HAUSDORFF PRODUCT MEASURES
 AND C^{1}-SOLUTION SETS
 OF ABSTRACT SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS

Jian-Zhong Xiao - Zhi-Yong Wang - Juan Liu

Abstract

A second order semilinear neutral functional differential inclusion with nonlocal conditions and multivalued impulse characteristics in a separable Banach space is considered. By developing appropriate computing techniques for the Hausdorff product measures of noncompactness, the topological structure of C^{1}-solution sets is established; and some interesting discussion is offered when the multivalued nonlinearity of the inclusion is a weakly upper semicontinuous map satisfying a condition expressed in terms of the Hausdorff measure.

1. Introduction

In this paper, we are concerned with the sets of C^{1}-solutions defined on a compact real interval for second order semilinear neutral functional differential inclusions with nonlocal conditions and multivalued impulse characteristics in a separable Banach space. More precisely, we will consider the following second

[^0]order semilinear differential inclusions:
\[

$$
\begin{cases}\frac{d}{d t}\left[x^{\prime}(t)-g\left(t, x_{t}\right)\right] \in A x(t)+F\left(t, x_{t}\right) & \text { a.e. } t \in I \backslash\left\{t_{1}, \ldots, t_{m}\right\} \tag{FIP}\\ x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right) \in \varphi_{k}\left(x\left(t_{k}^{-}\right)\right) & \text {for } k=1, \ldots, m \\ x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}^{-}\right) \in \psi_{k}\left(x\left(t_{k}^{-}\right)\right) & \text {for } k=1, \ldots, m \\ x(t)+h_{1}(x)=\phi(t), \quad x^{\prime}(0)=h_{2}(x) & \text { for } t \in I_{0}\end{cases}
$$
\]

where $I=[0, a], I_{0}=[-r, 0], 0<r, a<+\infty$ and $0=t_{0}<t_{1}<\ldots<t_{m}<$ $t_{m+1}=a$. The linear operator $A: D(A) \subset X \rightarrow X$ is the infinitesimal generator of a strongly continuous cosine family $\{C(t)\}$ in a real separable Banach space X with the norm $\|\cdot\|$. The nonlinearity $F: I \times \Delta \multimap X$ is a multivalued map, $\Delta=\left\{u: I_{0} \rightarrow X: u\right.$ is continuously differentiable everywhere except for a finite number of points at which $u\left(s^{+}\right), u\left(s^{-}\right), u^{\prime}\left(s^{+}\right)$and $u^{\prime}\left(s^{-}\right)$exist and $u(s)=$ $\left.u\left(s^{-}\right)\right\}$. The neutral item $g: I \times \Delta \rightarrow X$ is a single valued mapping such that $t \mapsto g\left(t, x_{t}\right)$ is absolutely continuous. For impulsive conditions, $\varphi_{k}, \psi_{k}: X \multimap X$ are all multivalued maps, $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$represent the right and left limits of $x(t)$ at $t=t_{k}$, respectively. For nonlocal conditions, h_{1}, h_{2} are two single valued mappings such that $h_{1}(x), h_{2}(x) \in X ; \phi \in \Delta$. For any function x defined on $[-r, a]$ and any $t \in I, x_{t} \in \Delta$ is defined by

$$
x_{t}(\theta)=x(t+\theta), \quad \theta \in I_{0}=[-r, 0] .
$$

Here $x_{t}(\cdot)$ represents the history of the state from $t-r$, up to the present time t.
Recently, the problems of existence of solutions and controllability for some abstract first order or second order semilinear functional differential inclusions, with or without impulsive conditions, have been studied by several researchers (see [1], [5], [6], [10], [14], [15], [19] and the references therein). By relying on the theory of semigroup or cosine families and fixed point theorems for multivalued maps, some existence and controllability results were obtained. Let us mention that some results often contain the assumption of compactness of the semigroup or cosine families generated by the linear part of the inclusion. It was pointed out in [17] that, in infinite-dimensional case, these hypotheses are in contradiction to each other.

In the present paper we assume that the linear part of the inclusion generates a cosine family which is not necessarily compact; and the multivalued nonlinearity of the inclusion is a weakly upper semicontinuous map satisfying a condition expressed in terms of the Hausdorff measure. At the same time, we consider nonlocal initial conditions and impulsive inclusions with multivalued jump operators. To the best of our knowledge, there are very few results for these aspects. Our goal in this paper is to establish the topological structure of the C^{1}-solution set for problem (FIP), by developing appropriate computing techniques for the Hausdorff product measures of noncompactness.

2. Preliminaries

Throughout this paper, \mathbb{R} is the set of all real numbers and \mathbb{Z}^{+}the set of all positive integers. Moreover, $\mathbb{R}^{+}=[0,+\infty), I=[0, a], I_{1}=\left[0, t_{1}\right], I_{k}=\left(t_{k-1}, t_{k}\right]$, and $\overline{I_{k}}=\left[t_{k-1}, t_{k}\right], k=2, \ldots, m+1$. Let $(X,\|\cdot\|)$ be a real separable Banach space. For $U \subset X$, the notations \bar{U} and co U stand for the closure and the convex hull, respectively. Let J_{*} be a compact interval in \mathbb{R}. Then $C\left(J_{*}, X\right)$ denotes the Banach space consisting of continuous functions from J_{*} into X with the norm

$$
\|x\|_{C}=\sup _{t \in J_{*}}\|x(t)\|
$$

and $C^{1}\left(J_{*}, X\right)$ denotes the Banach space of continuously differentiable functions from J_{*} into X with the norm

$$
\|x\|_{C^{1}}=\sup _{t \in J_{*}}\left[\|x(t)\|+\left\|x^{\prime}(t)\right\|\right] .
$$

Let t_{1}, \ldots, t_{m} be fixed in I. We will consider the space of piecewise continuous functions

$$
\begin{aligned}
P C^{1}=\{ & \left\{x: I \rightarrow X: x^{\prime}(t) \text { is continuous at } t \neq t_{k},\right. \\
& \text { and } x(t) \text { is left continuous at } t=t_{k}, \\
& \text { and } \left.x\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{-}\right) \text {exist }, k=1, \ldots, m\right\} .
\end{aligned}
$$

Endowed with the norm

$$
\|x\|_{\diamond}=\max _{1 \leq k \leq m+1} \sup _{t \in I_{k}}\left[\|x(t)\|+\left\|x^{\prime}(t)\right\|\right]
$$

$P C^{1}$ is a Banach space. It is evident that

$$
\|x\|_{\diamond}=\sup _{t \in I}\left[\|x(t)\|+\left\|x^{\prime}(t)\right\|\right]
$$

Note that for $x \in P C^{1}$ we have $x_{-}^{\prime}\left(t_{k}\right)=x^{\prime}\left(t_{k}^{-}\right)$, where $x_{-}^{\prime}\left(t_{k}\right)$ is the left derivative of x at $t=t_{k}$. Hence we can think that x^{\prime} is also left continuous at each $t=t_{k}$.

Set $J=I_{0} \cup I=[-r, a]$, and $P C^{1}(J)=\left\{x: J \rightarrow X: x \in \Delta \cap P C^{1}\right\}$. For $u \in \Delta$, the norm of u is defined by

$$
\|u\|_{\Delta}=\sup _{\theta \in I_{0}}\left[\|u(\theta)\|+\left\|u^{\prime}(\theta)\right\|\right]
$$

For $x \in P C^{1}(J)$, the norm of x is defined by

$$
\|x\|_{*}=\sup _{t \in J}\left[\|x(t)\|+\left\|x^{\prime}(t)\right\|\right]=\max \left\{\|x\|_{\Delta},\|x\|_{\diamond}\right\}
$$

Δ and $P C^{1}(J)$ are Banach spaces. It is evident that if $\left\{x_{n}\right\}_{n=0}^{\infty} \subset P C^{1}(J)$, then $x_{n} \rightarrow x_{0}$ in $P C^{1}(J)$ if and only if $x_{n} \rightarrow x_{0}$ in Δ and in $P C^{1}$.

We denote by $\mathcal{P}(X)$ the family of all nonempty subsets of X and put

$$
\begin{aligned}
\mathcal{P}_{\mathrm{cl}}(X) & =\{Z \in \mathcal{P}(X): Z \text { is closed }\} \\
\mathcal{P}_{\mathrm{bd}}(X) & =\{Z \in \mathcal{P}(X): Z \text { is bounded }\} \\
\mathcal{P}_{\mathrm{cp}}(X) & =\{Z \in \mathcal{P}(X): Z \text { is compact }\} \\
\mathcal{P}_{\mathrm{cv}}(X) & =\{Z \in \mathcal{P}(X): Z \text { is convex }\} \\
\mathcal{P}_{\mathrm{wcp}}(X) & =\{Z \in \mathcal{P}(X): Z \text { is weakly compact }\} .
\end{aligned}
$$

Let Y be a metric space. For a multivalued map $T: Y \multimap X$ we mean that it has at least nonempty values, i.e. $T: Y \rightarrow \mathcal{P}(X)$. A multivalued map T is said to have convex (bounded, closed, compact, weakly compact) values if $T(y)$ is convex (bounded, closed, compact, weakly compact) for every $y \in Y$. For $Z \in \mathcal{P}_{\mathrm{cl}, \mathrm{bd}}(X)$ we mean that $Z \in \mathcal{P}_{\mathrm{cl}}(X) \cap \mathcal{P}_{\mathrm{bd}}(X)$. A point $u \in Y \subset X$ is called a fixed point of T if $u \in T(u)$. The fixed point set of T will be denoted by $\operatorname{Fix}(T) . T$ is a closed graph map if the graph of T, i.e. $\operatorname{Gr}(T)=\{(y, u) \in Y \times X: u \in T(y)\}$ is closed in $Y \times X . T$ is called (weakly) upper semicontinuous (u.s.c. for short) if for each nonempty (weakly) closed set $U \subset X$,

$$
T^{+}(U)=\{y \in Y: T(y) \cap U \neq \emptyset\}
$$

is closed in Y. Evidently, if T is u.s.c., then T is weakly u.s.c. If T has weakly compact and convex values, then T is weakly u.s.c. if and only if for each sequence $\left\{y_{n}\right\} \subset Y$ with $y_{n} \rightarrow y_{0} \in Y$ and $z_{n} \in T\left(y_{n}\right)$ it follows that there exists a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ such that $\left\{z_{n_{k}}\right\}$ converges weakly to $z_{0} \in T\left(y_{0}\right)$ (see [7]). T is said to be quasicompact if $T(B)$ is relatively compact in X for each relatively compact subset B of Y. If T is u.s.c. with closed values, then $\operatorname{Gr}(T)$ is closed (see [3], [18]). Conversely, the following assertion holds (see Theorem 1.1.12 in [12]).

Lemma 2.1. If $T: Y \multimap X$ is a quasicompact map with closed graph, then T is a u.s.c. map.

For $Z \subset Y$ and $y \in Y$, we denote $d(y, Z)=\inf _{z \in Z} d(y, z)$, where d is the metric function. For $B_{1}, B_{2} \subset Y$, we denote by $H\left(B_{1}, B_{2}\right)$ the Hausdorff-Pompeiu distance between B_{1} and B_{2}, that is

$$
H\left(B_{1}, B_{2}\right)=\max \left\{\sup _{x \in B_{1}} d\left(x, B_{2}\right), \sup _{y \in B_{2}} d\left(y, B_{1}\right)\right\}
$$

$T: Y \multimap X$ is called an L-Lipschitz map if there exists $L>0$ such that

$$
H(T x, T y) \leq L d(x, y), \quad \text { for all } x, y \in Y
$$

and is called a contraction if $L<1$. Let β_{H} be the Hausdorff measure of noncompactness defined on a collection of nonempty, bounded subsets B of X
or Y by

$$
\beta_{H}(B)=\inf \{\varepsilon>0: B \text { has a finite } \varepsilon \text {-net }\} .
$$

T is said to be β_{H}-condensing if, for each bounded nonrelatively-compact subset B of $Y, T(B)$ is bounded and satisfies $\beta_{H}(T(B))<\beta_{H}(B)$. If T is an L-Lipschitz map with compact values, then $\beta_{H}(T(B)) \leq L \beta_{H}(B)$ for each bounded $B \subset Y$ (see [20]). The key tool in our approach is the following fixed point theorem.

Lemma 2.2 (see [12, Corollary 3.3.1]). Let X be a Banach space, \mathcal{D} a bounded convex closed subset of X and $T: \mathcal{D} \rightarrow \mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(\mathcal{D})$ a u.s.c. β_{H}-condensing multivalued map. Then $\operatorname{Fix}(T)$ is a nonempty compact set.

Let $\mathcal{L}(I)$ be the Lebesgue σ-algebra of I. A multivalued map $T: I \multimap X$ is said to be Lebesgue measurable if for each closed set $U \subset X, T^{+}(U) \in \mathcal{L}(I)$. If T is measurable and has closed values, then T admits a measurable selector (see [2], [3]). By $L^{1}(I, X)$ we denote the Banach space of all Bochner integrable mappings from I into X with the norm

$$
\|x\|_{L}=\int_{0}^{a}\|x(t)\| d t
$$

If $\alpha \in L^{1}\left(I, \mathbb{R}^{+}\right)$, then $\alpha(t) \geq 0$ for almost every $t \in I$ and

$$
\|\alpha\|_{L}=\int_{0}^{a} \alpha(t) d t<+\infty
$$

The following lemma is a generalization of the Dunford-Pettis weak compactness criterion.

Lemma 2.3 (see [22, Proposition 11] or [8, Corollary 2.6]). Suppose the function $p_{0} \in L^{1}\left(I, \mathbb{R}^{+}\right)$and the sequence $\left\{f_{n}(t)\right\} \subset L^{1}(I, X)$ are such that:
(a) $\left\|f_{n}(t)\right\| \leq p_{0}(t)$ for almost every $t \in I$ and all $n \in \mathbb{Z}^{+}$;
(b) for almost every $t \in I$ the sequence $\left\{f_{n}(t)\right\}$ is relatively weakly compact in X.
Then the sequence $\left\{f_{n}\right\}$ is relatively weakly compact in $L^{1}(I, X)$.
Lemma 2.4 (Corollary to Mazur's Theorem, see [11]). Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence which converges weakly to f_{0} in $L^{1}(I, X)$. Then there exists a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ with $g_{n} \in \operatorname{co}\left\{f_{i}: i \geq n\right\}$ such that $\left\{g_{n}(t)\right\}$ converges to $f_{0}(t)$ in X for almost every $t \in I$.

Lemma 2.5 (see [12], [17]). Let X be a separable Banach space and $T: I \multimap X$ an integrable map. If there exist $p_{0}, \alpha \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that $\sup _{z \in T(t)}\|z\| \leq p_{0}(t)$ and $\beta_{H}(T(t)) \leq \alpha(t)$ for almost every $t \in I$, then

$$
\beta_{H}\left(\int_{0}^{t} T(s) d s\right) \leq \int_{0}^{t} \alpha(s) d s, \quad \text { for all } t \in I
$$

Let $F: I \times \Delta \multimap X$ be a multivalued map. F is said to be locally integrably bounded (or p_{λ}-locally integrably bounded) if for each $\lambda>0$, there exists $p_{\lambda} \in$ $L^{1}\left(I, \mathbb{R}^{+}\right)$such that

$$
\|u\|_{\Delta} \leq \lambda \Rightarrow \sup \{\|z\|: z \in F(t, u)\} \leq p_{\lambda}(t) \quad \text { for a.e. } t \in I
$$

For $x \in P C^{1}(J)$, we use the notation $S_{F}^{1}(x)$ to denote the set of integrable selectors (possibly empty), i.e.

$$
\begin{equation*}
S_{F}^{1}(x)=\left\{f \in L^{1}(I, X): f(t) \in F\left(t, x_{t}\right) \text { for a.e. } t \in I\right\} . \tag{2.1}
\end{equation*}
$$

In what follows, $\{C(t): t \in \mathbb{R}\}$ will denote a strongly continuous cosine family of bounded linear operators and $\{S(t): t \in \mathbb{R}\}$ is the associated sine family defined by $S(t) x=\int_{0}^{t} C(\tau) x d \tau, x \in X, t \in \mathbb{R}$. The infinitesimal generator of $\{C(t): t \in \mathbb{R}\}$ is the linear operator $A: D(A) \subset X \rightarrow X$, where $D(A)=$ $\{x \in X: C(t) x$ is twice continuously differentiable in $t\}$. Also, E denotes the space $E=\{x \in X: C(t) x$ is once continuously differentiable in $t\} ; B(E, X)$ stands for the Banach space of bounded linear operators from E into X with the norm $|\cdot|_{*}$, and we abbreviate this notation to $B(X)$ when $E=X$.

Lemma 2.6 (see [21]). Let $\{C(t): t \in \mathbb{R}\}$ be a strongly continuous cosine family in X with infinitesimal generator A. Then the following assertions are true.
(a) A is a closed linear operator in $D(A) ; D(A) \subset E ; D(A)$ is dense in X, i.e. $\overline{D(A)}=X$.
(b) $S(t+\tau)+S(t-\tau)=2 S(t) C(\tau)$, for all $t, \tau \in \mathbb{R}$.
(c) There exist $M_{0} \geq 1$ and $\omega>0$ such that for all $t \in \mathbb{R},|C(t)|_{*} \leq M_{0} e^{\omega|t|}$, $|S(t)|_{*} \leq M_{0}|t| e^{\omega|t|}$.
(d) $C(t+\tau)-C(t-\tau)=2 A S(t) S(\tau)$ for all $t, \tau \in \mathbb{R}$.
(e) $\frac{d}{d t} S(t) x=C(t) x$, for all $x \in X$ and $t \in \mathbb{R}$.
(f) $\frac{d}{d t} C(t) x=A S(t) x$, for all $x \in E$ and $t \in \mathbb{R}$.
(g) If $x \in E$, then $\lim _{t \rightarrow 0} A S(t) x=0$.

Lemma 2.7 (see [4], [14], [23]). Each of the following conditions is equivalent to the norm-continuity (or uniform continuity) of $C(\cdot)$:
(a) $\lim _{t \rightarrow 0}\left|C(t)-I_{X}\right|_{*}=0$, where I_{X} is the identity operator in X;
(b) the infinitesimal generator A is bounded (i.e. $D(A)=X$).

It is known from Kisińsky [13], that E endowed with the norm

$$
\|x\|_{E}=\|x\|+\sup _{t \in I}\|A S(t) x\|
$$

is a Banach space. From this definition it follows that $M_{A}=\sup _{t \in I}|A S(t)|_{*} \leq 1$ in $B(E, X)$. If an operator $W \in B(X)$, then we have $W \in B(E, X)$ and $|W|_{* B(E, X)} \leq|W|_{* B(X)}$ since $\|\cdot\| \leq\|\cdot\|_{E}$. Clearly, if $\{A S(t): t \in I\} \subset B(X)$
and $M_{A}<+\infty$, then from Lemma 2.6 (c) (d) and Lemma 2.7 we see that A is bounded and $D(A)=E=X$. For the sake of simplicity, the space E mentioned in the sequel means $\left(E,\|\cdot\|_{E}\right)$. For $t, s \in I, \tau \in[0, \min \{t, s\}]$, from Lemma 2.6 we have

$$
\begin{aligned}
|S(t-\tau)-S(s-\tau)|_{*} \leq 2 M_{0} e^{\omega a}|S((t-s) / 2)|_{*} & & \text { in } B(X) \\
|C(t-\tau)-C(s-\tau)|_{*} \leq 2 M_{A}|S((t-s) / 2)|_{*} & & \text { in } B(E, X)
\end{aligned}
$$

3. Several auxiliary results

Lemma 3.1. Let A be the infinitesimal generator of a strongly continuous cosine family $C(t)$ and let $f \in L^{1}(I, X)$. If $x \in P C^{1}(J)$ is a solution of the problem
(FIP)*

$$
\begin{cases}\frac{d}{d t}\left[x^{\prime}(t)-g\left(t, x_{t}\right)\right]=A x(t)+f(t) & \text { for a.e. } t \in I \backslash\left\{t_{1}, \ldots, t_{m}\right\}, \\ x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)=u_{k} & \text { for } k=1, \ldots, m, \\ x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}^{-}\right)=v_{k} & \text { for } k=1, \ldots, m, \\ x(t)+h_{1}(x)=\phi(t), \quad x^{\prime}(0)=h_{2}(x) & \text { for } t \in I_{0}\end{cases}
$$

then it is given by $x(t)=\phi(t)-h_{1}(x)$ for $t \in I_{0}$; and

$$
\begin{align*}
x(t)= & C(t)\left[\phi(0)-h_{1}(x)\right]+S(t)\left[h_{2}(x)-g(0, \phi)\right] \tag{3.1}\\
& +\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{k}+S\left(t-t_{k}\right) v_{k}\right] \\
& +\int_{0}^{t} C(t-\tau) g\left(\tau, x_{\tau}\right) d \tau+\int_{0}^{t} S(t-\tau) f(\tau) d \tau, \quad \text { for } t \in I .
\end{align*}
$$

Proof. Suppose that $x \in P C^{1}(J)$ is a solution of problem (FIP) ${ }^{*}, p(\tau)=$ $C(t-\tau) x(\tau)$ and $q(\tau)=S(t-\tau)\left[x^{\prime}(\tau)-g\left(\tau, x_{\tau}\right)\right]$ for fixed $t \in I$. Then $x(t) \in$ $D(A)$. For $\tau \in I \backslash\left\{t_{1}, \ldots, t_{m}\right\}$, we have

$$
\begin{align*}
& p^{\prime}(\tau)=-S(t-\tau) A x(\tau)+C(t-\tau) x^{\prime}(\tau) \tag{3.2}\\
& q^{\prime}(\tau)=-C(t-\tau)\left[x^{\prime}(\tau)-g\left(\tau, x_{\tau}\right)\right]+S(t-\tau) \frac{d}{d \tau}\left[x^{\prime}(\tau)-g\left(\tau, x_{\tau}\right)\right]
\end{align*}
$$

For almost every $\tau \in I$, from (3.2) and (3.3), it follows that

$$
\begin{align*}
p^{\prime}(\tau)+q^{\prime}(\tau)= & C(t-\tau) g\left(\tau, x_{\tau}\right) \tag{3.4}\\
& +S(t-\tau)\left(-A x(\tau)+\frac{d}{d \tau}\left[x^{\prime}(\tau)-g\left(\tau, x_{\tau}\right)\right]\right) \\
= & C(t-\tau) g\left(\tau, x_{\tau}\right)+S(t-\tau) f(\tau) .
\end{align*}
$$

Integrating equation (3.4), for $0<t<t_{1}$, we have

$$
\begin{aligned}
\int_{0}^{t} C(t-\tau) g\left(\tau, x_{\tau}\right) d \tau & +\int_{0}^{t} S(t-\tau) f(\tau) d \tau=p(t)+q(t)-p(0)-q(0) \\
& =x(t)-C(t)\left[\phi(0)-h_{1}(x)\right]-S(t)\left[h_{2}(x)-g(0, \phi)\right]
\end{aligned}
$$

More generally, for $t_{k}<t<t_{k+1}$, we have

$$
\begin{aligned}
\int_{0}^{t} C(t-\tau) & g\left(\tau, x_{\tau}\right) d \tau+\int_{0}^{t} S(t-\tau) f(\tau) d \tau \\
= & \sum_{j=1}^{k} \int_{t_{j-1}}^{t_{j}}\left[p^{\prime}(\tau)+q^{\prime}(\tau)\right] d \tau+\int_{t_{k}}^{t}\left[p^{\prime}(\tau)+q^{\prime}(\tau)\right] d \tau \\
= & x(t)-C(t)\left[\phi(0)-h_{1}(x)\right]-S(t)\left[h_{2}(x)-g(0, \phi)\right] \\
& -\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{k}+S\left(t-t_{k}\right) v_{k}\right]
\end{aligned}
$$

i.e. (3.1) holds, which shows the lemma.

Definition 3.2. A function $x \in P C^{1}(J)$ is said to be a C^{1}-solution of problem (FIP) if there exist $f \in L^{1}(I, X), u_{k} \in \varphi_{k}\left(x\left(t_{k}\right)\right)$ and $v_{k} \in \psi_{k}\left(x\left(t_{k}\right)\right)$ $(k=1, \ldots, m)$ such that $f(t) \in F\left(t, x_{t}\right)$ for almost every $t \in I$ and $x(t)$ is given by Lemma 3.1. Suppose that $x \in P C^{1}(J)$ and $f \in L^{1}(I, X)$. Let $\Gamma: L^{1}(I, X) \rightarrow$ $P C^{1}(J)$ be a linear operator defined by

$$
(\Gamma f)(t)= \begin{cases}0 & \text { for } t \in I_{0} \tag{3.5}\\ \int_{0}^{t} S(t-\tau) f(\tau) d \tau & \text { for } t \in I\end{cases}
$$

Let $\Lambda_{0}, \Lambda: P C^{1}(J) \rightarrow P C^{1}(J)$ be single valued mappings defined by

$$
\left(\Lambda_{0} x\right)(t)= \begin{cases}\phi(t)-h_{1}(x) & \text { for } t \in I_{0} \tag{3.6}\\ C(t)\left[\phi(0)-h_{1}(x)\right]+S(t)\left[h_{2}(x)-g(0, \phi)\right] & \text { for } t \in I\end{cases}
$$

$$
(\Lambda x)(t)= \begin{cases}0 & \text { for } t \in I_{0} \tag{3.7}\\ \int_{0}^{t} C(t-\tau) g\left(\tau, x_{\tau}\right) d \tau & \text { for } t \in I\end{cases}
$$

Let $\Psi: P C^{1}(J) \multimap P C^{1}(J)$ be a multivalued map defined by

$$
\Psi(x)=\left\{\begin{array}{cc}
\eta \in P C^{1}(J): & t \in I_{0} \tag{3.8}\\
\eta(t)=\left\{\begin{array}{ll}
0, & t \in I \\
\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{k}+S\left(t-t_{k}\right) v_{k}\right],
\end{array}\right\} \\
u_{k} \in \varphi_{k}\left(x\left(t_{k}\right)\right), v_{k} \in \psi_{k}\left(x\left(t_{k}\right)\right), k=1, \ldots, m
\end{array}\right\}
$$

Let $F: I \times \Delta \multimap X$ be a multivalued map and $S_{F}^{1}(x) \neq \emptyset$ for all $x \in P C^{1}(J)$, where $S_{F}^{1}(x)$ is defined by (2.1). Now we define a multivalued map $T: P C^{1}(J) \multimap$ $P C^{1}(J)$ by

$$
\begin{align*}
T(x)=\left\{y \in P C^{1}(J): y(t)=\left(\Lambda_{0} x\right)(t)+(\Lambda x)(t)+\eta(t)+(\Gamma f)(t)\right. & \tag{3.9}\\
\eta & \left.\in \Psi(x), f \in S_{F}^{1}(x)\right\}
\end{align*}
$$

i.e. $T=\Lambda_{0}+\Lambda+\Psi+\Gamma \circ S_{F}^{1}$.

It is clear that all C^{1}-solutions of problem (FIP) are fixed points of the multivalued map T in $P C^{1}(J)$.

Remark 3.3. The notion of C^{1}-solution is different from the one of mild solution in [10], [19], [16].

Lemma 3.4. Suppose that $\varphi_{k}, \psi_{k}: X \multimap E$ are maps $(k=1, \ldots, m), h_{1}, h_{2}$: $P C^{1}(J) \rightarrow E$ and $g: I \times \Delta \rightarrow E$ are mappings, $\phi(0) \in E$ and $S_{F}^{1}(x) \neq \emptyset$ for all $x \in P C^{1}(J)$. Then, for each $x \in P C^{1}(J), T(x) \subset P C^{1}(J)$.

Proof. Let $\Gamma, \Lambda_{0}, \Lambda, \Psi$ be defined by (3.5)-(3.8), respectively. Suppose that $x \in P C^{1}(J)$ and $f \in S_{F}^{1}(x)$. If $t \in I_{0}$, then it is clear that $\Lambda_{0} x \in \Delta$ and $\left(\Lambda_{0} x\right)^{\prime}(t)=\phi^{\prime}(t)$, everywhere except for a finite number of t. Suppose that $t \in I$. By the strong continuity of $S(t)$ and $C(t)$, we see that $\Gamma f, \Lambda_{0}(x), \Lambda(x) \in C(I, X)$. Suppose that

$$
\bar{x}(t)=\left\{\begin{array}{ll}
x(t) & \text { if } t \in I_{k}, \\
x\left(t_{k-1}^{+}\right) & \text {if } t=t_{k-1},
\end{array} \quad \text { and } \quad \bar{x}^{\prime}(t)= \begin{cases}x^{\prime}(t) & \text { if } t \in I_{k}, \\
x^{\prime}\left(t_{k-1}^{+}\right) & \text {if } t=t_{k-1}\end{cases}\right.
$$

It is clear that $x \in P C^{1}$ if and only if $\bar{x} \in C^{1}\left(\overline{I_{k}}, X\right)$ for $k=1, \ldots, m+1$. Hence, from the strong continuity of $S(t)$ and $C(t)$, it is easy to check that $\eta(t)$ is continuous in each I_{k} and $\eta\left(t_{k-1}^{+}\right)$exists, for each $\eta \in \Psi(x)$. Moreover, we have, for $t \in I$,

$$
\begin{align*}
(\Gamma f)^{\prime}(t) & =\int_{0}^{t} C(t-\tau) f(\tau) d \tau \tag{3.10}\\
\left(\Lambda_{0} x\right)^{\prime}(t) & =A S(t)\left[\phi(0)-h_{1}(x)\right]+C(t)\left[h_{2}(x)-g(0, \phi)\right] \tag{3.11}\\
(\Lambda x)^{\prime}(t) & =g\left(t, x_{t}\right)+\int_{0}^{t} A S(t-\tau) g\left(\tau, x_{\tau}\right) d \tau \tag{3.12}
\end{align*}
$$

and for $t \in I \backslash\left\{t_{1}, \ldots, t_{m}\right\}, \eta \in \Phi(x)$,

$$
\begin{align*}
\eta^{\prime}(t)= & \sum_{0<t_{k}<t}\left[A S\left(t-t_{k}\right) u_{k}+C\left(t-t_{k}\right) v_{k}\right] \tag{3.13}\\
& u_{k} \in \varphi_{k}\left(x\left(t_{k}\right)\right), \quad v_{k} \in \psi_{k}\left(x\left(t_{k}\right)\right), \quad k=1, \ldots, m .
\end{align*}
$$

By Lemma $2.6(\mathrm{~b})(\mathrm{g})$, from the hypotheses it is easy to see that $(\Gamma f)^{\prime},\left(\Lambda_{0} x\right)^{\prime}$, $(\Lambda x)^{\prime}$ in $C(I, X)$ and $\eta^{\prime}(t)$ is continuous in each I_{k} and $\eta^{\prime}\left(t_{k-1}^{+}\right)$exists, for $\eta \in$
$\Psi(x)$. Hence, $\Gamma f, \Lambda_{0} x, \Lambda x \in P C^{1}(J)$, and $\Psi(x) \subset P C^{1}(J)$. From (3.9) we see that $T(x) \subset P C^{1}(J)$.

LEmma 3.5. Let Y be a metric space and X a Banach space. If $T_{1}, T_{2}: Y \multimap$ X are all closed graph maps and T_{1} is quasicompact, then $T_{1}+T_{2}$ is a closed graph map.

Proof. Suppose that $\left\{y_{n}\right\}_{n=1}^{\infty} \subset Y, y_{n} \rightarrow y_{0}, x_{n} \in\left(T_{1}+T_{2}\right) y_{n}$ and $x_{n} \rightarrow x_{0}$. Then, there exist $z_{n} \in T_{1} y_{n}$ and $w_{n} \in T_{2} y_{n}$ such that $x_{n}=z_{n}+w_{n}$ for all $n \in \mathbb{Z}^{+}$. Since $T_{1}\left\{y_{n}\right\}$ is relatively compact, there exists a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ which converges to z_{0}. Thus, $\left\{w_{n_{k}}\right\}$ converges to $x_{0}-z_{0}$. Since $T_{1}, T_{2}: Y \multimap X$ are all closed graph maps, we have $z_{0} \in T_{1} y_{0}$ and $x_{0}-z_{0} \in T_{2} y_{0}$. This implies that $x_{0} \in\left(T_{1}+T_{2}\right) y_{0}$, and hence $T_{1}+T_{2}$ is a closed graph map.

Lemma 3.6. Let X_{1}, X_{2} be two Banach spaces and the norm in $X_{1} \times X_{2}$ be defined by

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|x_{1}\right\|+\left\|x_{2}\right\|, \quad \text { for }\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} .
$$

Let $A_{0}: X_{1} \rightarrow X_{2}$ be a bounded linear operator.
(a) If $B \subset X_{1}$ is bounded, then $\beta_{H}\left(A_{0}(B)\right) \leq\left|A_{0}\right|_{*} \beta_{H}(B)$.
(b) If $B_{1} \subset X_{1}$ and $B_{2} \subset X_{2}$ are bounded, then $\beta_{H}\left(B_{1} \times B_{2}\right) \leq \beta_{H}\left(B_{1}\right)+$ $\beta_{H}\left(B_{2}\right)$.

The proof of Lemma 3.6 is easy, so we omit it.
Lemma 3.7. Let J_{*} be a compact interval in $\mathbb{R}, B \subset C^{1}\left(J_{*}, X\right)$ and $t \in J_{*}$. Let $B(t), B\left(J_{*}\right), B^{\prime}(t), B^{\prime}\left(J_{*}\right)$ be subsets of X defined respectively by

$$
\begin{aligned}
B(t) & =\{x(t): x \in B\}, & B\left(J_{*}\right) & =\left\{x(t): x \in B, t \in J_{*}\right\}, \\
B^{\prime}(t) & =\left\{x^{\prime}(t): x \in B\right\}, & B^{\prime}\left(J_{*}\right) & =\left\{x^{\prime}(t): x \in B, t \in J_{*}\right\} .
\end{aligned}
$$

If B is bounded in $C^{1}\left(J_{*}, X\right)$ and B^{\prime} is equicontinuous in $C\left(J_{*}, X\right)$, then:
(a) $\beta_{H}\left(B\left(J_{*}\right)\right)=\max _{t \in J_{*}} \beta_{H}(B(t))$ and $\beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)=\max _{t \in J_{*}} \beta_{H}\left(B^{\prime}(t)\right)$.
(b) $\max \left\{\beta_{H}\left(B\left(J_{*}\right)\right), \beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)\right\} \leq \beta_{H}(B) \leq \beta_{H}\left(B\left(J_{*}\right)\right)+\beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)$.

Proof. Since B is bounded, there is $M>0$ such that $\|x\|_{C^{1}} \leq M$ for all $x \in B$. This implies that $\|x(t)\| \leq M$ and $\left\|x^{\prime}(t)\right\| \leq M$ for all $t \in J_{*}$. Thus, for $x \in B$ and $t_{1}, t_{2} \in J_{*}$, we have

$$
\left\|x\left(t_{1}\right)-x\left(t_{2}\right)\right\| \leq \sup _{s \in J_{*}}\left\|x^{\prime}(s)\right\|\left|t_{1}-t_{2}\right| \leq M\left|t_{1}-t_{2}\right|,
$$

which shows that B is also equicontinuous in $C\left(J_{*}, X\right)$. Suppose that $\varepsilon>0$ is given and $J_{*}=\left[a_{0}, b_{0}\right]$. From equicontinuity it follows that there exist $\left\{s_{j}\right\}_{j=0}^{N} \subset$ $J_{*}, a_{0}=s_{0}<s_{1}<\ldots<s_{N-1}<s_{N}=b_{0}$ such that

$$
\begin{equation*}
\|x(t)-x(s)\|<\varepsilon, \quad\left\|x^{\prime}(t)-x^{\prime}(s)\right\|<\varepsilon \tag{3.14}
\end{equation*}
$$

for all $x \in B$, all $s, t \in\left[s_{j-1}, s_{j}\right], j=1, \ldots, N$.
(a) From the continuity of $\beta_{H}(B(t))$ it follows that $\max _{t \in J_{*}} \beta_{H}(B(t))$ exists. Since $B(t) \subset B\left(J_{*}\right)$ for all $t \in J_{*}$, we have $\max _{t \in J_{*}} \beta_{H}(B(t)) \leq \beta_{H}\left(B\left(J_{*}\right)\right)$. Suppose that $B\left(s_{j}\right)$ has $\left(\beta_{H}\left(B\left(s_{j}\right)\right)+\varepsilon\right)$-net $\left\{x_{i j}\left(s_{j}\right)\right\}_{i=1}^{K_{j}}, j=0, \ldots, N$. Then for each $x(t) \in B\left(J_{*}\right)$ there exist j, i such that $t \in\left[s_{j-1}, s_{j}\right]$ and $\left\|x\left(s_{j}\right)-x_{i j}\left(s_{j}\right)\right\|<$ $\beta_{H}\left(B\left(s_{j}\right)\right)+\varepsilon$. Thus, from (3.14) we have

$$
\begin{aligned}
\left\|x(t)-x_{i j}\left(s_{j}\right)\right\| & \leq\left\|x(t)-x\left(s_{j}\right)\right\|+\left\|x\left(s_{j}\right)-x_{i j}\left(s_{j}\right)\right\| \\
& \leq \beta_{H}\left(B\left(s_{j}\right)\right)+2 \varepsilon \leq \max _{t \in J_{*}} \beta_{H}(B(t))+2 \varepsilon
\end{aligned}
$$

which shows that $\beta_{H}\left(B\left(J_{*}\right)\right) \leq \max _{t \in J_{*}} \beta_{H}(B(t))$. Hence $\beta_{H}\left(B\left(J_{*}\right)\right)=\max _{t \in J_{*}} \beta_{H}(B(t))$. Similarly, we have $\beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)=\max _{t \in J_{*}} \beta_{H}\left(B^{\prime}(t)\right)$.
(b) Suppose that B has $\left(\beta_{H}(B)+\varepsilon\right)$-net $\left\{z_{i}\right\}_{i=1}^{K}$. We consider the set $\left\{z_{i}\left(s_{j}\right)\right.$: $i=1, \ldots, K ; j=0, \ldots, N\}$. For $x(t) \in B\left(J_{*}\right)$, there exist j, i such that $t \in$ [$\left.s_{j-1}, s_{j}\right]$ and $\left\|x-z_{i}\right\|_{C^{1}}<\beta_{H}(B)+\varepsilon$. Thus, from (3.14) we have

$$
\begin{aligned}
\left\|x(t)-z_{i}\left(s_{j}\right)\right\| & \leq\left\|x(t)-x\left(s_{j}\right)\right\|+\left\|x\left(s_{j}\right)-z_{i}\left(s_{j}\right)\right\| \\
& \leq\left\|x(t)-x\left(s_{j}\right)\right\|+\left\|x-z_{i}\right\|_{C^{1}} \leq \beta_{H}(B)+2 \varepsilon
\end{aligned}
$$

which shows that $\beta_{H}\left(B\left(J_{*}\right)\right) \leq \beta_{H}(B)$. Similarly, we have $\beta_{H}\left(B^{\prime}\left(J_{*}\right)\right) \leq \beta_{H}(B)$. Hence $\max \left\{\beta_{H}\left(B\left(J_{*}\right)\right), \beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)\right\} \leq \beta_{H}(B)$. Set

$$
\begin{aligned}
G(t) & =\left\{\left(x(t), x^{\prime}(t)\right): x \in B\right\}, \quad t \in J_{*}, \\
G\left(J_{*}\right) & =\left\{\left(x(t), x^{\prime}(t)\right): x \in B, t \in J_{*}\right\} .
\end{aligned}
$$

Since $G\left(J_{*}\right) \subset B\left(J_{*}\right) \times B^{\prime}\left(J_{*}\right)$, using Lemma $3.6(\mathrm{~b})$ we have $\beta_{H}\left(G\left(J_{*}\right)\right) \leq$ $\beta_{H}\left(B\left(J_{*}\right)\right)+\beta_{H}\left(B^{\prime}\left(J_{*}\right)\right)$. To prove $\beta_{H}(B) \leq \beta_{H}\left(G\left(J_{*}\right)\right)$, we suppose that $G\left(s_{j}\right)$ has a $\left(\beta_{H}\left(G\left(s_{j}\right)\right)+\varepsilon\right)$-net $\left\{\left(x_{i j}\left(s_{j}\right), x_{i j}^{\prime}\left(s_{j}\right)\right)\right\}_{i=1}^{K_{j}}, j=0, \ldots, N$. Then for each $x \in B$ and $t \in J_{*}$ there exist j, i such that $t \in\left[s_{j-1}, s_{j}\right]$ and $\|\left(x\left(s_{j}\right), x^{\prime}\left(s_{j}\right)\right)-$ $\left(x_{i j}\left(s_{j}\right), x_{i j}^{\prime}\left(s_{j}\right)\right) \|<\beta_{H}\left(G\left(s_{j}\right)\right)+\varepsilon$. From (3.14) it follows that

$$
\begin{aligned}
\left\|x(t)-x_{i j}(t)\right\| & +\left\|x^{\prime}(t)-x_{i j}^{\prime}(t)\right\| \\
\leq & \left\|x(t)-x\left(s_{j}\right)\right\|+\left\|x\left(s_{j}\right)-x_{i j}\left(s_{j}\right)\right\|+\left\|x_{i j}\left(s_{j}\right)-x_{i j}(t)\right\| \\
& +\left\|x^{\prime}(t)-x^{\prime}\left(s_{j}\right)\right\|+\left\|x^{\prime}\left(s_{j}\right)-x_{i j}^{\prime}\left(s_{j}\right)\right\|+\left\|x_{i j}^{\prime}\left(s_{j}\right)-x_{i j}^{\prime}(t)\right\| \\
\leq & \left\|\left(x\left(s_{j}\right), x^{\prime}\left(s_{j}\right)\right)-\left(x_{i j}\left(s_{j}\right), x_{i j}^{\prime}\left(s_{j}\right)\right)\right\|+4 \varepsilon \\
< & \beta_{H}\left(G\left(s_{j}\right)\right)+5 \varepsilon \leq \beta_{H}\left(G\left(J_{*}\right)\right)+5 \varepsilon .
\end{aligned}
$$

Hence $\left\|x-x_{i j}\right\|_{C^{1}} \leq \beta_{H}\left(G\left(J_{*}\right)\right)+5 \varepsilon$, and so $\beta_{H}(B) \leq \beta_{H}\left(G\left(J_{*}\right)\right)$, which is the desired inequality.

Lemma 3.8. Let $F: I \times \Delta \rightarrow \mathcal{P}_{\mathrm{wcp}, \mathrm{cv}}(X)$ be a map such that $t \mapsto F\left(t, x_{t}\right)$ is measurable and $u \mapsto F(t, u)$ is weakly u.s.c. and locally integrably bounded. Then:
(a) the map $S_{F}^{1}: P C^{1}(J) \multimap L^{1}(I, X)$ has nonempty, closed, convex values,
(b) if $\Gamma: L^{1}(I, X) \rightarrow P C^{1}(J)$ is a continuous linear operator, then $\Gamma \circ S_{F}^{1}: P C^{1}(J) \multimap P C^{1}(J)$ is a closed graph map.

Proof. (a) Suppose that $x \in P C^{1}(J)$ and $\|x\|_{*}=\lambda$. Then $\|x(t)\| \leq \lambda$ for all $t \in J$, and so $\left\|x_{t}\right\|_{\Delta} \leq \lambda$ for all $t \in I$. Since $t \mapsto F\left(t, x_{t}\right)$ is measurable and $F\left(t, x_{t}\right)$ is closed, there exists a measurable mapping $f_{0}: I \rightarrow X$ satisfying $f_{0}(t) \in$ $F\left(t, x_{t}\right)$. Since F is locally integrably bounded, there exists $p_{\lambda} \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that $\left\|f_{0}(t)\right\| \leq p_{\lambda}(t)$, for almost every $t \in I$. This implies that $f_{0}(t) \in L^{1}(I, X)$, and so $f_{0} \in S_{F}^{1}(x)$. Hence, $S_{F}^{1}(x) \neq \emptyset$. By the convexity and closedness of $F\left(t, x_{t}\right)$ for $x \in P C^{1}(J)$ it is easy to check that $S_{F}^{1}(x)$ is convex and closed.
(b) Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty} \subset P C^{1}(J), x_{n} \rightarrow x_{0}, y_{n}=\Gamma\left(S_{F}^{1}\left(x_{n}\right)\right)$ and $y_{n} \rightarrow y_{0}$. Then, for each $n \in \mathbb{Z}^{+}$, there exist $f_{n} \in S_{F}^{1}\left(x_{n}\right)$ and $\lambda>0$ such that $y_{n}=\Gamma f_{n}$ and

$$
\sup \left\{\left\|x_{0}\right\|_{*},\left\|x_{n}\right\|_{*}: n \in \mathbb{Z}^{+}\right\} \leq \lambda
$$

Let $x_{n t}(\theta)=x_{n}(t+\theta)$ and $x_{0 t}(\theta)=x_{0}(t+\theta)$, for $\theta \in I_{0}$. Then $f_{n}(t) \in F\left(t, t_{n t}\right)$ for almost every $t \in I$ and $\sup \left\{\left\|x_{n t}\right\|_{\Delta},\left\|x_{0 t}\right\|_{\Delta}: n \in \mathbb{Z}^{+}\right\} \leq \lambda$ for each $t \in I$. Since $\left\|x_{n}(t)-x_{0}(t)\right\| \rightarrow 0$ and $\left\|x_{n}^{\prime}(t)-x_{0}^{\prime}(t)\right\| \rightarrow 0$ are valid uniformly on J, we have $x_{n t} \rightarrow x_{0 t}$ in Δ for $t \in I$. Since $u \mapsto F(t, u)$ is weakly u.s.c. for almost every $t \in I$ and F has weakly compact convex values, there exists a subsequence of $\left\{f_{n}(t)\right\}$ which converges weakly to a point in $F\left(t, x_{0 t}\right)$ for fixed $t \in I$. This means that $\left\{f_{n}(t)\right\}$ is weakly relatively compact for almost every $t \in I$; and also, for fixed $t \in I$, there exist a subsequence $\left\{f_{n_{k}}(t)\right\}$ of $\left\{f_{n}(t)\right\}$ and a sequence $\left\{g_{k}(t)\right\} \subset F\left(t, x_{0 t}\right)$ such that $\left\{f_{n_{k}}(t)-g_{k}(t)\right\}$ converges weakly to 0 . Since F is locally integrably bounded, there exists $p_{\lambda} \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that $\left\|f_{n}(t)\right\| \leq p_{\lambda}(t)$. From this fact and Lemma 2.3 it follows that $\left\{f_{n}\right\}$ is weakly relatively compact in $L^{1}(I, X)$, and so is $\left\{f_{n_{k}}\right\}$. Without loss of generality we suppose that $\left\{f_{n_{k}}\right\}$ converges weakly to f_{0} in $L^{1}(I, X)$, and so $f_{0}(t)$ is measurable and integrable. In view of Lemma 2.4, there exists a sequence $\left\{P_{k}\right\}_{k=1}^{\infty}$ with $P_{k} \in \operatorname{co}\left\{f_{n_{i}}: i \geq k\right\}$ such that $\left\{P_{k}(t)\right\}$ converges to $f_{0}(t)$ for almost every $t \in I$. Since $\left\{f_{n_{k}}(t)-g_{k}(t)\right\}$ converges weakly to 0 , there exists a corresponding sequence $\left\{Q_{k}\right\}_{k=1}^{\infty}$ with $Q_{k} \in$ co $\left\{g_{i}: i \geq k\right\}$ such that $\left\{Q_{k}(t)\right\}$ converges weakly to $f_{0}(t)$. Hence, from the convexity and weak closedness of $F\left(t, x_{0 t}\right)$ it follows that $f_{0}(t) \in F\left(t, x_{0 t}\right)$ for almost every $t \in I$, and so $f_{0} \in S_{F}^{1}\left(x_{0}\right)$. Suppose that Γ^{*} is the adjoint operator of Γ and x^{*} is any bounded linear functional on $P C^{1}(J)$. Then we have

$$
x^{*}\left(\Gamma f_{n_{k}}\right)=\left(\Gamma^{*} x^{*}\right) f_{n_{k}} \rightarrow\left(\Gamma^{*} x^{*}\right) f_{0}=x^{*}\left(\Gamma f_{0}\right)
$$

which shows that $\left\{\Gamma f_{n_{k}}\right\}$ converges weakly to Γf_{0} in $P C^{1}(J)$. Letting $k \rightarrow \infty$ in $y_{n_{k}}=\Gamma f_{n_{k}}$ under weak topology, we obtain $y_{0}=\Gamma f_{0}$, which means that $\Gamma \circ S_{F}^{1}$ is a closed graph map.

4. The solution sets

We first give an existence result for problem (FIP) when A is not necessarily bounded.

Theorem 4.1. Suppose that the following conditions are satisfied:
(H0) A is an infinitesimal generator of a strongly continuous cosine family $\{C(t): t \in \mathbb{R}\} ;\{S(t): t \in \mathbb{R}\}$ is a sine family associated to the cosine family; $\phi(0) \in E ;$ and $M_{A}=\sup _{t \in I}|A S(t)|_{*}$ in $B(E, X)$.
(H1) $F: I \times \Delta \rightarrow \mathcal{P}_{\mathrm{wcp}, \mathrm{cv}}(E)$ is a map such that $t \mapsto F\left(t, x_{t}\right)$ is measurable and $u \mapsto F(t, u)$ is weakly u.s.c. and it is p_{λ}-locally integrably bounded, and there exists a function $\alpha \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that
$\beta_{H}(F(t, \mathcal{B})) \leq \alpha(t) \beta_{H}(\mathcal{B}), \quad$ for each $\mathcal{B} \in \mathcal{P}_{\mathrm{bd}}(\Delta)$ and a.e. $t \in I$.
(H2) The maps $\varphi_{k}, \psi_{k}: X \rightarrow \mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(E)$ are a_{k}, b_{k}-Lipschitz $(k=1, \ldots, m)$.
(H3) The mapping $h_{i}: P C^{1}(J) \rightarrow E$ is σ_{i}-Lipschitz, where $i=1,2$.
(H4) The mapping $g: I \times \Delta \rightarrow E$ satisfies that $u \mapsto g(t, u)$ is l-Lipschitz for almost every $t \in I$.
If $\xi+\gamma_{0}<1$ and $\limsup _{\lambda \rightarrow+\infty}\left\|p_{\lambda}\right\|_{L} / \lambda<(1-\xi) / M$, then the set of C^{1}-solutions of problem (FIP) is a nonempty and compact set, where

$$
\begin{aligned}
M & =\max \left\{M_{0} e^{\omega a}+M_{A}, M_{0} e^{\omega a}(a+1)\right\} \\
\xi & =l(M a+1)+M\left(\sigma_{1}+\sigma_{2}\right)+M \sum_{k=1}^{m}\left(a_{k}+b_{k}\right) \\
\gamma_{0} & =M\|\alpha\|_{L}
\end{aligned}
$$

Next we consider the multivalued maps $\Gamma \circ S_{F}^{1}, \Psi, T$ and the single valued mappings Λ_{0}, Λ defined by Definition 3.2, respectively. To prove the result, we need the following lemmas.

Lemma 4.2. The mapping $\Gamma: L^{1}(I, X) \rightarrow P C^{1}(J)$ is a continuous linear operator.

Proof. For $f \in L^{1}(I, X)$, from (3.5), (3.10) and Lemma 2.6 (c) we have

$$
\begin{aligned}
\|\Gamma f\|_{*} & =\|\Gamma f\|_{\diamond}=\sup _{t \in I}\left[\|(\Gamma f)(t)\|+\left\|(\Gamma f)^{\prime}(t)\right\|\right] \\
& =\sup _{t \in I}\left[\left\|\int_{0}^{t} S(t-\tau) f(\tau) d \tau\right\|+\left\|\int_{0}^{t} C(t-\tau) f(\tau) d \tau\right\|\right] \\
& \leq M_{0} e^{\omega a}(a+1)\|f\|_{L} \leq M\|f\|_{L}
\end{aligned}
$$

which shows that Γ is bounded, i.e. Γ is a continuous linear operator.
Lemma 4.3. $S_{F}^{1}(x) \neq \emptyset$ for each $x \in P C^{1}(J)$, and $\Gamma \circ S_{F}^{1}: P C^{1}(J) \multimap$ $P C^{1}(J)$ is a closed graph map with closed, convex values.

Proof. From (H1) and Lemma 3.8 (a) we see that the map $S_{F}^{1}: P C^{1}(J) \multimap$ $L^{1}(I, X)$ has nonempty, closed, convex values. Hence the assertion immediately follows from (H1), Lemmas 4.2 and 3.8 (b).

LEmMA 4.4. $\beta_{H}\left(\Gamma \circ S_{F}^{1}(B)\right) \leq \gamma_{0} \beta_{H}(B)$, for each bounded subset $B \in$ $P C^{1}(J)$.

Proof. For each $\varepsilon>0, B$ has a finite $\left(\beta_{0}+\varepsilon\right)$-net $\left\{z_{1}, \ldots, z_{k}\right\}$, where $\beta_{0}=\beta_{H}(B)$. Setting $B_{\tau}=\left\{x_{\tau}: x \in B\right\}$ for each $\tau \in I$, we first show that $\left\{z_{1 \tau}, \ldots, z_{k \tau}\right\}$ is a $\left(\beta_{0}+\varepsilon\right)$-net of B_{τ}, where $z_{i \tau}$ is an element of Δ such that $z_{i \tau}(\theta)=z_{i}(\tau+\theta)$ for $\theta \in I_{0}$. In fact, if $x_{\tau} \in B_{\tau}$, then $x \in B$, and so there exists $z_{i}(1 \leq i \leq k)$ such that $\left\|x-z_{i}\right\|_{*}<\beta_{0}+\varepsilon$. Thus, we have

$$
\left\|x_{\tau}-z_{i \tau}\right\|_{\Delta} \leq\left\|x-z_{i}\right\|_{*}<\beta_{0}+\varepsilon .
$$

This implies that $\beta_{H}\left(B_{\tau}\right) \leq \beta_{0}$. Observe that

$$
\left\{f(\tau): f \in S_{F}^{1}(B)\right\} \subset\left\{F\left(\tau, x_{\tau}\right): x \in B\right\} \subset F\left(\tau, B_{\tau}\right)
$$

From (H1) and Lemma 3.6 (a), it follows that

$$
\begin{align*}
\beta_{H}(\{S(t-\tau) f(\tau) & \left.\left.: f \in S_{F}^{1}(B)\right\}\right) \leq|S(t-\tau)|_{*} \beta_{H}\left(\left\{f(\tau): f \in S_{F}^{1}(B)\right\}\right) \tag{4.1}\\
& \leq|S(t-\tau)|_{*} \beta_{H}\left(F\left(\tau, B_{\tau}\right)\right) \\
& \leq|S(t-\tau)|_{*} \alpha(\tau) \beta_{H}\left(B_{\tau}\right) \leq M_{0} e^{\omega(t-\tau)} a \alpha(\tau) \beta_{0} ; \\
\beta_{H}(\{C(t- & \left.\left.\tau) f(\tau): f \in S_{F}^{1}(B)\right\}\right) \leq M_{0} e^{\omega(t-\tau)} \alpha(\tau) \beta_{0} . \tag{4.2}
\end{align*}
$$

In order to prove that $\left\{(\Gamma f)^{\prime}: f \in S_{F}^{1}(B)\right\}$ is equicontinuous, we suppose that $f \in S_{F}^{1}(B), t, s \in I$ and $0 \leq s<t \leq a$. Since B is bounded, there exists $\lambda_{0}>0$ such that $\|x\|_{*} \leq \lambda_{0}$ for all $x \in B$. For each $\varepsilon>0$, from the uniform continuity of $S(t)$ and the absolutely integral continuity of $p_{\lambda_{0}}$, we see that there exists $\delta=\delta(\varepsilon)>0$ such that

$$
|S((t-s) / 2)|_{*}<\varepsilon \quad \text { and } \quad \int_{s}^{t} p_{\lambda_{0}}(\tau) d \tau<\varepsilon
$$

when $0<t-s<\delta$. Thus, by (2.3), we have

$$
\begin{aligned}
& \|(\Gamma f)^{\prime}(t)-(\Gamma f)^{\prime}(s) \| \\
& \quad \leq\left\|\int_{0}^{t}[C(t-\tau)-C(s-\tau)] f(\tau) d \tau\right\|+\left\|\int_{s}^{t} C(s-\tau) f(\tau) d \tau\right\| \\
& \quad \leq 2 M_{A}|S((t-s) / 2)|_{*}\left\|p_{\lambda_{0}}\right\|_{L}+M_{0} e^{\omega a} \int_{s}^{t} p_{\lambda_{0}}(\tau) d \tau \leq M\left(2\left\|p_{\lambda_{0}}\right\|_{L}+1\right) \varepsilon .
\end{aligned}
$$

This shows that $\left\{(\Gamma f)^{\prime}: f \in S_{F}^{1}(B)\right\}$ is equicontinuous in J. Hence, according to Lemma 3.7, from (4.1) and (4.2), we have

$$
\begin{aligned}
\beta_{H}\left(\Gamma \circ S_{F}^{1}(B)\right) \leq & \max _{t \in I} \beta_{H}\left(\int_{0}^{t} S(t-\tau) f(\tau) d \tau: f \in S_{F}^{1}(B)\right) \\
& +\max _{t \in I} \beta_{H}\left(\int_{0}^{t} C(t-\tau) f(\tau) d \tau: f \in S_{F}^{1}(B)\right) \\
\leq & M_{0} e^{\omega a}(a+1) \beta_{0} \int_{0}^{a} \alpha(\tau) d \tau \leq M\|\alpha\|_{L} \beta_{0}=\gamma_{0} \beta_{H}(B)
\end{aligned}
$$

Lemma 4.5. Ψ is a γ-Lipschitz map with compact and convex values, where $\gamma=M \sum_{k=1}^{m}\left(a_{k}+b_{k}\right)$.

Proof. Since φ_{k}, ψ_{k} have convex values, and $S(t), C(t)$ are linear, it is easy to check that Ψ has convex values.

Suppose that $x \in P C^{1}(J)$ and $\left\{\eta_{n}\right\}_{n=1}^{\infty} \subset \Psi(x)$. Then there exist $u_{n k} \in$ $\varphi_{k}\left(x\left(t_{k}\right)\right)$ and $v_{n k} \in \psi_{k}\left(x\left(t_{k}\right)\right)$ such that

$$
\begin{equation*}
\eta_{n}(t)=\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{n k}+S\left(t-t_{k}\right) v_{n k}\right] . \tag{4.3}
\end{equation*}
$$

Since $\left.\varphi_{k}\left(x t_{k}\right)\right)$ and $\psi_{k}\left(x\left(t_{k}\right)\right)(1 \leq k \leq m)$ are compact, without loss of generality we suppose that $\left\{u_{n k}\right\}$ converges to $u_{0 k} \in \varphi_{k}\left(x\left(t_{k}\right)\right)$ and $\left\{v_{n k}\right\}$ converges to $v_{0 k} \in \psi_{k}\left(x\left(t_{k}\right)\right), k=1, \ldots, m$. From the boundedness of $C\left(t-t_{k}\right)$ and $S\left(t-t_{k}\right)$ it follows that $\left\{C\left(t-t_{k}\right) u_{n k}\right\}$ converges to $C\left(t-t_{k}\right) u_{0 k}$ and $\left\{S\left(t-t_{k}\right) v_{n k}\right\}$ converges to $S\left(t-t_{k}\right) v_{0 k}$ as $n \rightarrow \infty$. Set

$$
\eta_{0}(t)=\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{0 k}+S\left(t-t_{k}\right) v_{0 k}\right] .
$$

Then $\eta_{0} \in \Psi(x)$. Letting $n \rightarrow \infty$ in (4.3) we see that $\left\{\eta_{n}\right\}$ converges to η_{0}, which shows that $\Psi(x)$ is compact.

Let $x_{1}, x_{2} \in P C^{1}(J), x_{1} \neq x_{2}$, and $\eta_{1} \in \Psi\left(x_{1}\right)$. Then from (3.8) we see that there exist $u_{1 k} \in \varphi_{k}\left(x_{1}\left(t_{k}\right)\right)$ and $v_{1 k} \in \psi_{k}\left(x_{1}\left(t_{k}\right)\right)$ such that for $t \in I$,

$$
\eta_{1}(t)=\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{1 k}+S\left(t-t_{k}\right) v_{1 k}\right]
$$

Let $\varepsilon>0$ be arbitrarily given. From (H2) it follows that

$$
\begin{aligned}
d\left(u_{1 k}, \varphi_{k}\left(x_{2}\left(t_{k}\right)\right)\right) & \leq H\left(\varphi_{k}\left(x_{1}\left(t_{k}\right)\right), \varphi_{k}\left(x_{2}\left(t_{k}\right)\right)\right) \\
& <(1+\varepsilon) a_{k}\left\|x_{1}\left(t_{k}\right)-x_{2}\left(t_{k}\right)\right\| \leq(1+\varepsilon) a_{k}\left\|x_{1}-x_{2}\right\|_{*} .
\end{aligned}
$$

Thus, there exist $u_{2 k} \in \varphi_{k}\left(x_{2}\left(t_{k}\right)\right)$ and $v_{2 k} \in \psi_{k}\left(x_{2}\left(t_{k}\right)\right)$ such that

$$
\begin{equation*}
\left\|u_{1 k}-u_{2 k}\right\|_{E} \leq(1+\varepsilon) a_{k}\left\|x_{1}-x_{2}\right\|_{*} ; \quad\left\|v_{1 k}-v_{2 k}\right\|_{E} \leq(1+\varepsilon) b_{k}\left\|x_{1}-x_{2}\right\|_{*} . \tag{4.4}
\end{equation*}
$$

Suppose that for each $t \in I$,

$$
\eta_{2}(t)=\sum_{0<t_{k}<t}\left[C\left(t-t_{k}\right) u_{2 k}+S\left(t-t_{k}\right) v_{2 k}\right] .
$$

Then, $\eta_{2} \in \Psi\left(x_{2}\right)$, from (3.8), (3.13), (4.4) and Lemma 2.6 (c) we have

$$
\begin{array}{r}
\left\|\eta_{1}-\eta_{2}\right\|_{\diamond} \leq(1+\varepsilon)\left\|x_{1}-x_{2}\right\|_{*} \sum_{k=1}^{m}\left[\left(M_{0} e^{\omega a}+M_{A}\right) a_{k}+M_{0} e^{\omega a}(a+1) b_{k}\right] \tag{4.5}\\
\leq(1+\varepsilon) \gamma\left\|x_{1}-x_{2}\right\|_{*} .
\end{array}
$$

Thus, from (4.5) it follows that $d\left(\eta_{1}, \Psi\left(x_{2}\right)\right) \leq(1+\varepsilon) \gamma\left\|x_{1}-x_{2}\right\|_{*}$. Since ε is arbitrary, we have $d\left(\eta_{1}, \Psi\left(x_{2}\right)\right) \leq \gamma\left\|x_{1}-x_{2}\right\|_{*}$, and so

$$
\sup _{\eta_{1} \in \Psi\left(x_{1}\right)} d\left(\eta_{1}, \Psi\left(x_{2}\right)\right) \leq \gamma\left\|x_{1}-x_{2}\right\|_{*} .
$$

Similarly, we can show that

$$
\sup _{\eta_{2} \in \Psi\left(x_{2}\right)} d\left(\eta_{2}, \Psi\left(x_{1}\right)\right) \leq \gamma\left\|x_{1}-x_{2}\right\|_{*} .
$$

Combining with the two inequalities, we have

$$
H\left(\Psi\left(x_{1}\right), \Psi\left(x_{2}\right)\right) \leq \gamma\left\|x_{1}-x_{2}\right\|_{*} .
$$

Lemma 4.6. Λ is a γ_{1}-Lipschitz mapping, where $\gamma_{1}=l(M a+1)$.
Proof. Let $x_{1}, x_{2} \in P C^{1}(J), x_{1} \neq x_{2}$. Let $x_{1 t}(\theta)=x_{1}(t+\theta), x_{2 t}(\theta)=$ $x_{2}(t+\theta)$, for $\theta \in I_{0}$. Then, for $\tau \in I$, by (H4), we have

$$
\left\|g\left(\tau, x_{1 \tau}\right)-g\left(\tau, x_{2 \tau}\right)\right\|_{E} \leq l\left\|x_{1 \tau}-x_{2 \tau}\right\|_{\Delta} \leq l\left\|x_{1}-x_{2}\right\|_{*} .
$$

From (3.7) and (3.12) it follows that

$$
\begin{aligned}
\left\|\Lambda x_{1}-\Lambda x_{2}\right\|_{\diamond} \leq & \sup _{t \in I}\left\{\int_{0}^{t}|C(t-\tau)|_{*}\left\|g\left(\tau, x_{1 \tau}\right)-g\left(\tau, x_{2 \tau}\right)\right\|_{E} d \tau\right. \\
& +\left\|g\left(t, x_{1 t}\right)-g\left(t, x_{2 t}\right)\right\|_{E} \\
& \left.+\int_{0}^{t}|A S(t-\tau)|_{*}\left\|g\left(\tau, x_{1 \tau}\right)-g\left(\tau, x_{2 \tau}\right)\right\|_{E} d \tau\right\} \\
\leq & l\left\|x_{1}-x_{2}\right\|_{*}\left(M_{0} e^{\omega a} a+1+M_{A} a\right) \leq \gamma_{1}\left\|x_{1}-x_{2}\right\|_{*}
\end{aligned}
$$

and so $\left\|\Lambda x_{1}-\Lambda x_{2}\right\|_{*}=\left\|\Lambda x_{1}-\Lambda x_{2}\right\|_{\diamond} \leq \gamma_{1}\left\|x_{1}-x_{2}\right\|_{*}$.
Lemma 4.7. Λ_{0} is a γ_{2}-Lipschitz mapping, where $\gamma_{2}=M\left(\sigma_{1}+\sigma_{2}\right)$.
Proof. Let $x_{1}, x_{2} \in P C^{1}(J)$. From (H3) we have
(4.6) $\left\|\Lambda_{0} x_{1}-\Lambda_{0} x_{2}\right\|_{\Delta}$
$=\sup \left\{\left\|\left(\Lambda_{0} x_{1}\right)(t)-\left(\Lambda_{0} x_{2}\right)(t)\right\|+\left\|\left(\Lambda_{0} x_{1}\right)^{\prime}(t)-\left(\Lambda_{0} x_{2}\right)^{\prime}(t)\right\|: t \in I_{0}\right\}$

$$
=\sup \left\{\left\|h_{1}\left(x_{2}\right)-h_{1}\left(x_{1}\right)\right\|_{E}: t \in I_{0}\right\} \leq \sigma_{1}\left\|x_{1}-x_{2}\right\|_{*} ;
$$

$$
\begin{align*}
& \left\|\Lambda_{0} x_{1}-\Lambda_{0} x_{2}\right\|_{\diamond} \tag{4.7}\\
& \quad=\sup \left\{\left\|\left(\Lambda_{0} x_{1}\right)(t)-\left(\Lambda_{0} x_{2}\right)(t)\right\|+\left\|\left(\Lambda_{0} x_{1}\right)^{\prime}(t)-\left(\Lambda_{0} x_{2}\right)^{\prime}(t)\right\|: t \in I\right\} \\
& \leq \sup \left\{|C(t)|_{*}\left\|h_{1}\left(x_{2}\right)-h_{1}\left(x_{1}\right)\right\|_{E}+|S(t)|_{*}\left\|h_{2}\left(x_{1}\right)-h_{2}\left(x_{2}\right)\right\|_{E}\right. \\
& \left.\quad+|A S(t)|_{*}\left\|h_{1}\left(x_{2}\right)-h_{1}\left(x_{1}\right)\right\|_{E}+|C(t)|_{*}\left\|h_{2}\left(x_{1}\right)-h_{2}\left(x_{2}\right)\right\|_{E}: t \in I\right\} \\
& \leq \\
& \quad\left(M_{0} e^{\omega a}+M_{A}\right) \sigma_{1}\left\|x_{1}-x_{2}\right\|_{*}+M_{0} e^{\omega a}(1+a) \sigma_{2}\left\|x_{1}-x_{2}\right\|_{*} .
\end{align*}
$$

Inequalities (4.6) and (4.7) yield

$$
\left\|\Lambda_{0} x_{1}-\Lambda_{0} x_{2}\right\|_{*}=\max \left\{\left\|\Lambda_{0} x_{1}-\Lambda_{0} x_{2}\right\|_{\Delta},\left\|\Lambda_{0} x_{1}-\Lambda_{0} x_{2}\right\|_{\diamond}\right\} \leq \gamma_{2}\left\|x_{1}-x_{2}\right\|_{*}
$$

Proof of Theorem 4.1. From the assumptions and Lemma 3.4 we see that $T(x) \subset P C^{1}(J)$ for $x \in P C^{1}(J)$. We will prove that T is an u.s.c. $\beta_{H^{-}}$ condensing map with compact and convex values. For $x_{1}, x_{2} \in P C^{1}(J)$, in view of Lemmas 4.5 and 4.6, we have

$$
\begin{align*}
H\left((\Lambda+\Psi)\left(x_{1}\right),(\Lambda+\Psi)\left(x_{2}\right)\right) \leq\left\|\Lambda\left(x_{1}\right)-\Lambda\left(x_{2}\right)\right\|_{*} & +H\left(\Psi\left(x_{1}\right), \Psi\left(x_{2}\right)\right) \tag{4.8}\\
\leq & \left(\gamma+\gamma_{1}\right)\left\|x_{1}-x_{2}\right\|_{*}
\end{align*}
$$

Hence, $\Lambda+\Psi$ is $\left(\gamma+\gamma_{1}\right)$-Lipschitz continuous. Now we show that T is a $\beta_{H^{-}}$ condensing multivalued map. Suppose that B is a bounded subset of $P C^{1}(J)$. Note that $\beta_{H}((\Lambda+\Psi)(B)) \leq\left(\gamma+\gamma_{1}\right) \beta_{H}(B)$ due to (4.8). Hence, from Lemmas 4.4 and 4.7 , we have

$$
\begin{align*}
\beta_{H}(T(B)) & =\beta_{H}\left(\left(\Lambda+\Psi+\Lambda_{0}+\Gamma \circ S_{F}^{1}\right)(B)\right) \tag{4.9}\\
& \leq \beta_{H}((\Lambda+\Psi)(B))+\beta_{H}\left(\Lambda_{0} B\right)+\beta_{H}\left(\Gamma \circ S_{F}^{1}(B)\right) \\
& \leq\left(\xi+\gamma_{0}\right) \beta_{H}(B),
\end{align*}
$$

which shows that T is a β_{H}-condensing map due to $\xi+\gamma_{0}<1$.
Since Ψ has compact and convex values, and $\Gamma \circ S_{F}^{1}$ has closed and convex values, we infer that $\Psi+\Gamma \circ S_{F}^{1}$ has closed and convex values, and so does T. For each $x \in P C^{1}(J)$, from (4.9) we have

$$
\beta_{H}\left(T(x) \leq\left(\xi+\gamma_{0}\right) \beta_{H}(\{x\})=0\right.
$$

i.e. $T(x)$ is relatively compact. Hence T has compact and convex values.

Next, we show that T is u.s.c. In fact, from Lemma 4.5 we see that Ψ is a u.s.c. map with close values. Thus, Ψ is a closed graph map. From Lemma 4.3 we see that $\Gamma \circ S_{F}^{1}$ is also a closed graph map. Let B_{*} be a relatively compact subset of $P C^{1}(J)$. Then by (4.9), Lemmas 4.4 and 4.5 , we have

$$
\begin{aligned}
\beta_{H}\left(T\left(B_{*}\right)\right) & \leq\left(\xi+\gamma_{0}\right) \beta_{H}\left(B_{*}\right)=0, \\
\beta_{H}\left(\Gamma \circ S_{F}^{1}\left(B_{*}\right)\right) & \leq \gamma_{0} \beta_{H}\left(B_{*}\right)=0, \\
\beta_{H}\left(\Psi\left(B_{*}\right)\right) & \leq \gamma \beta_{H}\left(B_{*}\right)=0 .
\end{aligned}
$$

This shows that $\Gamma \circ S_{F}^{1}, \Psi$ and T are quasicompact, and so is $\Psi+\Gamma \circ S_{F}^{1}$. Using Lemma 3.5, $\Psi+\Gamma \circ S_{F}^{1}$ has closed graph. Since the single-valued mapping $\Lambda+\Lambda_{0}$ is continuous due to (H3) and Lemma 4.6, $\Lambda+\Lambda_{0}$ has closed graph. Using Lemma 3.5 again, we deduce that $T=\left(\Psi+\Gamma \circ S_{F}^{1}\right)+\left(\Lambda+\Lambda_{0}\right)$ is a closed graph map. Thus, the upper semicontinuity of T follows from Lemma 2.1.

Suppose that $C_{0}, C_{1}, C_{2}, C_{*}$ are four constants given by

$$
\begin{aligned}
C_{0} & =\sup _{t \in I}\|g(t, 0)\|_{E} ; \\
C_{1} & =M\left(\|\phi\|_{\Delta}+\|g(0, \phi)\|_{E}+\left\|h_{1}(0)\right\|_{E}+\left\|h_{2}(0)\right\|_{E}\right) ; \\
C_{2} & =M \sum_{k=1}^{m}\left[H\left(0, \varphi_{k}(0)\right)+H\left(0, \psi_{k}(0)\right)\right] ; \\
C_{*} & =C_{0}(M a+1)+C_{1}+C_{2} .
\end{aligned}
$$

Since $\xi<1, M \geq 1$ and $\limsup _{\lambda \rightarrow+\infty}\left\|p_{\lambda}\right\|_{L} / \lambda<(1-\xi) / M$, we take a constant ν such that

$$
\limsup _{\lambda \rightarrow+\infty} \frac{\left\|p_{\lambda}\right\|_{L}}{\lambda}<\nu<\frac{1-\xi}{M} .
$$

Thus, there exists a constant λ_{*} such that

$$
\lambda_{*}>\frac{C_{*}}{1-\xi-M \nu} \quad \text { and } \quad \frac{\left\|p_{\lambda_{*}}\right\|_{L}}{\lambda_{*}}<\nu .
$$

Set $\mathcal{D}=\left\{x \in P C^{1}(J):\|x\|_{*} \leq \lambda_{*}\right\}$. Then \mathcal{D} is a bounded closed convex subset of $P C^{1}(J)$. We claim that $T(\mathcal{D}) \subset \mathcal{D}$. In fact, if $x \in \mathcal{D}$ be any element and $y \in T(x)$, then there exist $\eta_{x} \in \Psi(x)$ and $f_{x} \in S_{F}^{1}(x)$ such that $y=$ $\Lambda_{0} x+\Lambda x+\eta_{x}+\Gamma f_{x}$. From (H3) it follows that

$$
\left\|h_{1}(x)\right\|_{E} \leq \sigma_{1}\|x\|_{*}+\left\|h_{1}(0)\right\|_{E}, \quad\left\|h_{2}(x)\right\|_{E} \leq \sigma_{2}\|x\|_{*}+\left\|h_{2}(0)\right\|_{E} .
$$

Thus, we obtain

$$
\begin{aligned}
\left\|\Lambda_{0} x\right\|_{\Delta} \leq & \sup \left\{\left\|\phi(t)-h_{1}(x)\right\|+\left\|\phi^{\prime}(t)\right\|: t \in I_{0}\right\} \leq\|\phi\|_{\Delta}+\sigma_{1}\|x\|_{*}+\left\|h_{1}(0)\right\|_{E} ; \\
\left\|\Lambda_{0} x\right\|_{\diamond}= & \sup \left\{\left\|\left(\Lambda_{0} x\right)(t)\right\|+\left\|\left(\Lambda_{0} x\right)^{\prime}(t)\right\|: t \in I\right\} \\
\leq & \left(M_{0} e^{\omega a}+M_{A}\right)\left[\|\phi\|_{\Delta}+\sigma_{1}\|x\|_{*}+\left\|h_{1}(0)\right\|_{E}\right] \\
& +M_{0} e^{\omega a}(1+a)\left[\|g(0, \phi)\|_{E}+\sigma_{2}\|x\|_{*}+\left\|h_{2}(0)\right\|_{E}\right]
\end{aligned}
$$

and so

$$
\begin{equation*}
\left\|\Lambda_{0} x\right\|_{*}=\max \left\{\left\|\Lambda_{0} x\right\|_{\Delta},\left\|\Lambda_{0} x\right\|_{\diamond}\right\} \leq C_{1}+\gamma_{2}\|x\|_{*} \leq C_{1}+\gamma_{2} \lambda_{*} . \tag{4.10}
\end{equation*}
$$

If $t \in I$, then from (H4) it follows that

$$
\left\|g\left(t, x_{t}\right)\right\|_{E} \leq\left\|g\left(t, x_{t}\right)-g(t, 0)\right\|_{E}+\|g(t, 0)\|_{E} \leq l\left\|x_{t}\right\|_{\Delta}+C_{0} .
$$

Thus, from (H4) and (H1) we have

$$
\|(\Lambda x)(t)\|+\left\|(\Lambda x)^{\prime}(t)\right\| \leq \int_{0}^{t}|C(t-\tau)|_{*}\left\|g\left(\tau, x_{\tau}\right)\right\|_{E} d \tau+\left\|g\left(t, x_{t}\right)\right\|_{E}
$$

$$
\begin{aligned}
& +\int_{0}^{t}|A S(t-\tau)|_{*}\left\|g\left(\tau, x_{\tau}\right)\right\|_{E} d \tau \\
\leq & C_{0}+l\left\|x_{t}\right\|_{\Delta}+\left(M_{0} e^{\omega a}+M_{A}\right) \int_{0}^{t}\left(C_{0}+l\left\|x_{\tau}\right\|_{\Delta}\right) d \tau \\
\leq & C_{0}(M a+1)+l\left\|x_{t}\right\|_{\Delta}+M l \int_{0}^{t}\left\|x_{\tau}\right\|_{\Delta} d \tau \\
\left\|\left(\Gamma f_{x}\right)(t)\right\|+\left\|\left(\Gamma f_{x}\right)^{\prime}(t)\right\| \leq & \int_{0}^{t}\left\|S(t-\tau) f_{x}(\tau)\right\| d \tau+\int_{0}^{t}\left\|C(t-\tau) f_{x}(\tau)\right\| d \tau \\
\leq & M_{0} e^{\omega a}(a+1) \int_{0}^{t} p_{\lambda_{*}}(\tau) d \tau \leq M \int_{0}^{t} p_{\lambda_{*}}(\tau) d \tau
\end{aligned}
$$

and so
(4.11) $\|\Lambda x\|_{*}+\left\|\Gamma f_{x}\right\|_{*}=\|\Lambda x\|_{\diamond}+\left\|\Gamma f_{x}\right\|_{\diamond} \leq C_{0}(M a+1)+\gamma_{1} \lambda_{*}+M\left\|p_{\lambda_{*}}\right\|_{L}$.

For $u_{k} \in \varphi_{k}\left(x\left(t_{k}\right)\right)$ and $v_{k} \in \psi_{k}\left(x\left(t_{k}\right)\right)$, from (H2) it follows that

$$
\begin{aligned}
\left\|u_{k}\right\| & \leq H\left(0, \varphi_{k}\left(x\left(t_{k}\right)\right)\right) \\
\left\|v_{k}\right\| & \leq H\left(0, \varphi_{k}(0)\right)+a_{k}\left\|x\left(t_{k}\right)\right\|, \\
\left.\psi_{k}\left(x\left(t_{k}\right)\right)\right) & \leq H\left(0, \psi_{k}(0)\right)+b_{k}\left\|x\left(t_{k}\right)\right\| .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\left\|\eta_{x}\right\|_{*}= & \left\|\eta_{x}\right\|_{\diamond} \leq \sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|C\left(t-t_{k}\right)\right|_{*}\left\|u_{k}\right\|_{E}+\left|S\left(t-t_{k}\right)\right|_{*}\left\|v_{k}\right\|_{E}\right] \tag{4.12}\\
& +\sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|A S\left(t-t_{k}\right)\right|_{*}\left\|u_{k}\right\|_{E}+\left|C\left(t-t_{k}\right)\right|_{*}\left\|v_{k}\right\|_{E}\right] \\
\leq & M \sum_{k=1}^{m}\left[H\left(0, \varphi_{k}(0)\right)+a_{k}\left\|x\left(t_{k}\right)\right\|\right] \\
& +M \sum_{k=1}^{m}\left[H\left(0, \psi_{k}(0)\right)+b_{k}\left\|x\left(t_{k}\right)\right\|\right] \leq C_{2}+\gamma \lambda_{*} .
\end{align*}
$$

Combining with (4.10)-(4.12) we have

$$
\begin{aligned}
\|y\|_{*} & \leq\left\|\Lambda_{0} x\right\|_{*}+\|\Lambda x\|_{*}+\left\|\Gamma f_{x}\right\|_{*}+\left\|\eta_{x}\right\|_{*} \\
& \leq C_{0}(M a+1)+C_{1}+C_{2}+\left(\gamma_{1}+\gamma_{2}+\gamma\right) \lambda_{*}+M\left\|p_{\lambda_{*}}\right\|_{L} \\
& =C_{*}+\xi \lambda_{*}+M\left\|p_{\lambda_{*}}\right\|_{L} \\
& <(1-\xi-M \nu) \lambda_{*}+\xi \lambda_{*}+M \nu \lambda_{*}=\lambda_{*},
\end{aligned}
$$

which means that $T(\mathcal{D}) \subset \mathcal{D}$.
As a consequence of Lemma 2.2 we deduce that $\operatorname{Fix}(T)$ is a nonempty and compact set. Therefore, the set of C^{1}-solutions of problem (FIP) is a nonempty and compact set. This completes the proof.

If A is bounded, then we can obtain a existence result for problem (FIP) under some weak impulsive conditions and nonlocal conditions.

Theorem 4.8. Suppose that the following conditions are satisfied:
(h0) A is a bounded infinitesimal generator of a strongly continuous cosine family $\{C(t): t \in \mathbb{R}\} ;\{S(t): t \in \mathbb{R}\}$ is a sine family associated to the cosine family.
(h1) The map $F: I \times \Delta \rightarrow \mathcal{P}_{\mathrm{wcp}, \mathrm{cv}}(X)$ is a map such that $t \mapsto F\left(t, x_{t}\right)$ is measurable and $u \mapsto F(t, u)$ is weakly u.s.c. and it is p_{λ}-locally integrably bounded, and there exists a function $\alpha \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that
$\beta_{H}(F(t, \mathcal{B})) \leq \alpha(t) \beta_{H}(\mathcal{B}), \quad$ for each $\mathcal{B} \in \mathcal{P}_{\mathrm{bd}}(\Delta)$ and a.e. $t \in I$.
(h2) For $k=1, \ldots, m$, the maps $\varphi_{k}, \psi_{k}: X \rightarrow \mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(X)$ are u.s.c.; $\varphi_{k}(X)$, $\psi_{k}(X) \in \mathcal{P}_{\mathrm{bd}}(X)$; and there exist nonnegative constants a_{k}, b_{k} such that $\beta_{H}\left(\varphi_{k}(D)\right) \leq a_{k} \beta_{H}(D)$ and $\beta_{H}\left(\psi_{k}(D)\right) \leq b_{k} \beta_{H}(D)$ for each $D \in \mathcal{P}_{\mathrm{bd}}(X)$.
(h3) The mappings $h_{1}, h_{2}: P C^{1}(J) \rightarrow X$ are continuous and there exist nonnegative constants σ_{i}, d_{i} such that $\beta_{H}\left(h_{i}(D)\right) \leq \sigma_{i} \beta_{H}(D)$ for each bounded set $D \subset P C^{1}(J)$, and $\left\|h_{i}(x)\right\| \leq d_{i}$ for each $x \in P C^{1}(J)$, where $i=1,2$.
(h4) The mapping $g: I \times \Delta \rightarrow X$ satisfies that $u \mapsto g(t, u)$ is l-Lipschitz for almost every $t \in I$.
(h5) ϕ^{\prime} is continuous in I_{0}.
If $\gamma_{1}+\mu<1$ and $\limsup _{\lambda \rightarrow+\infty}\left\|p_{\lambda}\right\|_{L} / \lambda<\left(1-\gamma_{1}\right) / M$, then the set of C^{1}-solutions of problem (FIP) is a nonempty and compact set, where

$$
\begin{aligned}
M & \left.=M_{0} e^{\omega a}\left[a \max \left(|A|_{*}, 1\right)+1\right)\right] \\
\gamma_{1} & =l(M a+1) \\
\mu & =M\|\alpha\|_{L}+M\left(\sigma_{1}+\sigma_{2}\right)+M \sum_{k=1}^{m}\left(a_{k}+b_{k}\right) .
\end{aligned}
$$

To prove Theorem 4.8, we need the following lemmas. Since conditions (h1) and (H1) are identical, from Lemmas 4.3 and 4.4 we have the following Lemmas 4.9 and 4.10 .

Lemma 4.9. $\Gamma \circ S_{F}^{1}: P C^{1}(J) \multimap P C^{1}(J)$ is a closed graph map with closed, convex values.

Lemma 4.10. $\beta_{H}\left(\Gamma \circ S_{F}^{1}(B)\right) \leq \gamma_{0} \beta_{H}(B)$, for each bounded subset $B \in$ $P C^{1}(J)$, where $\gamma_{0}=M\|\alpha\|_{L}$.

Since conditions (h4) and (H4) are identical, from Lemma 4.6 we have the following assertion.

Lemma 4.11. Λ is a γ_{1}-Lipschitz mapping, where $\gamma_{1}=l(M a+1)$.
Lemma 4.12. $\Psi(B)^{\prime}$ is equicontinuous in I_{k+1}, where B is a bounded subset of $P C^{1}(J)$ and $k=1, \ldots, m$.

Proof. Suppose that $t, s \in I_{k+1}$ and $t_{k}<s<t \leq t_{k+1}$. Since $\varphi_{i}(B), \psi_{i}(B)$ are all bounded by (h2), there exists $M_{*}>0$ such that $\left\|u_{i}\right\| \leq M_{*}$ and $\left\|v_{i}\right\| \leq M_{*}$ for all $u_{i} \in \varphi_{i}(B), v_{i} \in \psi_{i}(B)$, where $i=1, \ldots, m$. For each $\varepsilon>0$, from the uniform continuity of $S(t)$, we see that there exists $\delta=\delta(\varepsilon), 0<\delta<$ $\min _{0 \leq k \leq m}\left(t_{k+1}-t_{k}\right)$ such that $|S((t-s) / 2)|_{*}<\varepsilon$, when $0<t-s<\delta$. Thus, by (2.2) and (2.3) we have, for $i=1, \ldots, k$,

$$
\begin{aligned}
\left|C\left(t-t_{i}\right)-C\left(s-t_{i}\right)\right|_{*} & <2 a|A|_{*} M_{0} e^{\omega a} \varepsilon \\
\left|A S\left(t-t_{i}\right)-A S\left(s-t_{i}\right)\right|_{*} & <2|A|_{*} M_{0} e^{\omega a} \varepsilon
\end{aligned}
$$

Hence, from (3.13), it follows that, for each $\eta \in \Psi(B)$,

$$
\begin{aligned}
& \left\|\eta^{\prime}(t)-\eta^{\prime}(s)\right\|_{*} \\
& \qquad \begin{array}{l}
\leq \sum_{i=1}^{k}\left|A S\left(t-t_{i}\right)-A S\left(s-t_{i}\right)\right|_{*}\left\|u_{i}\right\|+\left|C\left(t-t_{i}\right)-C\left(s-t_{i}\right)\right|_{*}\left\|v_{i}\right\| \\
\leq
\end{array} \\
& \quad 2 m M_{*}(a+1)|A|_{*} M_{0} e^{\omega a} \varepsilon .
\end{aligned}
$$

This shows that $\Psi(B)^{\prime}$ is equicontinuous in I_{k+1}.
Lemma 4.13. Ψ is a closed graph map with compact and convex values and $\beta_{H}(\Psi(B)) \leq \gamma \beta_{H}(B)$, where B is a bounded subset of $P C^{1}(J)$ and

$$
\gamma=M \sum_{k=1}^{m}\left(a_{k}+b_{k}\right) .
$$

Proof. Since the maps $\varphi_{k}, \psi_{k}: X \multimap X$ have all compact and convex values $(k=1, \ldots, m)$, in the same manner as Lemma 4.5, we can show that Ψ has compact and convex values. Since φ_{k}, ψ_{k} are u.s.c., they have closed graph. But (h2) implies that φ_{k}, ψ_{k} are quasicompact. Using Lemma 3.5 we deduce that Ψ is a closed graph map. Let B is a bounded subset of $P C^{1}(J)$. From (h2) and Lemma 3.7, it follows that

$$
\begin{align*}
\beta_{H}\left\{\varphi_{k}\left(x\left(t_{k}\right)\right): x \in B\right\} & \leq a_{k} \beta_{H}\left\{x\left(t_{k}\right): x \in B\right\} \tag{4.13}\\
& \leq a_{k} \beta_{H}(B(I)) \leq a_{k} \beta_{H}(B) ; \\
\beta_{H}\left\{\psi_{k}\left(x\left(t_{k}\right)\right): x \in B\right\} & \leq b_{k} \beta_{H}\left\{x\left(t_{k}\right): x \in B\right\} \tag{4.14}\\
& \leq b_{k} \beta_{H}(B(I)) \leq b_{k} \beta_{H}(B) .
\end{align*}
$$

Thus, from Lemma 4.12, inequalities (4.13), (4.14) and Lemmas 3.7 and 3.6 (a) we have

$$
\begin{aligned}
\beta_{H}(\Psi(B)) \leq & \sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|C\left(t-t_{k}\right)\right|_{*} a_{k} \beta_{H}(B)+\left|S\left(t-t_{k}\right)\right|_{*} b_{k} \beta_{H}(B)\right] \\
& +\sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|A S\left(t-t_{k}\right)\right|_{*} a_{k} \beta_{H}(B)+\left|C\left(t-t_{k}\right)\right|_{*} b_{k} \beta_{H}(B)\right]
\end{aligned}
$$

$$
\leq \beta_{H}(B) \sum_{k=1}^{m}\left[M_{0} e^{\omega a}\left(1+a|A|_{*}\right) a_{k}+M_{0} e^{\omega a}(a+1) b_{k}\right] \leq \gamma \beta_{H}(B)
$$

LEMMA 4.14. $\beta_{H}\left(\Lambda_{0}(B)\right) \leq \gamma_{2} \beta_{H}(B)$, where B is a bounded subset of $P C^{1}(J)$ and $\gamma_{2}=M\left(\sigma_{1}+\sigma_{2}\right)$.

Proof. From (h3) and Lemma 3.6 (a) we have, for $t \in I_{0}$,

$$
\begin{align*}
& \beta_{H}\left(\left\{\left(\Lambda_{0} x\right)(t): x \in B\right\}\right)=\beta_{H}\left(\phi(t)-h_{1}(B)\right) \leq \sigma_{1} \beta_{H}(B) ; \\
& \beta_{H}\left(\left\{\left(\Lambda_{0} x\right)^{\prime}(t): x \in B\right\}\right)=0 ; \tag{4.15}
\end{align*}
$$

and for $t \in I$,

$$
\begin{align*}
\beta_{H}\left(\left\{\left(\Lambda_{0} x\right)\right.\right. & (t): x \in B\}) \tag{4.16}\\
& \leq \beta_{H}\left(C(t)\left[\phi(0)-h_{1}(B)\right]+S(t)\left[h_{2}(B)-g(0, \phi)\right]\right) \\
& \leq\left(|C(t)|_{*} \sigma_{1}+|S(t)|_{*} \sigma_{2}\right) \beta_{H}(B) \\
\beta_{H}\left(\left\{\left(\Lambda_{0} x\right)^{\prime}\right.\right. & (t): x \in B\}) \tag{4.17}\\
& \leq \beta_{H}\left(\left\{A S(t)\left[\phi(0)-h_{1}(B)\right]+C(t)\left[h_{2}(B)-g(0, \phi)\right]\right)\right. \\
& \leq\left(|A S(t)|_{*} \sigma_{1}+|C(t)|_{*} \sigma_{2}\right) \beta_{H}(B) .
\end{align*}
$$

On the other hand, for $t, s \in I_{0}$ and $x \in B$, we obtain

$$
\left\|\left(\Lambda_{0} x\right)^{\prime}(t)-\left(\Lambda_{0} x\right)^{\prime}(s)\right\|=\left\|\varphi^{\prime}(t)-\varphi^{\prime}(s)\right\| ;
$$

for $t, s \in I$ and $x \in B$, from (2.2) and (2.3), we obtain

$$
\begin{aligned}
& \left\|\left(\Lambda_{0} x\right)^{\prime}(t)-\left(\Lambda_{0} x\right)^{\prime}(s)\right\| \\
& \quad \leq|A S(t)-A S(s)|_{*}\left\|\phi(0)-h_{1}(x)\right\|+|C(t)-C(s)|_{*}\left\|h_{2}(x)-g(0, \phi)\right\| \\
& \quad \leq 2 \max (1, a)|A|_{*} M_{0} e^{\omega a}\left(\|\phi\|_{\Delta}+d_{1}+d_{2}+\|g(0, \phi)\|\right)|S((t-r) / 2)|_{*} .
\end{aligned}
$$

This implies that $\left\{\left(\Lambda_{0} x\right)^{\prime}: x \in B\right\}$ is equicontinuous by (h5) and the uniform continuity of $S(t)$. Thus, from (4.15)-(4.17) and Lemma 3.7, it follows that

$$
\begin{aligned}
\beta_{H}\left(\Lambda_{0} B\right) & \leq \max _{t \in J} \beta_{H}\left(\left\{\left(\Lambda_{0} x\right)(t): x \in B\right\}\right)+\max _{t \in J} \beta_{H}\left(\left\{\left(\Lambda_{0} x\right)^{\prime}(t): x \in B\right\}\right) \\
& \leq\left[M_{0} e^{\omega a}\left(1+a|A|_{*}\right) \sigma_{1}+M_{0} e^{\omega a}(1+a) \sigma_{2}\right] \beta_{H}(B) \\
& \leq M\left(\sigma_{1}+\sigma_{2}\right) \beta_{H}(B)=\gamma_{2} \beta_{H}(B) .
\end{aligned}
$$

Proof of Theorem 4.8. From Lemma 3.4 we see that $T(x) \subset P C^{1}(J)$ for $x \in P C^{1}(J)$. We will prove that T is a u.s.c. β_{H}-condensing map with compact and convex values. Suppose that B is a bounded subset of $P C^{1}(J)$. Note that $\beta_{H}\left(\left(\Lambda+\Lambda_{0}\right)(B)\right) \leq\left(\gamma_{1}+\gamma_{2}\right) \beta_{H}(B)$ due to Lemmas 4.11 and 4.14. Hence, from

Lemmas 4.10 and 4.13 we have

$$
\begin{aligned}
\beta_{H}(T(B)) & =\beta_{H}\left(\left(\Lambda+\Psi+\Lambda_{0}+\Gamma \circ S_{F}^{1}\right)(B)\right) \\
& \leq \beta_{H}\left(\left(\Lambda+\Lambda_{0}\right)(B)\right)+\beta_{H}(\Psi(B))+\beta_{H}\left(\Gamma \circ S_{F}^{1}(B)\right) \\
& \leq\left(\gamma_{1}+\gamma_{2}+\gamma+\gamma_{0}\right) \beta_{H}(B)=\left(\gamma_{1}+\mu\right) \beta_{H}(B)
\end{aligned}
$$

which shows that T is a β_{H}-condensing map due to $\gamma_{1}+\mu<1$. In the same manner as the proof of Theorem 4.1, from Lemmas 4.9, 4.13, 3.5 and 2.1 we can show that T is a u.s.c. map with compact and convex values.

Suppose that $C_{0}, G_{1}, G_{2}, G_{0}$ are four constants given by

$$
\begin{aligned}
& C_{0}=\sup _{t \in I}\|g(t, 0)\| \\
& G_{1}=M\left(\|\phi\|_{\Delta}+d_{1}+d_{2}+\|g(0, \phi)\|\right) \\
& G_{2}=2 m M \sup \left\{\|y\|: y \in \bigcup_{k=1}^{m}\left[\varphi_{k}(X) \cup \psi_{k}(X)\right]\right\} \\
& G_{0}=C_{0}(M a+1)+G_{1}+G_{2} .
\end{aligned}
$$

Since $\gamma_{1}<1, M \geq 1$ and $\limsup _{\lambda \rightarrow+\infty}\left\|p_{\lambda}\right\|_{L} / \lambda<\left(1-\gamma_{1}\right) / M$, we take a constant ρ such that

$$
\limsup _{\lambda \rightarrow+\infty} \frac{\left\|p_{\lambda}\right\|_{L}}{\lambda}<\rho<\frac{1-\gamma_{1}}{M}
$$

Thus, there exists a constant λ_{0} such that $\lambda_{0}>G_{0} /\left(1-\gamma_{1}-M \rho\right),\left\|p_{\lambda_{0}}\right\|_{L} / \lambda_{0}<\rho$. Set

$$
\mathcal{D}=\left\{x \in P C^{1}(J):\|x\|_{*} \leq \lambda_{0}\right\} .
$$

Then \mathcal{D} is a bounded closed convex subset of $P C^{1}(J)$. Next we prove that $T(\mathcal{D}) \subset \mathcal{D}$. Let $x \in \mathcal{D}$ be any element and $y \in T(x)$. Then there exist $\eta_{x} \in \Psi(x)$ and $f_{x} \in S_{F}^{1}(x)$ such that $y=\Lambda_{0} x+\Lambda x+\eta_{x}+\Gamma f_{x}$. By (h3) we obtain

$$
\begin{aligned}
\left\|\Lambda_{0} x\right\|_{\Delta} & \leq \sup \left\{\left\|\phi(t)-h_{1}(x)\right\|+\left\|\phi^{\prime}(t)\right\|: t \in I_{0}\right\} \\
& \leq \sup \left\{\|\phi(t)\|+\left\|\phi^{\prime}(t)\right\|+\left\|h_{1}(x)\right\|: t \in I_{0}\right\} \leq\|\phi\|_{\Delta}+d_{1} \\
\left\|\Lambda_{0} x\right\|_{\diamond} & =\sup \left\{\left\|\left(\Lambda_{0} x\right)(t)\right\|+\left\|\left(\Lambda_{0} x\right)^{\prime}(t)\right\|: t \in I\right\} \\
& \leq M_{0} e^{\omega a}\left(1+a|A|_{*}\right)\left(\|\phi\|_{\Delta}+d_{1}\right)+M_{0} e^{\omega a}(1+a)\left(d_{2}+\|g(0, \phi)\|\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\left\|\Lambda_{0} x\right\|_{*}=\max \left\{\left\|\Lambda_{0} x\right\|_{\Delta},\left\|\Lambda_{0} x\right\|_{\diamond}\right\} \leq G_{1} \tag{4.18}
\end{equation*}
$$

Since conditions (h1) and (H1) are identical, (h4) and (H4) are identical, from (4.11), we have

$$
\begin{equation*}
\|\Lambda x\|_{*}+\left\|\Gamma f_{x}\right\|_{*}=\|\Lambda x\|_{\diamond}+\left\|\Gamma f_{x}\right\|_{\diamond} \leq C_{0}(M a+1)+\gamma_{1} \lambda_{0}+M\left\|p_{\lambda_{0}}\right\|_{L} \tag{4.19}
\end{equation*}
$$

From (h2), we have

$$
\begin{align*}
\left\|\eta_{x}\right\|_{*}= & \left\|\eta_{x}\right\|_{\diamond}=\sup _{t \in I}\left[\left\|\eta_{x}(t)\right\|+\left\|\eta_{x}^{\prime}(t)\right\|\right] \tag{4.20}\\
\leq & \sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|C\left(t-t_{k}\right)\right|_{*}\left\|u_{k}\right\|+\left|S\left(t-t_{k}\right)\right|_{*}\left\|v_{k}\right\|\right] \\
& +\sup _{t \in I} \sum_{0<t_{k}<t}\left[\left|A S\left(t-t_{k}\right)\right|_{*}\left\|u_{k}\right\|+\left|C\left(t-t_{k}\right)\right|_{*}\left\|v_{k}\right\|\right] \leq G_{2} .
\end{align*}
$$

Combining with (4.18)-(4.20), we have

$$
\begin{aligned}
\|y\|_{*} & \leq\left\|\Lambda_{0} x\right\|_{*}+\|\Lambda x\|_{*}+\left\|\Gamma f_{x}\right\|_{*}+\left\|\eta_{x}\right\|_{*} \\
& \leq C_{0}(M a+1)+G_{1}+G_{2}+\gamma_{1} \lambda_{0}+M\left\|p_{\lambda_{0}}\right\|_{L}=G_{0}+\gamma_{1} \lambda_{0}+M\left\|p_{\lambda_{0}}\right\|_{L} \\
& <\left(1-\gamma_{1}-M \rho\right) \lambda_{0}+\gamma_{1} \lambda_{0}+M \rho \lambda_{0}=\lambda_{0}
\end{aligned}
$$

which means that $T(\mathcal{D}) \subset \mathcal{D}$.
Using Lemma 2.2 we deduce that $\operatorname{Fix}(T)$ is a nonempty and compact set. Hence, the set of C^{1}-solutions of problem (FIP) is a nonempty and compact set.

Example 4.15. As an application of our result, we consider the impulsive neutral partial differential inclusion of the following form:

$$
\begin{cases}\frac{\partial^{2}}{\partial t^{2}} y(t, s)-\frac{\partial}{\partial t} g(t, y(t-r, s))-\frac{\partial^{2}}{\partial s^{2}} y(t, s) \in F(t, y(t-r, s)) \tag{P}\\ y(t, 0)=y(t, \pi)=0, & \text { a.e. } t \in I \backslash\left\{t_{1}, \ldots, t_{m}\right\} \\ y\left(t_{k}^{+}, s\right)-y\left(t_{k}^{-}, s\right) \in \varphi_{k}\left(y\left(t_{k}^{-}, s\right)\right), & k=1, \ldots, m \\ \frac{\partial}{\partial t} y\left(t_{k}^{+}, s\right)-\frac{\partial}{\partial t} y\left(t_{k}^{-}, s\right) \in \psi_{k}\left(y\left(t_{k}^{-}, s\right)\right), & k=1, \ldots, m \\ y(t, s)+h_{1}(y(0, s))=\phi(t, s), & t \in I_{0} \\ \frac{\partial}{\partial t} y(0, s)=h_{2}(y(0, s)), & t \in I_{0}\end{cases}
$$

where $s \in[0, \pi]$. Let $X=L^{2}[0, \pi], \phi(t, \cdot)=\phi(t)(\cdot)$ and $y(t, \cdot)=x(t)$. Then we have $x(t) \in X$. Define $A: D(A) \rightarrow X$ by $A x=x^{\prime \prime}$ with the domain
$D(A)=\left\{x \in X: x\right.$ and x^{\prime} are absolutely continuous,

$$
\left.x^{\prime \prime} \in X \text { and } x(0)=x(\pi)=0\right\},
$$

then $\frac{\partial^{2}}{\partial s^{2}} y(t, s)=A x(t)$, and it is well known that (see [9, 13] for more details)

$$
E=\left\{x \in X: x \text { are absolutely continuous, } x^{\prime} \in X \text { and } x(0)=x(\pi)=0\right\}
$$

Thus, problem (FIP) is an abstract formulation of problem (P). From Theorem 4.1 we can establish the topological structure of C^{1}-solution sets for problem (P).

Acknowledgments. The authors are grateful to the referees for their valuable comments and suggestions which helped to improve the manuscript.

References

[1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations 246 (2009), 3834-3863.
[2] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, Heidelberg, 2006.
[3] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[4] G. Babesku, Regularity and uniform continuity properties of cosine and sine class of operators, Lucr. Semin. Math. Fis. Inst. Politehn. Timisoara, November (1983), 47-50.
[5] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-228.
[6] M. Benchohra, J. Henderson and S.K. Ntouyas, Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces, J. Math. Anal. Appl. 263 (2001), 763-780.
[7] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel J. Math. 108 (1998), 109-138.
[8] J. Diestel, W.M. Ruess and W. Schachemayer, Weak compactness in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc. 118 (1993), 447-453.
[9] H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, NorthHolland, Amsterdam, 1985.
[10] E. Hernández M, H.R. Henríquez and M.A. McKibben, Existence results for abstract impulsive second-order neutral functional differential equations, Nonlinear Anal. 70 (2009), 2736-2751.
[11] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, Vol. 31, Fourth Printing of Revised Edition, 1981.
[12] M. KamenskiĬ, V. Obukhovskĭ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, Vol. 7, Walter de Gruyter, Berlin, New York, 2001.
[13] J. Kisyński, On cosine operator functions and one parameter group of operators, Studia Math. 49 (1972), 93-105.
[14] J. Liang and T.J. Xiao, A characterization of norm continuity of propagators for second order abstract differential equations, Computers Math. Applic. 36 (2) (1998), 87-94.
[15] B. Liv, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (2005), 1533-1552.
[16] S.K. Ntouyas and D. O'Regan, Existence results for semilinear neutral functional differential inclusions via analytic semigroups, Acta Appl. Math. 98 (2007), 223-253.
[17] V. ObukhovskiĬ and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal. 70 (2009), 3424-3436.
[18] N.S. Papageorgiou and S.Th. Kyritsi-Yiallourou, Handbook of Applied Analysis, Advances in Mechanics and Mathematics, Vol. 19, Springer Science Business Media, LLC, 2009.
[19] J.Y. Park, Y.C. Kwun and H.J. Lee, Controllability of second-order neutral functional differential inclusions in Banach spaces, J. Math. Anal. Appl. 285 (2003), 37-49.
[20] W.V. Petryshyn and P.M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25.
[21] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungaricae 32 (1978), 75-96.
[22] A. Ülger, Weak compactness in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc. 113 (1991), 143-149.
[23] V.V. Vasil'ev, S.G. Krein and S.I. Piskarev, Semigroups of operators, cosine operator functions, and linear differential equations, J. Soviet Math. 54 (4) (1991), 1042-1129.

Manuscript received November 28, 2015 accepted September 24, 2016

Jian-Zhong Xiao, Zhi-Yong Wang, Juan Liu
School of Mathematics and Statistics
Nanjing University of Information Science and Technology Nanjing 210044, P.R. CHINA

E-mail address: xiaojz@nuist.edu.cn

[^0]: 2010 Mathematics Subject Classification. 47H10, 34A60, 34A37, 34K30.
 Key words and phrases. Impulsive functional inclusion; cosine family of operators; fixed point for multivalued map; measure of noncompactness.

 This work is supported by the National Natural Science Foundation of China and Nanjing University of Information Science and Technology (2014X024).

