

tk∂2αβGijk(g, x)− 1

2
∂β
(
glshstg

tk
)
∂αGijk(g, x).

In particular, if we assume (3.5) we get

(3.6)

DhΓlij(g, x)[h]|x=0
= 0, ∂αDhΓlij(g, x)[h]|x=0

= 0,

∂2αβΓlij(g, x)[h]|x=0
=

1

2
∂2αβGijl(h, 0).

3.2.2. The derivative of the Riemann tensor. By (3.1) a straightforward

computation gives

DhR
i
jkl(g, x)[h] =Dh∂kΓilj(g, x)[h]−Dh∂lΓ

i
kj(g, x)[h](3.7)

+DhΓiks(g, x)[h]Γslj + ΓiksDhΓslj(g, x)[h]

−DhΓils(g, x)[h]Γskj − ΓilsDhΓskj(g, x)[h]

and

∂αDhR
i
jkl(g, x)[h] =Dh∂

2
αkΓilj(g, x)[h]−Dh∂

2
αlΓ

i
kj(g, x)[h]

+Dh∂αΓiks(g, x)[h]Γslj +DhΓiks(g, x)[h]∂αΓslj

+ ∂αΓiksDhΓslj(g, x)[h] + ΓiksDh∂αΓslj(g, x)[h]

−Dh∂αΓils(g, x)[h]Γskj −DhΓils(g, x)[h]∂αΓskj

− ∂αΓilsDhΓskj(g, x)[h]− ΓilsDh∂αΓskj(g, x)[h].
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If we assume (3.5), by (3.6) we get

(3.8)

DhR
i
jkl(g, x)[h]|x=0

= 0,

∂αDhR
i
jkl(g, x)[h]|x=0

=
1

2
∂2αkGlji(h, 0)− 1

2
∂2αlGkji(h, 0).

Again, by (3.1) Rijkl = gjsR
s
ikl, a straightforward computation leads to

DhRijkl(g, x)[h] =hjsR
s
ikl + gjsDhR

s
ikl(g, x)[h],

∂αDhRijkl(g, x)[h] = ∂αhijR
s
ikl + hjs∂αR

s
ikl

+ ∂αgjsDhR
s
ikl(g, x)[h] + gjsDh∂αR

s
ikl(g, x)[h].

In particular, if we assume (3.5), by (3.8) we get

DhRijkl(g, x)[h]|x=0
= 0,

and

∂αDhRijkl(g, x)[h]|x=0
=

1

2
(∂2αkGilj(h, 0)− ∂2αlGikj(h, 0)).

3.2.3. The derivative of the Ricci tensor. By (3.1)Rij = gklRikjl. A straight-

forward computation gives

DhRij(g, x)[h] =hklRikjl + gklDhRikjl(g, x)[h],

∂αDhRij(g, x)[h] = ∂αh
klRikjl + hkl∂αRikjl

+ ∂αg
klDhRikjl(g, x)[h] + gklDh∂αRikjl(g, x)[h].

In particular, if we assume (3.5), by (3.9) we get

(3.9)

DhRij(g, x)[h]|x=0
= 0,

∂αDhRij(g, x)[h]|x=0
=

1

2

(
∂2αjGill(h, 0)− ∂2αlGijl(h, 0)

)
.

3.2.4. The derivative of the scalar curvature. By (3.2) R = gijRij and

a straightforward computation gives

DhR(g, x)[h] =hijRij + gijDhRij(g, x)[h],

∂αDhR(g, x)[h] = ∂αh
ijRij + hij∂αRij

+ ∂αg
ijDhRij(g, x)[h] + gijDh∂αRij(g, x)[h].

In particular, if we assume (3.5), by (3.9) we get

(3.10)

DhR(g, x)[h]|x=0
= 0,

∂αDhR(g, x)[h]|x=0
=

1

2

(
∂2αiGill(h, 0)− ∂2αlGiil(h, 0)

)
.
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3.3. The derivative of the Weyl’s tensor. Let us recall that

W g
ijkl = Rijkl −

1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gjlgik − gjkgil).

A straightforward computation shows that

DhW
g
ijkl(g, x)[h] =DhRijkl(g, x)[h](3.11)

− 1

n− 2
(Rikhjl −Rilhjk +Rjlhik −Rjkhil)

− 1

n− 2
(DhRik(g, x)[h]gjl −DhRil(g, x)[h]gjk

+DhRjl(g, x)[h]gik −DhRjk(g, x)[h]gil)

+
R

(n− 1)(n− 2)
(hjlgik + gjlhik − hjkgil − gjkhil)

+
1

(n− 1)(n− 2)
DhR(g, x)[h](gjlgik − gjkgil)

and

∂αDhW
g
ijkl(g, x)[h] = ∂αDhRijkl(g, x)[h]

− 1

n− 2
(∂αRikhjl − ∂αRilhjk + ∂αRjlhik − ∂αRjkhil)

− 1

n− 2
(Rik∂αhjl −Ril∂αhjk +Rjl∂αhik −Rjk∂αhil)

− 1

n− 2
(Dh∂αRik(g, x)[h]gjl −Dh∂αRil(g, x)[h]gjk

+Dh∂αRjl(g, x)[h]gik −Dh∂αRjk(g, x)[h]gil)

− 1

n− 2
(DhRik(g, x)[h]∂αgjl −DhRil(g, x)[h]∂αgjk

+DhRjl(g, x)[h]∂αgik −DhRjk(g, x)[h]∂αgil)

+
R

(n− 1)(n− 2)
∂α(hjlgik + gjlhik − hjkgil − gjkhil)

+
1

(n− 1)(n− 2)
∂αR(hjlgik + gjlhik − hjkgil − gjkhil)

+
1

(n− 1)(n− 2)
DhR(g, x)[h]∂α(gjlgik − gjkgil)

+
1

(n− 1)(n− 2)
Dh∂αR(g, x)[h](gjlgik − gjkgil).

In particular, if we assume (3.5), by (3.9) and (3.10) we get

DhW
g
ijkl(g, x)[h]|x=0

= 0
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and

∂αDhW
g
ijkl(g, x)[h]|x=0

=
1

2

[
∂3αkihlj(0)− ∂3αjkhil(0)− ∂3αlihkj(0) + ∂3αljhik(0)

]
− 1

2(n− 2)

{[
∂3αkihss(0)− ∂3αkshis(0)− ∂3αsihsk(0) + ∂3αsshik(0)

]
δjl

−
[
∂3αlihss(0)− ∂3αlshis(0)− ∂3αsihsl(0) + ∂3αsshil(0)

]
δjk

+
[
∂3αljhss(0)− ∂3αlshjs(0)− ∂3αsjhls(0) + ∂3αsshjl(0)

]
δik

−
[
∂3αkjhss(0)− ∂3αkshjs(0)− ∂3αsjhks(0) + ∂3αsshjk(0)

]
δil
}

+
1

(n− 1)(n− 2)

[
∂3αtthss(0)− ∂3αsthst(0)

]
(δjlδik − δjkδil)

where we used (3.4), i.e.

∂2αβGijk(h, 0) = ∂3αβihkj(0) + ∂3αβjhki(0)− ∂3αβkhij(0).

3.4. The transversality condition: proof.

Lemma 3.1. The map (h, x) → F ′h
(
h̃, x̃)

[
h] + F ′x

(
h̃, x̃

)
x is onto on Rn for

any
(
h̃, x̃

)
such that F

(
h̃, x̃

)
= 0.

Proof. Let ĝ + h with h ∈ Bρ ⊂ Sk with k ≥ 4. The function F (h, x) =

∇xW̃ ĝ+h
ijkl (x) defined in (2.1) is of class C2. Let

(
h̃, x̃

)
such that F

(
h̃, x̃

)
= 0.

We shall prove that the map F ′h(h̃, x̃) : Sk → Rn defined by

F ′h
(
h̃, x̃

)
[h] =

(
Dh∂1W̃

ĝ+h̃
ijkl (x̃)[h], . . . , Dh∂nW̃

ĝ+h̃
ijkl (x̃)[h]

)
is onto.

We point out that the ontoness of the map h → F ′h
(
h̃, x̃

)
[h] is invariant

with respect to a change of variable x = ψ(z), where ψ is a diffeomorphism.

Therefore, we compute Dh∂αW̃
ĝ+h̃
ijkl (x̃)[h] by choosing the normal coordinates

on the Riemannian manifold (M, ĝ + h̃) given by the exponential map expξ̃(z),

where ξ̃ corresponds to x̃.

We choose h ∈ Sk such that the map z → hij
(
expξ̃(z)

)
, with its first and

second derivatives, is vanishing at the point 0, for any indexes i and j, so that

condition (3.5) holds. Therefore, we are lead to prove that the map T : Sk → Rn

whose components Tα, α = 1, . . . , n, are defined by

Tα(h) :=
1

2

[
∂3αkihlj(0)− ∂3αjkhil(0)− ∂3αlihkj(0) + ∂3αljhik(0)

]
− 1

2(n− 2)

{[
∂3αkihss(0)− ∂3αkshis(0)− ∂3αsihsk(0) + ∂3αsshik(0)

]
δjl

−
[
∂3αlihss(0)− ∂3αlshis(0)− ∂3αsihsl(0) + ∂3αβshil(0)

]
δjk

+
[
∂3αljhss(0)− ∂3αlshjs(0)− ∂3αsjhls(0) + ∂3αsshjl(0)

]
δik
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−
[
∂3αkjhss(0)− ∂3αkshjs(0)− ∂3αsjhks(0) + ∂3αsshjk(0)

]
δil
}

+
1

(n− 1)(n− 2)

[
∂3αtthss(0)− ∂3αsthst(0)

]
(δjlδik − δjkδil)

is onto.

• All the indices i, j, k, l are different.

The operator T = (T1, . . . , Tn) reduces to

Tα(h) =
1

2

[
∂3αkihlj(0)− ∂3αjkhil(0)− ∂3αlihkj(0) + ∂3αljhik(0)

]
, α = 1, . . . , n.

For any ` = 1, . . . , n we choose h(`) ∈ Sk defined by

h
(`)
lj (x) = x`xixk and h

(`)
ab (x) = 0 if (a, b) 6= (l, j).

Therefore

Tα(h(`)) =
1

2
∂3αkih

(`)
lj (0) and T (h(`)) = c(0, . . . , 1

↑
`-th

, . . . , 0).

for some positive constant c. That proves that T is onto.

• i = k and the three indices i, j, l are different, i.e. i 6= j, i 6= l and j 6= l.

The operator T = (T1, . . . , Tn) reduces to

Tα(h) :=
1

2

[
∂3αiihlj(0)− ∂3αjihil(0)− ∂3αlihij(0) + ∂3αljhii(0)

]
− 1

2(n− 2)

[
∂3αljhss(0)− ∂3αlshjs(0)− ∂3αsjhls(0) + ∂3αsshjl(0)

]
.

For any ` = 1, . . . , n we choose h(`) ∈ Sk defined by

h
(`)
ii (x) = x`xjxl and h

(`)
ab (x) = 0 if (a, b) 6= (i, i).

Therefore

Tα(h(`)) =
n− 3

2(n− 2)
∂3αljh

(`)
ii (0) and T (h(`)) = c(0 . . . , 1

↑
`-th

, . . . , 0)

for some positive constant c. That proves that T is onto.

• i = k, j = l and i 6= j.

The operator T = (T1, . . . , Tn) reduces to

Tα(h) :=
1

2

[
∂3αiihjj(0)− 2∂3αjihij(0) + ∂3αjjhii(0)

]
− 1

2(n− 2)

[
∂3αiihss(0)− 2∂3αishis(0) + ∂3αsshii(0)

+ ∂3αjjhss(0)− 2∂3αjshjs(0) + ∂3αsshjj(0)
]

+
1

(n− 1)(n− 2)

[
∂3αtthss(0)− ∂3αsthst(0)

]
.
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For any ` = 1, . . . , n, ` 6= i and ` 6= j we choose h(`) ∈ Sk defined by

h
(`)
ij (x) = x`xixj and h

(`)
ab (x) = 0 if (a, b) 6= (i, j),

if ` = i we choose

h
(i)
ij (x) = x2ixj and h

(i)
ab (x) = 0 if (a, b) 6= (i, j)

and if ` = j we choose

h
(j)
ij (x) = xix

2
j and h

(j)
ab (x) = 0 if (a, b) 6= (i, j).

Therefore

Tα(h(`)) = − n2 − 5n+ 5

(n− 1)(n− 2)
∂3αijh

(`)
ij (0) and T (h(`)) = c(0, . . . , 1

↑
`-th

, . . . , 0)

for some negative constant c. That proves that T is onto. �
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