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CONTRACTIBILITY OF MANIFOLDS

BY MEANS OF STOCHASTIC FLOWS

Alexandra Antoniouk — Sergiy Maksymenko

Abstract. In the paper [Probab. Theory Relat. Fields, 100 (1994), 417–

428] Xue-Mei Li has shown that the moment stability of an SDE is closely

connected with the topology of the underlying manifold. In particular,
she gave sufficient condition on SDE on a manifold M under which the

fundamental group π1M = 0. We prove that under similar analytical

conditions the manifold M is contractible, that is all homotopy groups
πnM , n ≥ 1, vanish.

1. Introduction

The interplay between geometrical or topological structures of a manifold

and the properties of differential operations on it forms a library of the most

crucial results in analysis. For instance,

(1) if M is closed, then the number of (non-degenerate) critical points of

index i of a Morse function f : M → R bounds the rank of i-th homology

group of M (Morse inequalities);

(2) de Rham cohomologies H∗DR(M) of an orientable manifold M are isomor-

phic with its singular real cohomologies H∗(M,R), (de Rham theory);
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(3) if M is Riemannian, then there is a lot of statements relating its Ricci

and sectional curvatures with the topology of M and especially with

the fundamental group π1M , (theorems by Cartan–Hadamard, Bonnet–

Myers, Preissman, Byers, Bochner);

(4) for a vector field F on M having only isolated zeros the alternating sum

of indexes of those zeros equals the Euler characteristic of M , (Poincaré–

Hopf theorem);

(5) topological entropy of smooth dynamical systems on M can also be

computed via Lyapunov exponents (Margulis–Ruelle Inequality, Pesin

entropy formula).

The invention of the stochastic analysis since the milestone papers of Wiener

and Ito gave rise a problem of finding stochastic counterparts of the above results.

In 1962 Ito [9] (see also [10]) introduced a notion of a stochastic parallel trans-

port which generalizes parallel transport in differential geometry. These ideas

permitted further development of stochastic analysis on manifolds in the papers

by Eells and Elworthy [6], Malliavin [18], Airault [1], Vauthier [20], Berthier

and Gaveau [5], and many others. The principal problem which appears there

is that the corresponding objects depend only measurably and not continuously

on probabilistic parameters. This essentially prevents a usage of well developed

homotopy invariants.

On the other hand, for a Riemannian manifold the Laplace operator ∆

uniquely defines a Brownian motion on M . This allowed to prove analogues

of results of type (3) in terms of stochastic differential equation (SDE) on M .

Another approach is based on extending results of type (5). Recall that

a maximal Lyapunov exponent of a diffeomorphism h : M →M of a Riemannian

manifold M at a point x0 ∈M is defined by

(1.1) λ(x0) = lim
n→∞

1

n

n−1∑
i=0

ln ‖h′(xi)‖

where ‖h′(x)‖ is the norm of the tangent linear map Txh : TxM → Th(x)M , and

xi = hi(x0) is an i-th iteration of x0 under h. Thus if the limit (1.1) exists, then

for large n we have that

eλ(x0) ≈ n

√√√√ n∏
i=0

‖h′(xi)‖,

that is eλ(x0) is an average value of the norm of the tangent map along the orbit

of x0.

In particular, if λ(x0) < 0, then (saying non-strictly) “in average, the orbit of

x0 should attract points that are sufficiently close to it”. Hence the points with

negative Lyapunov exponents would detect attractors of dynamical systems.
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Moreover, suppose there exists a diffeomorphism h : M → M isotopic to

the identity (e.g. a diffeomorphism belonging to a flow) which has also negative

Lyapunov exponents at some large subsets of M . Then one would expect that

representatives of certain (co)homology classes of M can be deformed under

iterations of h into subsets of small sizes, and therefore those classes could vanish.

In other words, one would get triviality of some (co)homology or homotopy

groups of M .

Stochastic analogues of Lyapunov exponents, the so called p-moment expo-

nents, play a crucial role for investigation of stability of stochastic dynamical

systems, see e.g. [11]–[14], [2]–[4], [7] and others.

Let ξ be a stochastic flow on M being a solution of SDE with smooth coeffi-

cients. Roughly speaking it is a family of differentiable flows depending on some

parameter ω belonging to a probability space Ω. Then given a compact subset

K ⊂M and p > 0 define the p-th moment exponent of ξ on K by

µK(p) := lim
t→∞

sup
x∈K

1

t
lnE‖Txξt‖p.

A stochastic flow ξ is called p-th moment stable whenever µx(p) < 0 for each

x ∈ M and strongly p-th moment stable if µK(p) < 0 for each compact subset

K ⊂M .

Then the strong p-th moment stability would imply that, in average, the flow

decreases the sizes of compact sets. In particular, it was shown by Elworthy and

Rosenberg [7] that for a compact manifold M

• µM (1) < 0 implies triviality of the fundamental group π1M ;

• µM (2) < 0 implies triviality of the second homotopy group π2M ;

• µM (q) < 0 implies triviality of q-th homology group Hq(M,Z) = 0;

• if µM ([(n+ 1)/2]) < 0, then M is a homotopy sphere.

For non-compact manifolds the situation is more complicated as a priori one

can not expect uniform bounds for µK(p). That case was considered by Xue-Mei

Li [17]. She studied moment stability of SDE of the form

(1.2) dxt = X(xt) ◦ dBt +A(xt) dt,

where Bt is an m-dimensional Brownian motion on T , A is a vector field on M ,

and X ∈ Hom(Rn, TM) is a bundle homomorphism of class C3 from trivial Rn-

bundle Rn = Rn ×M → M over M to its tangent bundle TM → M . Among

other results she gave sufficient conditions for triviality of the fundamental group

π1M of the manifold M in terms of the coefficients of (1.2), see Theorem 1.1

below.

It is well known that under certain conditions SDE (1.2) generates a stochas-

tic flow, that is a family of diffeomorphisms ξt,ω : M → M depending on the

time t ∈ R and a probabilistic parameter ω ∈ Ω. However, in general, ξ is not
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jointly continuous in (x, t) ∈ M × R or even in t ∈ R. A stochastic flow {ξt,ω}
is called strongly 1-complete if for each smooth curve γ : [0, 1] → M the map

γ̂ : [0, 1]× R→ M , defined by γ̂(s, t) = ξω(γ(s), t) is jointly continuous in t and

x for almost all ω ∈ Ω. In particular, γ̂t is homotopic to γ̂0 = γ.

The following statement is proved in [17, Theorem 4.1]. We present a slightly

different formulation.

Theorem 1.1 (c.f. [17, Theorem 4.1]). Let M be a complete possibly non-

compact connected Riemannian manifold and h : M → R be a smooth function.

Suppose there exists a strongly 1-complete recurrent h-Brownian system gener-

ating a stochastic flow ξ such that for each compact subset K ⊂M

(1.3)

∫ +∞

0

sup
x∈K

E ‖Txξt,ω‖ dt <∞.

Then π1M = 0.

We refer the reader for precise definitions to the original paper, however let

us briefly discuss the principal “topological” steps of the proof of Theorem 1.1.

At first Xue-Mei Li deduces from inequality (1.3) (being a variant of a 1-st

moment stability for non-compact manifolds) that every smooth loop σ on M is

deformed by the flow to a loop of arbitrary small diameter. Then the recurrence

assumption implies that σ will return into arbitrary compact set K at arbitrary

large times with positive probability. For K being a geodesic ball it then follows

that σ is null-homotopic.

In the present paper we extend Theorem 1.1 by clarifying topological assump-

tions needed for its proof. Moreover, we will show that if one can interchange

“sup” and “E” in (1.3) then all the homotopy groups πnM vanish, that is M is

contractible, see Theorem 2.7 below.

2. Preliminaries

We start with a usual setting of the theory of SDE, see e.g. [16, §§1.2, 1.4, 4].

Given a map f : A × B × C → D of a product of sets we will often consider

restriction maps obtained by fixing some coordinates, e.g. fa : {a}×B×C → D

defined by fa(b, c) = f(a, b, c), or fa,b : {a} × {b} × C → D, fa,b(c) = f(a, b, c),

for (a, b, c) ∈ A × B × C. Thus we put the corresponding fixed coordinates as

subindexes.

A measurable space (Ω,F) is a set Ω with a σ-algebra F of subsets.

Let P : F → [0, 1] be a σ-additive measure, then the triple (Ω,F ,P) is called

a probability space. If (Ω′,F ′) is another measurable space, then a map f : Ω→
Ω′ is called F/F ′-measurable, if f−1(A) ∈ F for all A ∈ F ′.

Each topological space M can be regarded as a measurable space (M,B(M)),

where B(M) is the Borel σ-algebra of subsets of M .
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Let N be another topological space and (Ω,F) be a measurable space. Then

a random N -valued field with parameter M is a map f : M × Ω → N such that

fx : Ω→ N is F/B(N)-measurable for each x ∈M .

A random field f : M × Ω→ N is

• measurable if f is (F ⊗ B(M))/B(N)-measurable;

• continuous if fω : M → N is continuous for almost all ω ∈ Ω;

• bounded if N is a metric space and fω(M) is bounded in N for almost

all ω ∈ Ω.

Let f ′ : M × Ω → N be another random N -valued field with parameter M

and Jx = {ω ∈ Ω | fx(ω) = f ′x(ω)}. Then f ′ is a modification of f , whenever

P(Jx) = 1 for all x ∈M .

Notice that a priory for distinct x 6= y ∈ M the sets Jx and Jy are distinct,

though P(Jx∩Jy) = 1. Even more, P
( ⋂
x∈A

Jx

)
= 1 for any countable set A ⊂M .

However, in general, one can not find a subset J ∈ Ω with P(J) = 1 and such

that fx(ω) = f ′x(ω) for all x ∈M and ω ∈ J .

Definition 2.1. Let M be a topological space, R+ = [0,+∞), (Ω,F ,P) be

a probability space, and

(2.1) ξ : M × R+ × Ω→M

be a map. Then ξ will be called a stochastic deformation whenever

(a) ξ is
(
B(M × R+)⊗F

)
/B(M)-measurable;

(b) the map ξω : M×R+ →M , ξω(x, t) = ξ(x, t, ω), is continuous for almost

all ω ∈ Ω;

(c) ξ(x, 0, ω) = x for all x ∈M and almost all ω ∈ Ω.

In other words, a stochastic deformation is a measurable continuous M -valued

random field with parameter M × R+ satisfying additional condition (c).

Remark 2.2. It is well known that for a large class of SDE on manifolds

their solutions are stochastic deformations satisfying (semi-)group property, e.g.

ξt+s,ω = ξt,ω ◦ ξs,ω for s, t ∈ R+ and almost all ω ∈ Ω, and called stochastic

flows. However, a priori not every stochastic flow is a solution of certain SDE.

For details on this correspondence and definitions of distinct kinds of stochastic

flows, see e.g. [16, Chapter 4], [15], [19].

Remark 2.3. It is often convenient to study random fields up to a mod-

ification, e.g. continuous or measurable. See e.g. [16, §1.2–1.4] for sufficient

conditions of existence of such modifications. To simplify the exposition we as-

sume in the definition of a stochastic deformation that it is already measurable

and continuous and that ξω is continuous for all ω ∈ Ω. However, in general,

an M -valued random field with parameter M × R+ does not necessarily admit

a measurable and continuous modification.
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Measures associated with a stochastic deformation. Let ξ be a sto-

chastic deformation on a topological space M such that B(M) contains all one-

point subsets. This holds e.g. when M is a T1-space (i.e. every point is a closed

subset) and, in particular, when M is a manifold. Then it follows measurability

from the assumption (a) of Definition 2.1 on ξ, that for each (x, t) ∈ M × R+

the map

ξx,t : Ω→M, ξx,t(ω) = ξ(x, t, ω).

is F/B(M)-measurable. Therefore one can define the following σ-additive prob-

ability measure µx,t on M by

µx,t(K) := P
(
ξ−1
x,t (K)

)
= P{ω ∈ Ω | ξt,ω(x) ∈ K}, K ∈ B(M).

Suprema of continuous and measurable maps. We will use the follow-

ing statements.

Lemma 2.4. Let M be a topological space, (Ω,F) be a measurable space,

and f : M × Ω→ R be a measurable bounded continuous random R-valued field.

Suppose also that M has a countable everywhere dense subset A such that every

point of A belongs to B(M) as a one-point set. Then the function g : Ω → R
defined by

g(ω) = sup
x∈M

f(x, ω)

is F/B(R)-measurable.

Proof. By definition f is a (B(M) ⊗ F)/B(R)-measurable map such that

for each ω ∈ Ω the restriction fω : M → R is a bounded continuous map.

Notice that for every a ∈ A the function fa : Ω → R, fa(ω) = f(a, ω), is

F/B(R)-measurable. Indeed, we have that {a}×Ω ∈ B(M)⊗F since {a} ∈ B(M)

for a ∈ A. Hence we should only check that the restriction f |{a}×Ω : {a}×Ω→ R
is (B(M) ⊗ F)/B(R)-measurable. But this follows from measurability of f and

the identity

f−1
a (Q) = f−1(Q) ∩ {a} × Ω for each Q ∈ B(R).

Now, as fω : M → R is continuous and A is everywhere dense, we get that

g(ω) = sup
x∈M=A

f(x, ω) = sup
a∈A

f(a, ω) = sup
a∈A

fa(ω).

In other words, g = sup
a∈A

fa is a supremum of countably many F/B(R)-measurable

functions. Hence g is F/B(R)-measurable as well. �

Lemma 2.5. Let S,M be metric spaces and f : S ×M → R be a continuous

function. If S is compact, then the function g : M → R defined by

g(x) = sup
s∈S

f(s, x)

is continuous.
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The proof is left to the reader.

Homotopies. Let S and M be two topological spaces, f, g : S →M be two

continuous maps between them, and I = [0, 1]. These maps are called homotopic

if there exists a (jointly) continuous map H : S×I →M such that H(0, x) = f(x)

and H(x, 1) = g(x) for all x ∈ S. Any such map H is called a homotopy between

f and g.

A map f : S → M homotopic to a constant map is also said to be null

homotopic.

A deformation of M is a homotopy H : M × I → M starting from idM ,

i.e. H0 = idM . Thus, roughly speaking, a stochastic deformation is a family of

deformations “measurably depending” on some “probabilistic” parameter ω ∈ Ω.

A topological space M is contractible if the identity map idM : M → M is

null-homotopic, i.e. homotopic to a constant map ∗ : M → p ∈M into some point

p ∈M . The corresponding homotopy between idM and ∗, i.e. a “deformation of

M into a point p”, is called a contraction of M .

For instance, any convex subset M ⊂ Rn is contractible, and the contraction

H : M×I →M of M into a point p ∈M can be defined by the following formula:

H(x, t) = tp+(1−t)x. On the other hand a compact manifold without boundary,

e.g. the n-dimensional sphere Sn and the n-torus Tn, is never contractible.

Notice that if M is contractible, then each continuous map σ : S → M is

null homotopic. Indeed, if H : M × I → M is a contraction of M into some

point p ∈ M , then the map Σ: S × I → M defined by Σ(x, t) = H(σ(x), t) is

a homotopy between σ and a constant map into the point p.

The following statement is a particular case of the well-known Whitehead’s

theorem.

Theorem 2.6 (J.H.C. Whitehead, e.g. [8, Theorem 4.5]). A connected mani-

fold M is contractible if and only if for each n ≥ 1 each continuous map σ : Sn →
M is null homotopic.

Injectivity radius. Let M be a complete Riemannian manifold. Then it is

also a complete metric space with the distance ρ(x, y) between points x, y ∈ M
defined as the infimum of lengths of C1-paths γ : [0, 1]→M such that γ(0) = x

and γ(1) = y.

Also for each x ∈M and a unit tangent vector v ∈ TxM there exists a unique

geodesic line γx,v : R → M such that γx,v(0) = x and γ̇x,v(0) = v. This allows

to define the following exponential map expx : TxM →M by

expx(w) = γx,w/|w|(|w|), w ∈ TxM.

It is well known and easy to show that expx is C∞, expx(x) = 0, and this

map sends radial lines {tv}t∈R onto geodesics passing through x. Moreover, let
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Dr(0) ⊂ TxM be an open ball of radius r with center at the origin. Then there

exists r > 0 such that expx diffeomorphically maps Dr(0) onto some neighbor-

hood Br(x) of x. Such a neighbourhood Br(x) is called a geodesic ball at x of

radius r and the supremum of all such r for which Br(x) is defined is called the

injectivity radius at x with respect to ρ and denoted by Rx. Thus

Rx = sup
r>0
{r | the restriction expx |Dr(0) : Dr(0)→M is an embedding}.

For a subset K ⊂M put

(2.2) RK = inf
x∈K

Rx.

If K is compact, then one easily checks that RK > 0.

Main result. The following statement is an extension of [17, Theorem 4.1].

Theorem 2.7. Let M be a smooth connected complete Riemannian manifold,

(Ω,F ,P) be a probability space, and

ξ : M × R+ × Ω→M

be a stochastic deformation having the following properties.

(a) There exists Σ ∈ F such that P(Σ) = 1, the map ξt,ω is C1 for all t ∈ R+

and all ω ∈ Σ, and the induced family of tangent maps

Ξ: TM × R+ × Σ→ TM, Ξ(x, v, t, ω) = Txξt,ω(v),

is a stochastic deformation as well.

(b) There exist a point z ∈M and a compact subset K ⊂M such that

lim
t→∞

µz,t(K) ≡ lim
t→∞

P{ω ∈ Ω | ξt,ω(z) ∈ K} > 0,

i.e. one can find ε > 0 and A > 0 satisfying µz,t(K) > ε for all t > A.

If for each compact subset K ⊂M we have that

(2.3)

+∞∫
0

sup
x∈K

E ‖Txξt,ω‖dt <∞,

where the norm is taken with respect to the corresponding Riemannian metric,

then π1M = 0. Moreover, if for each compact subset K ⊂M we have a stronger

inequality

(2.4)

+∞∫
0

E sup
x∈K

‖Txξt,ω‖ dt <∞,

then πnM = 0 for all n ≥ 1, that is M is contractible.

Remark 2.8. Condition (a) of Theorem 2.7 together with Lemmas 2.4, 2.5,

and Fubini theorem guarantee that the integrals (2.3) and (2.4) are well defined.
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The proof of Theorem 2.7 follows the lines of [17, Theorem 4.1], see Theo-

rem 1.1 above. In fact the first statement about triviality of π1M is proved in

the same way as in [17, Theorem 4.1] but under weaker assumptions.

• First of all, ξ in Theorem 2.7 is just a stochastic deformation, not neces-

sarily a stochastic flow, so the group property mentioned in Remark 2.2

is not needed.

• Furthermore, the recurrence of h-Brownian system in Theorem 1.1 im-

plies that for every compact setK ⊂M and z ∈M the limit lim
t→∞

µz,t(K)

does not depend on z and equals to µ(K), a certain measure µ on M ,

see [17, §4]. At this point Theorem 2.7 requires just positivity of the lower

limit lim
t→∞

µz,t(K) for some compact set K ⊂M and a point z ∈M . The

latter assumption is essentially weaker.

• Also Theorem 1.1 requires strong 1-completeness implying that the de-

formation of each smooth loop along the flow is a homotopy. We require

instead (just to simplify the exposition) measurability of the family of

tangent maps Ξ and continuity of each Ξω, see (a).

• Finally, conditions (1.3) and (2.3) coincide.

The second part of Theorem 2.7 about contractibility of M is new and holds

when it is possible to interchange the order of “sup” and “E” in (2.3) to get (2.4).

3. Proof of Theorem 2.7

Suppose that either

(a) n = 1 and condition (2.3) holds, or

(b) n ≥ 1 and condition (2.4) is satisfied.

For the proof of Theorem 2.7 it suffices to show that every continuous map

σ : Sn → M from n-dimensional sphere Sn into M is homotopic to a constant

map. This will imply that πnM = 0 for the corresponding values of n.

It is well known that σ is homotopic to a C1-map, and therefore one can

assume that σ itself is of class C1.

Moreover, as M is connected, one can also assume that the point z from (b)

of Theorem 2.7 belongs to σ(Sn).

For each ω ∈ Ω and t ∈ R+ define the map σt,ω : Sn →M by

σt,ω = ξt,ω ◦ σ : Sn
σ−−→M

ξt,ω−−−−→M.

By assumption there exists Σ ∈ F such that P(Σ) = 1 and ξω : M×R+ →M

is continuous for all ω ∈ Σ. In other words, ξt,ω is homotopic to ξ0,ω = idM and

so σt,ω is homotopic to σ for all ω ∈ Σ. Therefore it suffices to show that σt,ω is

null homotopic for some t ∈ R+ and ω ∈ Σ.



608 A. Antoniouk — S. Maksymenko

Define the function f : Sn × Sn × R+ × Σ→ R by

f(x, y, t, ω) = ρ
(
σt,ω(x), σt,ω(y)

)
and let diamσ : R+ × Σ→ R be another function given by

diamσ(t, ω) = sup
(x,y)∈Sn×Sn

f(x, y, t, ω),

so diamσ(t, ω) is the diameter of the image σt,ω(Sn).

Notice that the restriction fω : Sn × Sn × R+ → R is continuous for each

ω ∈ Σ. Moreover, as Sn × Sn × R+ is a separable metric space, it follows from

Lemma 2.4 that diamσ is
(
B(R+)⊗F

)
/B(R)-measurable.

Lemma 3.1. The following inequality holds:
∫ +∞

0
E(diam(σt)) dt<∞. Hence

there exists a sequence of numbers {tj} ⊂ R+ converging to infinity and such that

(3.1) lim
j→∞

E(diam(σtj )) = 0.

Assuming that Lemma 3.1 is proved we will complete Theorem 2.7.

Let z and K be the same as in (b) of Theorem 2.7 and

Lt := {ω ∈ Σ | ξt,ω(z) ∈ K}, t ∈ R+.

Then due to (b) there exist ε > 0 and A > 0 such that

(3.2) µz,t(K) = P(Lt) > ε for all t > A.

Let also RK > 0 be the injectivity radius of K with respect to the metric ρ

and {tj} ⊂ R+ be a sequence satisfying (3.1). For each t ∈ R+ put

Qt := {ω ∈ Σ | diam(σt)(ω) ≥ RK/2}.

Then, due to (3.1), there exists tj > A such that P(Qtj ) < ε/2.

Now let Z := Ltj \Qtj = {ω ∈ Σ | diam(σtj )(ω) < RK/2 and ξtj ,ω(z) ∈ K}.
Then

P(Z) ≥ P(Ltj )−P(Qtj )−P(N) = ε− ε/2− 0 = ε/2 > 0,

whence Z 6= ∅. Since by assumption z ∈ σ(Sn), it follows that for each ω ∈ Z
the image of σtj ,ω(Sn) = ξtj ,ω ◦ σ(Sn) intersects K and is contained in the

geodesic ball of radius smaller than RK with center ξtj ,ω(z). Therefore the map

σtj ,ω : Sn → K ⊂M is null homotopic, whence so is σ.

This proves Theorem 2.7 modulo Lemma 3.1.
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Proof of Lemma 3.1. We should check that
∫ +∞

0
E(diam(σt)) dt <∞.

(a) Suppose n = 1 and (2.3) holds. Then the proof is literally the same as

in [17, Theorem 4.1].

By (a) of Definition 2.1 the family Ξ of tangent maps is a stochastic defor-

mation. Hence there exists Σ ∈ F such that P(Σ) = 1 and the restriction map

Ξ: TM ×R+ → TM is continuous for all ω ∈ Σ. Together with Fubini theorem

this implies that the function

l : R+ × Σ→ R, l(t, ω) =

∫ 2π

0

∣∣Tσ(s)ξt,ω(σ′(s))
∣∣ ds,

associating to (x, ω) the length of the C1 loop σt,ω, is (B(R+) ⊗ F)/B(R)-

measurable. Then∫ +∞

0

E(diam(σt)) dt ≤
∫ +∞

0

E(l(t, ω)) dt

=

∫ +∞

0

E

∫ 2π

0

∣∣Tσ(s)ξt,ω(σ′(s))
∣∣ ds

≤ 2π sup
s∈[0,2π]

|σ′(s)|
∫ +∞

0

sup
x∈σ(S1)

E ‖Txξt,ω‖
(2.3)
< ∞.

(b) Assume now that n ≥ 1 and (2.4) is satisfied. Notice that every great

circle e in Sn of radius 1 can be regarded as a length preserving map e : [0, 2π]→
Sn and we will denote by ė = ∂e/∂s the unit tangent vector field along e.

This circle is uniquely determined by a 2-plane in Rn+1 passing through

the origin and so the space of all great circles in Sn can be identified with the

Grassmannian manifold Gn+1
2 of 2-planes in Rn+1. Notice that Gn+1

2 is comapct.

Similarly to the previous case there exists Σ ∈ F such that P(Σ) = 1 and

the function l : Gn+1
2 ×R+ ×Σ→ R associating to (e, t, ω) the length of the C1

loop σt,ω|e : e→M is (B(Gn+1
2 × R+)⊗F)/B(R)-measurable.

Notice that

(3.3) diam(σt)(ω) ≤ 1

2
sup

e∈Gn+1
2

l(e, t, ω).

Let p : TSn → Sn be the tangent bundle of Sn, USn ⊂ TSn be the sphere-

bundle consisting of all tangent vectors of length 1, and L = Tσ(USn) ⊂ TM

the image of USn in TM under the tangent map Tσ : TSn → TM . Evidently,

USn and L are compact.

If e : [0, 2π]→ Sn is a great circle in Sn and ė = ∂e/∂s, then

(e(s), ė(s)) ∈ USn, Tσ(e(s), ė(s)) = (σ ◦ e(s), Te(s)σ(ė(s))) ∈ L.
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Therefore

2

+∞∫
0

E (diam(σt)) dt <

∫ +∞

0

E sup
e∈Gn+1

2

l(e, t, ω) dt

=

+∞∫
0

E sup
e∈Gn+1

2

∫ 2π

0

∣∣Tσ(e(s))ξt,ω ◦ Te(s)σ(ė(s))
∣∣ ds dt

= 2π sup
(x,v)∈L

|v|
+∞∫
0

E sup
x∈σ(Sn)

‖Txξt,ω‖ dt
(2.4)
< ∞. �
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