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ON A CLASS OF COCYCLES HAVING ATTRACTORS

WHICH CONSIST OF SINGLETONS

Grzegorz Guzik

Abstract. We give a new simple sufficient condition for existence of the

global pullback attractor which consists of singletons for general cocycle
mappings on an arbitrary complete metric space. In particular, we need

not have any structure on a parameter space, so the criterion can be applied

in both cases: nonautonomous as well as random dynamical systems. Our
considerations lead us also to new large class of iterated function systems

with point-fibred attractors.

1. Introduction

In the theory of nonautonomous as well as random dynamical systems the

notion of a cocycle mapping is fundamental. A cocycle is, roughly speaking,

a mapping which acts on the product of a parameter space and a phase space

(usually of different nature), inducing an autonomous skew product (semi)flow.

On a parameter space an autonomous (semi)flow is given. In general, it can be

interpreted as perturbations or a noise. The reader interested in applications

of nonautonomous/random dynamical systems can find a vast literature, for

example cited in monographs [3], [9] and [19].
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The notion of attractor is one of the basic concepts in the theory of dynam-

ical systems. Such a set attracts, in some sense, sets from a desired class of

subsets of phase space and determines the long-term behavior of a dynamical

system. Attractors of classical autonomous dynamical systems are investigated

since many years, and different types of attractors of nonautonomous as well as

random dynamical systems are intensively studied during last two decades (see

for example [10], [19], and also the recent paper [6] for details and the references

therein). In particular, so-called pullback (cocycle) attractors are known as the

best tool bringing much information on asymptotic behavior of such systems.

Cocycle attractors are typically families of (compact) sets contrary to the case

of autonomous systems when the unique set is considered as an attractor. On the

other hand, attractors obtained in many examples of nonautonomous/random

systems consist of singletons, so asking on sufficient conditions when a cocycle

has a pullback attractor being a family of singletons seems to be natural. It is

interesting that such attractors could be also strange nonchaotic ones (see [17]).

Our study was primary inspired by papers [1] and [2], when some curious

particular systems on a real interval satisfying some kind of contractivity on

fibers were studied. In the present paper we introduce the notion of a pullback

uniform contractivity of cocycles on fibers and we show the existence of a pullback

attractor which is a single point on each fiber. It is weaker than condition

of uniform contractivity considered in our previous papers. It was fruitfully

explored first in [21] by A. Lasota and J. Myjak in the context of iterated function

systems and in [13], [14] by the present author in the context of discrete as well

as general cocycles, respectively. Our methodology is different then the standard

one (cf. [10] and [19]), since we mostly deal with topological limits as the main

tool. This approach let us to omit every standard assumptions on a parameter

space — it is supposed to be a non-void set only (cf. [3] and [19]).

The organization of the rest of the paper is the following. In the next section

we introduce the notion and properties of topological (Kuratowski’s) limits of

nets of subsets of a metric space. In Section 3 we define a general cocycle

mapping in the common way. Section 4 contains the main result of the paper

(Theorem 4.4) and in Section 5 we show Proposition 5.3 on existence of a pullback

cocycle attractor consisting of singletons. In particular, in the considered realities

the standard assumption on the existence of the so-called absorbing compact set

can be weakened. In the last section (Section 6) we consider a special kind of

discrete cocycles, namely iterated function systems. Usually they are studied by

using completely different methods. But by unifying presented here and some

our older results we obtain the new comprehensive class of iterated function

systems for which there exists a point-fibred attractor (cf. [5, Theorem 6.2], see
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also [4] and [23]). In particular, the main result from [16] can be obtained as

a corollary.

2. Topological limits

Let (X, %) be a metric space. By Bo(x, ε) we denote the open ball with center

x and radius ε, clA stays for the closure of A and intA for its interior.

We need to recall some basic definitions and notions on nets of points and

sets (see [8, Chapter 2]). Let (Σ,≤) be a directed set, i.e. a set with a partial

order satisfying the following property: for all σ1, σ2 ∈ Σ there is σ ∈ Σ such

that σ1 ≤ σ and σ2 ≤ σ.

Any mapping S : Σ 3 σ 7→ xσ ∈ X we call a net (or a generalized sequence)

and we denote S = (xσ)σ∈Σ.

We say that x is a limit of a net (xσ)σ∈Σ (or a net (xσ)σ∈Σ converges to x) if

for every ε > 0 there is σ0 such that xσ ∈ Bo(x, ε) for every σ ≥ σ0. Therefore,

we denote x = lim
σ∈Σ

xσ. It is known that x ∈ clA if and only if there exists a net

(xσ)σ∈Σ of elements of A converging to x.

We say that a set Σ′ ⊂ Σ is cofinal with a directed set Σ if for every σ ∈ Σ

there exists σ′ ∈ Σ′ such that σ ≤ σ′.
A net S′ = (xσ′)σ′∈Σ′ is a subnet of a net S = (xσ)σ∈Σ if there exists a non-

increasing mapping α : Σ′ → Σ (namely, σ1 ≤ σ2 implies α(σ1) ≤ α(σ2)) such

that α(Σ′) is cofinal with Σ and xα(σ′) = xσ′ for every σ′ ∈ Σ′.

A limit of a subnet S′ of a net S is called a cluster point. It can be proved

that A is a closed set if and only if it contains all cluster points of each net of

its elements.

Any mapping S : Σ → 2X , σ 7→ Aσ is called a net of subsets of X and

we denote S = (Aσ)σ∈Σ. We say that a set U ⊂ X intersects almost all (or

eventually) sets Aσ if there is σ0 ∈ Σ such that Aσ ∩ U 6= ∅, for every σ ≥ σ0,

and we say that U intersects infinitely many (or frequently) sets Aσ if for every

σ0 ∈ Σ there is σ ≥ σ0 such that Aσ ∩ U 6= ∅ holds.

We define the lower limit (or interior limit) lim inf
σ

Aσ and the upper limit

(or exterior limit) lim sup
σ

Aσ as follows: x ∈ lim inf
σ

Aσ if for every ε > 0 the ball

Bo(x, ε) intersects almost all sets Aσ, and x ∈ lim sup
σ

Aσ if for every ε > 0 the

ball Bo(x, ε) intersects infinitely many sets Aσ. If both limits are equal we say

that the net (Aσ)σ∈Σ is topologically convergent. We denote this common limit

as lim
σ
Aσ and call it a topological limit of this net.

It is clear that lim inf
σ

Aσ ⊂ lim sup
σ

Aσ and lim inf
σ

Aσ = lim inf
σ

clAσ (the

same is valid for the upper limit). Notice that lim inf
σ

Aσ and lim sup
σ

Aσ are closed

sets. Moreover if A = clA and Aσ ⊂ A for every σ ∈ Σ then lim inf
σ

Aσ ⊂ A and
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lim sup
σ

Aσ ⊂ A. Other properties of topological limits can be found in [8] and,

in the case of countable sequences, in [20].

Given a net (Aσ)σ∈Σ of subsets of X, define a set

(2.1) L :=
⋂
σ∈Σ

cl

( ⋃
δ≥σ

Aδ

)
.

The following useful characterization is known (see, for example, [14, Lem-

ma 2.1]).

Lemma 2.1. If (Aσ)σ∈Σ is a net of subsets of X, then L = lim sup
σ

Aσ.

3. Cocycles and skew product semiflows

In what follows let T be a subgroup of the additive group (R,+) of all reals

containing as a subsemigroup the set N of all positive integers. Let T+ :=

T ∩ (0,∞). We consider the sets T and T+ as directed sets with natural order

induced from the real line.

First we are going to define a cocycle mapping with some base map and fiber

maps, and also an induced skew product semiflow. Let Ω be a nonempty set and

(X, %) be an arbitrary metric space. Further Ω is called the base space and X

the fiber space or the phase space. Let θ = {θt : Ω → Ω : t ∈ T} be a group of

bijective transformations i.e.

(3.1) θs+t = θt ◦ θs for s, t ∈ T and θ0 = idΩ.

The group θ is called a base flow. Consider the mapping ϕ : T+ × Ω → XX

satisfying the following equation:

(3.2) ϕ(s+ t, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for s, t ∈ T+ and ω ∈ Ω.

Throughout the paper we will assume that every function ϕ(t, ω) : X → X is

continuous. This assumption will not be repeated. A pair (θ, ϕ) we call a cocycle

(over θ).

Observe that the given cocycle (θ, ϕ) induces a skew product semigroup of

mapping of Ω×X into itself given by

Θt(ω, x) = (θtω, ϕ(t, ω)(x)) for t ∈ T+,

i.e. Θs+t = Θt ◦Θs for all s, t ∈ T+.

Given a cocycle (θ, ϕ), we define in the standard way the following limit set

for an ω ∈ Ω and a subset D of X:

L(ω,D) :=
⋂
t∈T+

cl

(⋃
s≥t

ϕ(s, θ−sω)(D)

)
.

Observe that, by Lemma 2.1,

(3.3) L(ω,D) = lim sup
t

ϕ(t, θ−tω)(D).
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Then define a family A = {Aω : ω ∈ Ω} by

(3.4) Aω := cl

(⋃
D

L(ω,D)

)
for ω ∈ Ω,

where the sum on the right-hand side is taken over all bounded subsets D of X.

4. Uniform contractivity on fibers

We say that the cocycle (θ, ϕ) is pullback uniformly contractive if for every

nonempty bounded subset D of X and every ε > 0 there is a t0 = t0(ε,D) ∈ T+

such that

(4.1) diam(ϕ(t, θ−tω)(D)) < ε for all t ≥ t0 and ω ∈ Ω.

The cocycle (θ, ϕ) is said to be pullback uniformly contractive on fibers if

for every ω ∈ Ω, every nonempty bounded subset D of X and every ε > 0

there is t0 = t0(ε, ω,D) ∈ T+ such that for every t ≥ t0 condition (4.1) is sat-

isfied. Clearly a pullback uniform contractive cocycle is also pullback uniformly

contractive on fibers.

We prove the following result using the similar techniques as in [13, Theo-

rem 4.1] and [14, Theorem 4.4].

Proposition 4.1. Assume that the cocycle (θ, ϕ) is pullback uniformly con-

tractive on fibers. Then for all nonempty and bounded subsets A,B of X

lim inf
t

ϕ(t, θ−tω)(A) = lim inf
t

ϕ(t, θ−tω)(B),(4.2)

lim sup
t

ϕ(t, θ−tω)(A) = lim sup
t

ϕ(t, θ−tω)(B)(4.3)

for every ω ∈ Ω.

Proof. Let A,B ⊂ X be nonempty and bounded and fix ω ∈ Ω. Owing to

the symmetry of conditions (4.2) and (4.3) it is sufficient to show that

lim inf
t

ϕ(t, θ−tω)(A) ⊂ lim inf
t

ϕ(t, θ−tω)(B),

lim sup
t

ϕ(t, θ−tω)(A) ⊂ lim sup
t

ϕ(t, θ−tω)(B).

We prove the first inclusion. The proof of the second one is similar.

Fix u ∈ lim inf
t

ϕ(t, θ−tω)(A) and ε > 0. By the definition of the lower limit,

there exists s0 ∈ T+ such that for every t ≥ s0,

(4.4) ϕ(t, θ−tω)(A) ∩Bo(u, ε/2) 6= ∅.

Let now t0 = t0(ε/2, A∪B) be a number from T+ corresponding to the sum A∪B
and to ε/2 according to the definition of the uniform contractivity on fibers. Put

τ0 := max{s0, t0} and fix t ≥ τ0. By (4.4) there is a point w ∈ ϕ(t, θ−tω)(A)

such that %(w, u) < ε/2. Therefore there is x ∈ A such that w = ϕ(t, θ−tω)(x).
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Take an arbitrary y ∈ B and set v = ϕ(t, θ−tω)(y). Since x, y ∈ A ∪ B and

t ≥ τ0 ≥ t0, the uniform contractivity implies that %(w, v) < ε/2. Consequently,

%(u, v) < ε. Since v ∈ ϕ(t, ω)(B), it follows that

ϕ(t, θ−tω)(B) ∩Bo(u, ε/2) 6= ∅.

It holds for every t ≥ τ0, therefore from the fact that ε > 0 was arbitrary it

follows that u ∈ lim inf
t

ϕ(t, θ−tω)(B). �

The proposition above and equality (3.3) give us immediately

Corollary 4.2. If the cocycle (θ, ϕ) is pullback uniformly contractive on

fibers, then

Aω = L(ω,D) for ω ∈ Ω

for every nonempty bounded subset D of X, where Aω is defined by (3.4).

Remark 4.3. Unfortunately in general the set L(ω,D) can be empty for

some ω ∈ Ω.

The main result of this section shows that under some weak and natural

assumptions sets Aω given by (3.4) are non-empty and consist of singletons.

Theorem 4.4. Let (X, %) be a complete metric space and (θ, ϕ) be a cocycle

pullback uniformly contractive on fibers. Suppose that there exists a nonempty

bounded subset A of X such that

(4.5) ϕ(t, ω)(A) ⊂ A for t ∈ T+ and ω ∈ Ω.

Then for every ω ∈ Ω there is a unique point xω ∈ X such that Aω = {xω}.

Proof. Let A be a nonempty bounded set satisfying (4.5). Fix ω ∈ Ω. Due

to Corollary 4.2 it suffices to prove that the limit set L(ω,A) is a singleton. To

this end we show that

(4.6) ϕ(t2, θ−t2ω)(A) ⊂ ϕ(t1, θ−t1ω)(A) for t1 < t2, t1, t2 ∈ T+.

Indeed, if t1 < t2 then there is τ ∈ T+ such that t2 = t1 + τ and hence, using

condition (4.5) and the cocycle equation (3.2), we get

ϕ(t2, θ−t2ω)(A) = ϕ(t1 + τ, θ−(t1+τ)ω)(A)

= ϕ(t1, θ−t1ω) ◦ ϕ(τ, θ−(t1+τ)ω)(A) ⊂ ϕ(t1, θ−t1ω)(A).

Formula (4.6) implies that for t ∈ T+ we have⋃
s≥t

ϕ(s, θ−sω)(A) = ϕ(t, θ−tω)(A),

and, by the definition of a limit set,

L(ω,A) =
⋂
t∈T+

cl
(
ϕ(t, θ−tω)(A)

)
.
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Formula (4.6) implies also that sets cl(ϕ(t, θ−tω)(A)), t ∈ T+ form a decreasing

family of closed sets with diameters tending to zero as t → ∞, by uniform

contractivity on fibers. It means, by completeness of X, that there is exactly

one point xω ∈ X such that L(ω,A) = {xω}, and this completes the proof. �

Remark 4.5. It is clear that if X is compact, then the whole space X satisfies

condition (4.5).

A mapping Ω 3 ω 7→ xω ∈ X is said to be an equilibrium of the cocycle

(θ, ϕ) if

ϕ(t, ω)(xω) = xθtω for t ∈ T+ and ω ∈ Ω

(cf. [9, Definition 1.7.1]).

Theorem 4.4 gives us immediately

Corollary 4.6. If Aω = {xω} for ω ∈ Ω are as in Theorem 4.4, then the

mapping ω 7→ xω is an equilibrium of the cocycle (θ, ϕ).

Proof. Indeed, using standard arguments (see, e.g., [10, Lemma 3.2]) one

can see that Aω, ω ∈ Ω, as limit sets satisfy ϕ(t, ω)(Aω) ⊂ Aθtω for all t ∈ T+

and ω ∈ Ω. But since Aω is a singleton for every ω ∈ Ω, the last inclusion can

be replaced by the equality. �

5. Pullback attractors of cocycles

In the theory of nonautonomous as well as random dynamical systems the

following definition arises (see, for example, [19] and [10]). The family A =

{Aω : ω ∈ Ω} of compact subsets of X is called a (global) pullback attractor of

the cocycle (θ, ϕ) if

(i) it is strictly invariant, i.e. ϕ(t, ω)(Aω) = Aθtω for all t ∈ T+ and ω ∈ Ω,

(ii) it is pullback attracting, i.e.

lim
t→∞

dist(ϕ(t, θ−tω)(D), Aω) = 0

for every ω ∈ Ω and every bounded subset D of X.

Here dist denotes usual Hausdorff semidistance, i.e. dist(A,B) = sup
x∈A

%(x,B).

Remark 5.1. In general the upper limit needs not attract elements of a given

net of sets. Consider, for example, a sequence ({an})n∈N of singletons such that

a2k−1 = 0 and a2k = k for k ∈ N.

Hence lim sup
n
{an} = {0} and lim

n→∞
dist({an}, {0}) 6= 0.

Lemma 5.2. Consider a net (At)t∈T+ of subsets of X and let L = lim sup
t

At.

If there exits a compact set K ⊂ X and t0 ∈ T+ such that At ⊂ K for every

t ≥ t0, then lim
t→∞

dist(At,L) = 0.
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Proof. Suppose a contrario that there is an increasing sequence (tn)n∈N of

numbers from T+, elements atn ∈ Atn and δ > 0 such that

(5.1) %(atn ,L) ≥ δ

for sufficiently large n ∈ N. But for sufficiently large n ∈ N we have Atn ⊂ K,

which implies that the sequence (atn)n∈N has a subsequence convergent to some

element a ∈ K. Finally, by the definition of upper limit, a ∈ L ⊂ K, and this

contradicts (5.1). �

If for a given net there exists a compact a set K satisfying conditions of

Lemma 5.2, it is said to be absorbing for this net.

Proposition 5.3. Assume that (X, %) is a complete metric space and (θ, ϕ)

is a cocycle pullback uniformly contractive on fibers. If there exists a bounded

subset A of X satisfying condition (4.5) and for all bounded set D ⊂ X and

ω ∈ Ω there is a compact set K(ω,D) absorbing the net (ϕ(t, θ−t)(D))t∈T+ ,

then the family A = {Aω : ω ∈ Ω} of singletons Aω = {xω} obtained as in

Theorem 4.4 is a pullback attractor of (θ, ϕ).

Proof. In view of Corollary 4.6 it is enough to see that the considered

family is attracting. Hence, using Corollary 4.2 and Lemma 5.2 one can see that

A = {Aω : ω ∈ Ω} as a family of upper limits is pullback attracting. Precisely,

lim
t→∞

dist(ϕ(t, θ−tω)(D), Aω)

= lim
t→∞

dist
(
ϕ(t, θ−tω)(D), lim sup

t
ϕ(t, θ−tω)(D)

)
= 0. �

Remark 5.4. (a) Typically in existence results it is supposed that compact

absorbing sets depend only on ω ∈ Ω and are universal for all bounded sets (see

[10, Theorem 3.11]) or even such set is supposed to be unique (see [19, Theorem

3.20]), so our result is less restrictive.

(b) It is obvious that if X is a compact space, then the whole X is a universal

absorbing set.

6. Point fibred attractors of iterated function systems

One of the most prominent examples of (discrete) cocycles are iterated func-

tion systems (IFSs, for short; see [13, Example 3.1], also [19, Example 2.10]).

Namely, consider an arbitrary nonempty set Σ and a family of continuous map-

pings {Sσ : X → X : σ ∈ Σ}. Such a family is called an iterated function system.

Let now Ω = ΣZ be a set of all bi-infinite sequences on Σ and θ : Ω→ Ω be a left

shift operator, i.e. for ω = (. . . , σ−1, σ0, σ1, . . .), (θω)(n) = ω(n+ 1), where ω(k)

denotes the k-th term of the sequence ω.
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If now, for ω ∈ Ω, ϕ(1, ω) := Sσ1
, and ϕ(n, ω) := Sσn

◦ . . . ◦ Sσ1
, for every

n ≥ 2, the pair (θ, ϕ) is a discrete cocycle (over the shift θ). Moreover, observe

that

ϕ(n, θ−nω) = Sσ1
◦ . . . ◦ Sσn

for n ∈ N.

This formula describes the so-called inverse iterations or inverse process consid-

ered by many authors (see, for example [11], [18] and the references therein).

Consider an IFS {Sσ(x) : X → X : σ ∈ Σ} and the induced cocycle (θ, ϕ)

as above. Denote by F the Barnsley–Hutchinson multifunction given by F (x) =

{Sσ(x) : σ ∈ Σ}. Denote moreover by Fn the n-th iterate of F . If there exists

the common topological limit A∗ = limn Fn(D) independent of a bounded non-

void set D ⊂ X then it is called the Lasota–Myjak attractor (see [15]). Notice

that the notion of Lasota–Myjak attractor coincides with the notion of global

strict attractor of an IFS (see [5]) in the case of compact metric space.

It was proved in [14, Theorem 4.5] (cf. also [21, Theorem 4.2] and [13, The-

orem 4.4]) that, under the assumption of pullback uniform contractivity and

the existence of convergent trajectory any cocycle mapping admits the Lasota–

Myjak attractor. More precisely, we have obtained the following result in the

case of iterated function systems.

Proposition 6.1. Assume that an iterated function system {Sσ : X → X :

σ ∈ Σ} of continuous selfmappings of a metric space X is such that

(a) for every ε < 0 there is an integer n0 ∈ N such that for every n ≥ n0

and every bounded set D ⊂ X we have

diam(Sσ1
◦ . . . ◦ Sσn

(D)) < ε for all σ1, . . . , σn ∈ Σ, n ∈ N;

(b) there is a convergent trajectory, namely there exists the limit

lim
n→∞

Sσ1
◦ . . . ◦ Sσn

(x0) for some x0 ∈ X.

Then there exists the Lasota–Myjak attractor A∗.

Remark 6.2. It can be shown that A∗ satisfies condition (4.5). Indeed

F (A∗) ⊂ A∗ (see [15, Theorem 5.7] and [21, Theorem 3.1]), so also Fn(A∗) ⊂ A∗
for every n ∈ N. Hence for all n ∈ N, ω ∈ ΣZ we have

ϕ(n, ω)(A∗) ⊂ {ϕ(n, ω)(A∗) : ω ∈ Ω} = Fn(A∗) ⊂ A∗.

In view of Proposition 6.1 and Theorem 4.4 we can get the theorem which

generalizes [5, Theorem 6.2]. It is remarkable that in that theorem only finite

IFSs are considered.

Theorem 6.3. Assume that an iterated function system {Sσ : X → X :

σ ∈ Σ} of continuous selfmappings of a complete metric space X satisfies as-

sumptions (a) and (b) of Proposition 6.1. Let A∗ be its Lasota–Myjak attractor.
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If A∗ is a bounded set then the sets

Aω =
⋂
n∈N

cl (Sσ1
◦ . . . ◦ Sσn

(A∗)) for ω = (. . . σ−1, σ0, σ1, . . .) ∈ ΣZ

are singletons. Moreover,

(6.1) A∗ =
⋃
ω∈Ω

Aω.

Proof. In view of Theorem 4.4 it suffices to prove (6.1). Clearly
⋃
ω∈Ω

Aω ⊂

A∗, since Aω are simply limit sets (cf. [14, Proposition 4.3]). To prove the

opposite inclusion take an arbitrary element a ∈ A∗. Therefore, by the defini-

tions of topological limit and the Lasota–Myjak attractor, there is a sequence

(an)n∈N of elements an ∈ Fn(a) such that an → a as n → ∞. Hence there

is ω = (. . . , σ−1, σ0, σ1, . . .) ∈ ΣZ such that an = Sσ1
◦ . . . ◦ Sσn

(a). Finally,

a ∈ lim inf
n

Sσ1
◦ . . . ◦ Sσn

(a) ⊂ lim sup
n

Sσ1
◦ . . . ◦ Sσn

(a) = Aω = {xω}, so

a = xω. �

If the attractor A∗ of an IFS has the form (6.1) with Aω being singletons,

then it is called point-fibred [5, Definition 6.1].

The following class of functions was introduced by F.E. Browder [7]. We say

that the function S : X → X is φ-contraction if there exists an upper semicon-

tinuous and non-decreasing function φ : [0,∞) → [0,∞) satisfying φ(t) < t for

t > 0 such that

(6.2) %(S(x), S(y)) ≤ φ(%(x, y)) for x, y ∈ X.

J. Matkowski [22, Theorem1.2] proved that each φ-contraction has a globally

attractive fixed point.

The following corollary is related to [16, Theorem 1]. One can see that in [16]

only countable IFSs are considered.

Corollary 6.4. For every IFS {Sσ : X → X : σ ∈ Σ} consisting of φ-

contractions of complete metric space X with φ independent on σ ∈ Σ condi-

tions (a) and (b) of Proposition 6.1 are fulfilled, so it admits the Lasota–Myjak

attractor which is point-fibred, whenever it is a bounded set.

Proof. Condition (6.2) implies that for every n ∈ N and σ1, . . . , σn ∈ I we

have

%(Sσ1
◦ . . . ◦ Sσn

(x), Sσ1
◦ . . . ◦ Sσn

(y)) ≤ φn(%(x, y))

which tends to 0 as n → ∞ and it is independent on the choice of a sequence

σ1, σ2, . . ., so it means that an IFS is pullback uniformly contractive. Moreover,

existence of globally attractive fixed points for every transformation leads us to

existence of convergent trajectory, therefore, by Proposition 6.1, the considered
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IFS admits the Lasota–Myjak attractor. If it is bounded it suffices to apply

Theorem 6.3. �

It is easy to see that every contraction is also a φ-contraction with φ(t) = Lt,

t ∈ [0,∞), where L ∈ (0, 1) is a Lipschitz constant.

Example 6.5. Let (X, ‖ · ‖) be a Banach space and Σ be a non-void set.

Consider two maps L : Σ→ R and M : Σ→ X and the following affine difference

equation on X:

(6.3) xn+1 = L(σn)xn +M(σn) for n ∈ N.

Observe that mappings Sσ : X → X given by

(6.4) Sσ(x) = L(σ)x+M(σ)

for all σ ∈ Σ and x ∈ X form an IFS.

Assume that K := sup{|L(σ)| : σ ∈ Σ} < 1 and M is bounded, i.e. there is

a positive real number R > 0 such that M(σ) ∈ Bo(0, R) for σ ∈ Σ. Suppose

moreover, that there is σ0 ∈ Σ such that M(σ0) = 0.

By these assumptions transformations S(σ) are strict contractions. Indeed,

‖S(σ)(x)− S(σ)(y)‖ ≤ |L(σ)|‖x− y‖ ≤ K‖x− y‖

for all x, y ∈ X. In addition, since ‖Ln(σ0)(x)‖ → 0 as n → ∞, there is a con-

vergent trajectory (through ω0 = (. . . , σ0, σ0, σ0, . . .)). Hence, in view of Propo-

sition 6.1, considered IFS admits the Lasota–Myjak attractor and, consequently,

by Theorem 4.4, the sets Aω defined by (3.4) are singletons.

Let us calculate the fibers Aω = {xω}, ω ∈ Ω explicitly. Observe that using

the induction argument we obtain for all n ∈ N, ω = (. . . , σ−1, σ0, σ1, . . .) ∈ ΣZ

and x ∈ X that

ϕ(n, θ−nω)(x) =

( n∏
k=1

L(σk)

)
x+

n∑
k=1

( k−1∏
j=1

L(σj)

)
M(σk).

Now ( n∏
k=1

L(σk)

)
x→ 0 as n→∞

independently of x ∈ X. Moreover,∥∥∥∥( k−1∏
j=1

L(σj)

)
M(σk)

∥∥∥∥ ≤ Kk−1R,

which means that the series

(6.5)

∞∑
n=1

( n−1∏
j=1

L(σj)

)
M(σn)
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is absolutely summable. Consequently, there is a unique element xω ∈ X which

is the sum of the series (6.5). Since Aω = L(ω,D) does not depend on a bounded

set D ⊂ X, we can put D = {x} for any x ∈ X and we infer that Aω = {xω},
where xω is defined as above.

As we have seen the set A :=
⋃
ω∈Ω

{xω} is a subset of the Lasota–Myjak

attractor A∗. Now we will show that in fact the equality holds. To this end

consider the Barnsley–Hutchinson multifunction given by F (x)={Sσ(x) : σ∈Σ}
and observe that F (A) ⊂ A. Indeed, if ω = (. . . , σ−1, σ0, σ1, . . .) and xω ∈ A we

have

F (xω)=F

( ∞∑
n=1

( n−1∏
j=1

L(σj)

)
M(σn)

)
=

{
L(σ)

∞∑
n=1

( n−1∏
j=1

L(σj)

)
M(σn)+M(σ)

}
for some σ ∈ Σ. But it is easy to see that it is equal to the singleton {xω} ⊂ A,

where ω = (. . . , σ, σ1, σ2, . . .). Hence, the desired inclusion holds. Farther, it is

known (see [21, Proposition 3.1] and [15, Proposition 5.6]) that A∗ is a subset of

any non-empty set B ⊂ X such that F (B) ⊂ B, so A∗ ⊂ A.

Notice that the difference equation (6.3) plays an important role in the theory

of perpetuities (see [12] and the references therein, also [18, Remark 1]). More-

over, the IFS (6.4) is crucial in solving of a large class of refinement equations

(see [24], [18] and the references therein). On the other hand, one can treat the

mapping M as random interventions in a linear IFS or even, when L is a constant

function, equation (6.3) can be seen as an inducing perturbed discrete dynami-

cal system (cf. for example [13, Example 5.2] or [19, Example 2.11]). Under our

assumptions perturbations are bounded.
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