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POSITIVE SOLUTIONS

FOR PARAMETRIC DIRICHLET PROBLEMS

WITH INDEFINITE POTENTIAL

AND SUPERDIFFUSIVE REACTION

Sergiu Aizicovici — Nikolaos S. Papageorgiou — Vasile Staicu

Abstract. We consider a parametric semilinear Dirichlet problem driven
by the Laplacian plus an indefinite unbounded potential and with a reaction

of superdifissive type. Using variational and truncation techniques, we show

that there exists a critical parameter value λ∗>0 such that for all λ>λ∗ the
problem has at least two positive solutions, for λ = λ∗ the problem has at

least one positive solution, and no positive solutions exist when λ ∈ (0, λ∗).

Also, we show that for λ ≥ λ∗ the problem has a smallest positive solution.

1. Introduction

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω. In this paper

we study the following parametric Dirichlet problem:

(Pλ)

−4u(z) + β(z)u(z) = λu(z)q−1 − f(z, u(z)) in Ω,

u|∂Ω = 0, u > 0, λ > 0, 2 < q < 2∗,

where

(1.1) 2∗ =

2N/(N − 2) if N ≥ 3,

+∞ if N ∈ {1, 2}.
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Here β ∈ Ls(Ω), with s > N , and it may change sign. Also, f : Ω × R → R is

a Carathéodory perturbation (i.e. for all x ∈ Rz 7→ f(z, x) is measurable and

for almost all z ∈ Ω, x 7→ f(z, x) is continuous) which has a (q − 1)-superlinear

growth near +∞. So, the reaction of (Pλ) exhibits a superdiffusive kind of

behavior.

Recall that in superdiffusive logistic equations, the reaction has the form

λxq−1−xr−1 with 2 < q < r < 2∗. We show that there is a critical value λ∗ > 0

of the parameter such that for λ > λ∗ problem (Pλ) has at least two positive

smooth solutions, for λ = λ∗ problem (Pλ) has at least one positive smooth

solution, and for λ ∈ (0, λ∗) no positive smooth solutions exist.

Positive solutions for parametric semilinear Dirichlet problems with β ≥ 0

and more restrictive conditions on the reaction were obtained by Amann [2],

Dancer [4], Lin [13], Ouang-Shi [15] and Rabinowitz [17]. To the best of our

knowledge, no such results exist for problems with indefinite potential and gen-

eral superdiffusive reaction. Recently, Gasinski–Papageorgiou [9] and Kyritsi–

Papageorgiou [12] studied nonparametric semilinear problems with indefinite

potential, either with double resonance (see [9]), or with superlinear reaction

(see [12]). Finally, we mention the recent work of Gasinski and Papageorgiou [10]

on bifurcation type results for different types of p-Laplacian equations.

Our approach is variational, based on critical point theory coupled with

suitable truncation techniques.

2. Mathematical preliminaries and hypotheses

Throughout this paper, by ‖·‖p, 1 ≤ p ≤ ∞, we denote the norm of Lp(Ω), or

Lp(Ω,RN ) and by ‖·‖ we denote the norm of the Sobolev space H1
0 (Ω) defined by

‖u‖ = ‖Du‖2 for all u ∈ H1
0 (Ω).

Note that if 2 < q < 2∗ (see (1.1)), then H1
0 (Ω) ↪→ Lq(Ω), with compact em-

bedding. Also, if x ∈ R, then x± = max{±x, 0}. For every u ∈ H1
0 (Ω) we set

u±( · ) = u( · )±. We know that

u± ∈ H1
0 (Ω), |u| = u+ + u−, u = u+ − u−

(see [8]). If h : Ω × R → R is a measurable function, then the corresponding

Nemytskĭı map Nh is defined by

Nh(u)( · ) = h( · , u( · )) for all u ∈ H1
0 (Ω).

By | · |N we will denote the Lebesgue measure on RN .

Suppose that (X, ‖ · ‖) is a Banach space and X∗ is its topological dual. By

〈 · , · 〉 we denote the duality brackets for the pair (X∗, X), and we will use the

symbol “
w−→” to designate weak convergence.



Problems with Indefinite Potential and Superdiffusive Reaction 425

We say that the Banach space X has the Kadec–Klee property if the following

is true:

[xn
w−→ x and ‖xn‖ → ‖x‖]⇒ [xn → x].

A Hilbert space (and more generally, a locally uniformly convex Banach space)

has the Kadec–Klee property (see Gasinski and Papageorgiou [8, p. 911]).

Given ϕ ∈ C1(X), we say that ϕ satisfies the Palais–Smale condition (PS-

condition, for short), if the following is true:

every sequence {xn}n≥1⊆X such that {ϕ(xn)}n≥1⊆R is bounded and ϕ′(xn)→0

in X∗ as n→∞ admits a strongly convergent subsequence.

Using this compactness-type condition, we have the following minimax the-

orem, known in the literature as the “mountain pass theorem”:

Theorem 2.1. If ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈ X and

ρ > 0 are such that ‖x1 − x0‖ > ρ,

max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x− x0‖ = ρ} =: ηρ,

and c = inf
γ∈Γ

inf
t∈[0,1]

, where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}, then

c ≥ ηρ and c is a critical value of ϕ (i.e. there exists x∗ ∈ X such that ϕ′(x∗) = 0

and ϕ(x∗) = c).

In the study of problem (Pλ), we will use the Sobolev space H1
0 (Ω) and the

ordered Banach space C1
0 (Ω). The positive cone of the latter is

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior, given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n( · ) denotes the outward unit normal on ∂Ω.

We consider the C1-functional σ : H1
0 (Ω)→ R defined by

σ(u) = ‖Du‖22 +

∫
Ω

βu2 dz for all u ∈ H1
0 (Ω).

We assume that β ∈ Ls(Ω) with s > N/2. Let s′ > 1 denote the conjugate

exponent of s, i.e. 1/s+ 1/s = 1. We have

(2.1) 2s′ = 2
s

s− 1
< 2∗

(see (1.1)). Then, by virtue of the Sobolev embedding theorem, we haveH1
0 (Ω) ↪→

L2s′(Ω) and the embedding is compact. Using Hölder’s inequality, we have

(2.2)

∣∣∣∣ ∫
Ω

βu2 dz

∣∣∣∣ ≤ ‖β‖s‖u‖22s.
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Since 2 < 2s′ < 2∗ (see (2.1)), we have H1
0 (Ω) ↪→ L2s′(Ω) ↪→ L2(Ω), and, as we

already mentioned, the first embedding is compact. Invoking Ehrling’s inequality

(see, for example, Papageorgiou and Kyritsi [16, p. 698]), given ξj > 0, we can

find C(ξj) > 0 such that

(2.3) ‖u‖22s,≤ ε‖u‖2 + C(ε)‖u‖22 for all u ∈ H1
0 (Ω).

From (2.2) and (2.3), we obtain

‖Du‖22 −
∫

Ω

βu2dz ≤ ‖Du‖22 + ε‖β‖s‖u‖2 + C(ξj)‖β‖s‖u‖22,

hence (1 − ε‖β‖s)‖u‖2 ≤ σ(u) + C(ε)‖β‖s‖u‖22. Choosing ε ∈ (0, 1/‖β‖s), we

have

(2.4) ‖u‖2 ≤ C1(σ(u) + Ĉ‖u‖22) for some C1, Ĉ > 0 and all u ∈ H1
0 (Ω).

Consider the continuous bilinear form α : H1
0 (Ω)×H1

0 (Ω)→ R defined by

α(u, y) = C1

[
〈A(u), y〉+

∫
Ω

βuy dz

]
for all u, y ∈ H1

0 (Ω),

where A ∈ L(H1
0 (Ω), H−1(Ω)) is defined by

〈A(u), y〉 =

∫
Ω

(Du,Dy)RN for all u, y ∈ H1
0 (Ω).

From (2.4) we have

(2.5) α(u, u) + C1Ĉ‖u‖22 ≥ ‖u‖2 for all u ∈ H1
0 (Ω).

From (2.5) and Corollary 7D of Showalter (see [18, p. 78]), it follows that the

linear differential operator u 7→ −4u+βu, u ∈ H1
0 (Ω), has a spectrum, consisting

of a sequence of distinct eigenvalues {λ̂k}k≥1 such that

−C1Ĉ < λ̂1 < . . . < λ̂k →∞ as k →∞.

We know that λ̂1 is simple and admits the following variational characterization:

(2.6) λ̂1 = inf

{
σ(u)

‖u‖22
: u ∈ H1

0 (Ω), u 6= 0

}
(see also Mugnai and Papageorgiou [14]). Note that if β ≥ 0, then λ̂1 > 0. More

generally, if λ1 is the first eigenvalue of (−4, H1
0 (Ω)) and β ∈ Ls(Ω) satisfies

β−(z) := max{−β(z), 0} ≤ λ1 a.e. on Ω, β− 6= λ1,

then

σ(u) ≥ ‖Du‖22 −
∫

Ω

β−u2dz ≥ ξ0‖u‖2 for some ξ0 > 0, all u ∈ H1
0 (Ω)

(see Gasinski and Papageorgiou [9, Lemma 2.1]), hence λ̂1 > 0.
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The infimum in (2.6) is achieved on the eigenspace of λ̂1. Let û1 be the L2-

normalized (i.e. ‖û1‖2 = 1) eigenfunction corresponding to λ̂1. It is clear from

(2.6) that we may assume that û1 ≥ 0.

If s > N , then the regularity theory for Dirichlet problems (see Struwe [19,

pp. 218–219]) and the maximum principle of Vazquez [20] imply û1 ∈ intC+.

We will also use a “weighted” version of the previous eigenvalue problem.

Namely, let ξ ∈ L∞(Ω)+, ξ 6= 0 and consider the following eigenvalue problem:

−4u(z) + β(z)u(z) = λξ(z)u(z) in Ω, u|∂Ω = 0.

As before, we have an increasing sequence of eigenvalues denoted by λ̂k(ξ), k ≥ 1,

and λ̂k(ξ) → ∞ as k → ∞. Moreover, the unique continuation property (see

Garofalo and Lin [7]) implies that:

if ξ(z) ≤ ξ′(z) a.e. in Ω and ξ 6= ξ′, then λ̂k(ξ′) < λ̂k(ξ) for all k ≥ 1.

The hypotheses on the potential function β( · ) are the following:

H(β) β ∈ Ls(Ω) with s > N, β+ = max{β, 0} ∈ L∞(Ω).

The hypotheses on the perturbation f(z, x) are the following:

H(f) f : Ω × R → R is a Carathéodory function with f(z, 0) = 0 almost

everywhere in Ω and

(a) |f(z, x)| ≤ a(z) + Cxr−1 for almost all z ∈ Ω, all x ≥ 0, with

a ∈ L∞(Ω)+, C > 0, 2 < r < 2∗;

(b) lim
x→∞

f(z, x)/xq−1 = +∞ uniformly for almost all z ∈ Ω;

(c) f(z, x) ≥ −η(z)x for almost all z ∈ Ω, all x ≥ 0 with η ∈ L∞(Ω),

η(z) ≤ λ̂1 almost everywhere in Ω, η 6= λ̂1;

(d) for almost all z ∈ Ω, x→ f(z, x)/x is nondecreasing on (0,∞);

(e) there exists τ > 2 such that for every ρ > 0, one can find γρ > 0

with the property that for almost all z ∈ Ω, the map

x 7→ γρ(x
τ−1 + x)− f(z, x)

is nondecreasing on [0, ρ].

Remark 2.2. Since we are interested in positive solutions and all of the

above hypotheses concern only the nonnegative half-axis [0,+∞), without any

loss of generality, we may (and will) assume that f(z, x) = 0 for almost all z ∈ Ω,

all x ≤ 0.

As we illustrate in the examples that follow, hypotheses H(f) dictate a reac-

tion of superdiffusive type.

Examples 2.3. The following functions satisfy hypotheses H(f) (for the sake

of simplicity, we drop the z-dependence):

f1(x) = xτ−1 + ηx for a.a. x ≥ 0,
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where τ > q, η > 0 with −η < λ̂1, if λ̂1 ≤ 0;

f2(x) =

ηx if x ∈ [0, 1],

ηx+ xq−1 ln(x) if x > 1,

where η > 0 with −η < λ̂1, if λ̂1 ≤ 0.

By a positive solution of (Pλ), we mean a function u ∈ H1
0 (Ω)\{0} such that

u(z) ≥ 0 almost everywhere in Ω, which is a weak solution of (Pλ).

From the regularity theory of Dirichlet problems (see Struwe [19, pp. 218–

219]), we have u ∈ C+ \ {0} and

−4u(z) + β(z)u(z) = λu(z)q−1 − f(z, u(z)) a.e. in Ω.

Let ρ = ‖u‖∞ and let γρ > 0 be as postulated by hypothesis H(f)(e). Then

−4u(z) + (β(z) + γρ)u(z) + γρu(z)τ−1

= λu(z)q−1 + γρu(z) + γρu(z)τ−1 − f(z, u(z)) ≥ 0

almost everywhere in Ω, hence

4u(z) ≤ (‖β+‖∞ + γρ(1 + ρτ−2))u(z) a.e. in Ω,

therefore u ∈ intC+ (see Vazquez [20]). So, we see that every positive solution

of (Pλ) belongs to intC+.

3. A bifurcation-type theorem

In this section, we study the dependence on the parameter λ > 0 of the

positive solutions of (Pλ) and eventually obtain a bifurcation-type theorem, de-

scribing this dependence. Let

L = {λ > 0 : problem (Pλ) has a positive solution}.

First we show that this set is nonempty and upward directed.

Proposition 3.1. If hypotheses H(β) and H(f) hold, then L 6= ∅, and if

λ ∈ L with η > λ, then η ∈ L.

Proof. By virtue of hypotheses H(f)(a), (b), given any ξ > 0, we can find

C2 = C2(ξ) > 0 such that

(3.1) F (z, x) ≥ ξ

q
(x+)q − C2 for a.a. z ∈ Ω, all x ∈ R,

where F (z, x) =
∫ x

0
f(z, s) ds. Let gλ(z, x) = λ(x+)q−1 − f(z, x) + Ĉx+ for all

(z, x) ∈ Ω × R (see (2.4)). This is a Carathéodory function. We set Gλ(z, x) =∫ x
0
gλ(z, s) ds and consider the C1-functional ϕ̂λ : H1

0 (Ω)→ R defined by

ϕ̂λ(u) =
1

2
σ(u) +

Ĉ

2
‖u‖22 −

∫
Ω

Gλ(z, u(z)) dz for all u ∈ H1
0 (Ω).
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We have

ϕ̂λ(u) ≥ 1

2
σ(u) +

ĉ

2
‖u‖22 −

λ

q
‖u+‖qq(3.2)

+
ξ

q
‖u+‖qq −

ĉ

2
‖u+‖22 − C2|Ω| (see (3.1))

=
1

2
σ(u+) +

ξ − λ
q
‖u+‖qq +

1

2
(σ(u−) + Ĉ‖u−‖22)− C2|Ω|N .

Since ξ > 0 is arbitrary, we choose ξ > λ. Then, by (3.2), (2.4) and since q > 2,

we obtain

ϕ̂λ(u) ≥ 1

2
σ(u+) + C3‖u+‖q2 +

1

2C1
‖u−‖2 − C2|Ω|N for some C3 > 0(3.3)

≥ 1

2C1
‖u‖2 + C3‖u+‖q2 − C4‖u+‖22 − C2|Ω|N for some C4 > 0.

Because q > 2, from (3.3) we infer that ϕ̂λ is coercive. Exploiting the compact

embedding of H1
0 (Ω) into Lr(Ω) and Lq(Ω), we can easily show that ϕ̂λ is se-

quentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can

find u0 ∈ H1
0 (Ω) such that

(3.4) ϕ̂λ(u0) = inf{ϕ̂λ(u) : u ∈ H1
0 (Ω)} =: mλ.

Let u ∈ intC+. Then

ϕ̂λ(u) =
1

2
σ(u)− λ

q
‖u‖qq +

∫
Ω

F (z, u(z)) dz

and so, it is clear that for λ > 0 large we have ϕ̂λ(u) < 0. Hence

ϕ̂λ(u0) = mλ < 0 = ϕ̂λ(0) for λ > 0 large

i.e. u0 6= 0. From (3.4) we derive ϕ̂′λ(u0) = 0, hence

(3.5) A(u0) + (β + Ĉ)u0 = Ngλ(u0).

On (3.5) we act with −u−0 ∈ H1
0 (Ω) and obtain

‖Du−0 ‖22 +

∫
Ω

β(u−0 )2 dz + Ĉ‖u−0 ‖22 = 0

hence ‖u−0 ‖22/C1 ≤ 0 (see (2.4)), i.e. u0 ≥ 0, u0 6= 0. Therefore (3.5) becomes

A(u0) + βu0 = λuq−1
0 −Nf (u0),

hence

−4u0(z) + β(z)u0(z) = λu0(z)q−1 − f(z, u(z)) a.e. in Ω, u0|∂Ω = 0,

therefore u0 ∈ intC+ is a positive solution of (Pλ) for λ > 0 large. This proves

that L 6= ∅. Now, let λ ∈ L and η > λ. Since λ ∈ L we can find uλ ∈ intC+,

a solution of problem (Pλ). Let θ ∈ (0, 1) be such that

(3.6) λ = θq−2η
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(recall that q > 2). One has

−4(θuλ)(z) + β(z)(θuλ)(z) = θλuλ(z)q−1 − θf(z, uλ(z))(3.7)

≤ η(θuλ)q−1(z)− f(z, θuλ(z))

almost everywhere in Ω (see H(f)(d)).

We set u = θuλ ∈ intC+ and consider the following truncation-perturbation

of the reaction of problem (Pη):

(3.8) hη(z, x) =

ηu(z)q−1 − f(z, u(z)) + Ĉu(z) if x ≤ u(z),

ηxq−1 − f(z, x) + Ĉx if u(z) < x.

This is a Carathéodory function. We set Hη(z, x) =
∫ x

0
hη(z, s)ds and consider

the C1-functional ψη: H1
0 (Ω)→ R defined by

ψη(u) =
1

2
σ(u) +

Ĉ

2
‖u‖22 −

∫
Ω

Hη(z, u(z)) dz for all u ∈ H1
0 (Ω).

Using (3.8), we have

ψη(u) ≥ 1

2
σ(u) +

ĉ

2
‖u‖22 −

∫
{u<u}

(
η

q
uq − F (z, u) +

ĉ

2
u2

)
dz − C5

for some C5 > 0

≥ 1

2
σ(u) +

ĉ

2
‖u−‖22 −

η

q
‖u+‖qq +

∫
Ω

F (z, u) dz − C6

for some C6 > 0

≥ 1

2
σ(u) +

ĉ

2
‖u−‖22 −

η

q
‖u+‖qq +

ξ

q
‖u+‖qq − C7

for some C7 > 0 (see(3.1))

=
1

2
σ(u+) +

ξ − η
q
‖u+‖qq +

1

2
σ(u−) +

ĉ

2
‖u−‖22 − C7

≥ 1

2C1
‖u‖2 +

ξ − η
q
‖u+‖qq −

ĉ

2
‖u+‖22 − C7 (see (2.4)).

Since ξ > 0 is arbitrary, we choose ξ > η and infer

ψη(u) ≥ 1

2C1
‖u‖2 + C8‖u+‖q2 −

Ĉ

2
‖u+‖22 − C7 for some C8 > 0.

Because q > 2, it follows that ψη is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find uη ∈ H1
0 (Ω) such that

ψη(uη) = inf{ψη(u) : u ∈ H1
0 (Ω)}.

Then ψ′η(uη) = 0, hence

(3.9) A(uη) + (β + Ĉ)uη = Nhη (uη).
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On (3.9) we act with (u− uη)+ ∈ H1
0 (Ω) and use (3.8) to obtain

〈A(uη), (u− uη)+〉 +

∫
Ω

(β + Ĉ)uη(u− uη)+ dz

=

∫
Ω

(ηuq−1 − f(z, u) + Ĉu)(u− uη)+ dz

≥〈A(u), (u− uη)+〉+

∫
Ω

(β + Ĉ)u(u− uη)+ dz

(see (3.7)), hence

〈A(u)−A(uη), (u− uη)+〉+

∫
Ω

(β + Ĉ)[(u− uη)+]2 dz ≤ 0,

therefore

‖D(u− uη)+‖22 +

∫
Ω

β[(u− uη)+]2 dz + Ĉ‖(u− uη)+‖22 ≤ 0.

This implies ‖(u− uη)+‖2/C1 ≤ 0 (see (2.4)), hence u ≤ uη. So, (3.9) becomes

A(uη) + βuη = ηuq−1
η −Nf (uη)

(see (3.8)) and we conclude that uη ∈ intC+ solves (Pη), i.e. η ∈ L. �

Now let

(3.10) λ∗ = inf L.

Proposition 3.2. If hypotheses H(β) and H(f) hold, then λ∗ > 0.

Proof. First assume that λ̂1 > 0. By virtue of hypotheses H(f)(a)–(c), we

can find λ0 > 0 small such that

λxq−1 < λ̂1x+ f(z, x) for a.a. z ∈ Ω, all x ≥ 0 and all λ ∈ (0, λ0).

Suppose that for λ ∈ (0, λ0), we have λ ∈ L. Then, there exists uλ ∈ intC+,

a positive solution of problem (Pλ), such that

−4uλ(z) + β(z)uλ(z) = λuλ(z)q−1 − f(z, uλ(z)) < λ̂1uλ(z) a.e. in Ω.

Then σ(uλ) < λ̂1‖uλ‖22 which contradicts (2.6), hence λ∗ ≥ λ0 > 0.

Next assume that λ̂1 ≤ 0. Suppose that λ∗ = 0. We can find {λn}n>1 ⊂ L
such that λn > λn+1, λn ↓ 0 as n → ∞. For n ≥ 1, let un = uλn ∈ intC+ be

a positive solution of problem (Pλn). We have

(3.11) A(un) + βun = λnu
q−1
n −Nf (un) for all n ≥ 1,

hence

(3.12) σ(un) = λn‖un‖qq −
∫

Ω

f(z, un)un dz.

By hypothesis H(f)(b), given any ξ > 0, we can find M = M(ξ) ≥ 1, such that

(3.13) f(z, x)x ≥ ξxq for a.a. z ∈ Ω, all x ≥M.
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On the other hand, hypothesis H(f)(c) implies that

(3.14) f(z, x)x ≥ −η(z)x2 for a.a. z ∈ Ω, all x ∈ [0,M ].

Returning to (3.12), we have

σ(un) = λn‖un‖qq −
∫
{un≥M}

f(z, un)un dz −
∫
{0<un<M}

f(z, un)un dz

≤ λn‖un‖qq − ξ
∫
{un≥M}

uqn dz +

∫
{0<un<M}

ηu2
n dz (see (3.13), (3.14))

≤ (λn + ‖η‖∞ − ξ)
∫
{un≥M}

uqn dz + λn

∫
{0<un<M}

uqn dz +

∫
Ω

ηu2
n dz

(recall that q > 2, M ≥ 1), hence

(3.15)

σ(un)−
∫

Ω

ηu2
n dz ≤ (λn + ‖η‖∞ − ξ)

∫
{un≥M}

uqn dz + λn

∫
{0<un<M}

uqn dz.

Recall that ξ > 0 is arbitrary. So, choosing ξ > λ1 + ‖η‖∞ ≥ λn + ‖η‖∞
for all n ≥ 1, from (3.15) and Lemma 2.1 of [9] it follows that there exists

C9 = C9(ξ) > 0 such that ‖un‖2 ≤ λnC9 for all n ≥ 1, hence

(3.16) un → 0 in H1
0 (Ω).

Let yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1, and so we may assume

that

(3.17) yn
w−→ y in H1

0 (Ω) and yn → y in L2s′(Ω) as n→∞.

From (3.11), we have

(3.18) A(yn) + βyn = λnu
q−2
n yn −

Nf (un)

‖un‖
for all n ≥ 1.

Note that {Nf (un)/‖un‖}n≥1 ⊂ Lr
′
(Ω) is bounded (see hypotheses H(f)(a)

and (d)). Hence acting in (3.18) with yn − y ∈ H1
0 (Ω), passing to the limit as

n→∞ and using (3.17), we obtain

lim
n→∞

〈A(yn), yn − y〉 = 0,

hence ‖Dyn‖2 → ‖Dy‖2 and by the Kadec–Klee property of the Hilbert space

H1
0 (Ω), we infer that

(3.19) yn → y in H1
0 (Ω), hence ‖y‖ = 1.

We may assume that

(3.20)
Nf (un)

‖un‖
w−→ β in Lr

′
(Ω) and β = −η̂y with η̂ ≤ η
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(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 31). So, if in

(3.18) we pass to the limit as n→∞ and use (3.16), (3.19) and (3.20), we obtain

A(y) + βy = η̂y, y 6= 0,

hence

σ(y)−
∫

Ω

η̂y2 dz = 0,

therefore C10‖y‖2 ≤ 0 for some C10 > 0 (see Lemma 2.1 of [9]). It follows that

y = 0, a contradiction (see (3.19)). �

Proposition 3.3. If hypotheses H(β) and H(f) hold and λ > λ∗, then prob-

lem (Pλ) has at least two positive smooth solutions u0, û ∈ intC+.

Proof. Let λ′ ∈ (λ∗, λ) ∩ L and let uλ′ ∈ intC+ be a positive solution of

problem (Pλ′). As in the proof of Proposition 3.1, let θ ∈ (0, 1) be such that

λ′ = θq−2λ and set u = θuλ′ ∈ intC+. We introduce the following truncation-

perturbation of the reaction in problem (Pλ):

(3.21) hλ(z, x) =

λu(z)q−1 − f(z, u(z)) + Ĉu(z) if x ≤ u(z),

λxq−1 − f(z, x) + Ĉx if u(z) < x.

This is a Carathéodory function. We set Hλ(z, x) =
∫ x

0
hλ(z, s) ds and consider

the C1-functional ψλ : H1
0 (Ω)→ R defined by

ψλ(u) =
1

2
σ(u) +

Ĉ

2
‖u‖2 −

∫
Ω

Hλ(z, u(z)) dz, for all u ∈ H1
0 (Ω).

Reasoning as in the proof of Proposition 3.1, we can find u0 ∈ intC+, with

u ≤ u0, such that

(3.22) ψλ(u0) = inf{ψλ(u) : u ∈ H1
0 (Ω)}

and u0 is a solution of problem (Pλ). As in the proof of Proposition 3.1,

ϕ̂λ : H1
0 (Ω)→ R is the C1-functional defined by

ϕ̂λ(u) =
1

2
σ(u) +

Ĉ

2
‖u‖22 −

∫
Ω

Gλ(z, u(z)) dz for all u ∈ H1
0 (Ω),

where Gλ(z, x) =
∫ x

0
gλ(z, s) ds and

gλ(z, x) = λ(x+)q−1 − f(z, x) + Ĉx+ for all (z, x) ∈ Ω× R.

Let [u) := {u ∈ H1
0 (Ω) : u(z) ≤ u(z) a.e. in Ω}. From (3.21) it follows that

(3.23) ψλ|[u) = ϕ̂λ|[u) − C11 with C11 ∈ R.
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Let ρ = ‖u0‖∞ and let γρ > 0 and τ > 2 be as postulated by hypothesis H(f)(e).

Then

−4u0(z) + β(z)u0(z) + γρ(u0(z)τ−1 + u0(z))

=λu0(z)q−1 − f(z, u0(z)) + γρ(u0(z)τ−1 + u0(z))

≥λu(z)q−1 − f(z, u(z)) + γρ(u(z)τ−1 + u(z)) (since u ≤ u0, see H(f)(e))

≥ −4u(z) + β(z)u(z) + γρ(u(z)τ−1 + u(z)) a.e. in Ω,

(see (3.7) with η replaced by λ, and λ by λ′). Hence

4(u0 − u)(z) ≤ (β(z) + γρ)(u0(z)− u(z)) + γρ(u0(z)τ−1 − u(z)τ−1)

≤ (‖β+‖∞ + γρ + C12)(u0(z)− u(z))

almost everywhere in Ω, for some C12 > 0, therefore

(3.24) u0 − u ∈ intC+

(see Vazquez [20]). From (3.22)–(3.24) it follows that u0 is a local C1
0 (Ω)-

minimizer of ϕ̂λ. From Brezis and Nirenberg [3], we infer that u0 is a local

H1
0 (Ω)-minimizer of ϕ̂λ. Next, for all u ∈ H1

0 (Ω), we have

ϕ̂λ(u) ≥ 1

2
σ(u) +

ĉ

2
‖u−‖22 −

λ

q
‖u+‖qq −

∫
Ω

η(u+)2 dz(3.25)

(see H(f)(c))

≥ 1

2
σ(u+)− 1

2

∫
Ω

η(u+)2 dz +
1

2
σ(u−) +

ĉ

2
‖u−‖22 − C13‖u‖q

for some C13 > 0,

≥ C14

2
‖u+‖2 +

1

2C1
‖u−‖2 − C13‖u‖q for some C14 > 0

(see [9, Lemma 2.1])

and (2.4))

≥C15‖u‖2 − C13‖u‖q for some C15 > 0.

Since q > 2, from (3.25) it follows that u = 0 is a local minimizer of ϕ̂λ. Without

any loss of generality, we may assume that 0 = ϕ̂λ(0) ≤ ϕ̂λ(u0) (the reasoning

is similar if the opposite inequality is true). Since u0 is a local minimizer of ϕ̂λ,

reasoning as in [1] (see the proof of Proposition 29), we can find ρ ∈ (0, 1) small

such that

(3.26) 0 = ϕ̂λ(0) ≤ ϕ̂λ(u0) < inf{ϕ̂λ(u) : ‖u− u0‖ = ρ} = η̂λ.

Recall that ϕ̂λ is coercive (see the proof of Proposition 3.1). Hence it satisfies the

PS-condition. This fact and (3.26) enable us to use Theorem 2.1 (the mountain

pass theorem) and obtain û ∈ H1
0 (Ω) such that

(3.27) 0 = ϕ̂λ(0) ≤ ϕ̂λ(u0) < η̂λ ≤ ϕ̂λ(û)
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(see (3.26)) and

(3.28) ϕ̂′λ(û) = 0.

From (3.27) we see that û 6∈ {0, u0}. From (3.28) it follows that û ∈ intC+

solves problem (Pλ). �

Next we see what happens for λ = λ∗ (the “critical case”).

Proposition 3.4. If hypotheses H(β) and H(f) hold, then λ∗ ∈ L and so,

L = [λ∗,+∞).

Proof. Let {λn}n≥1 ⊂ L be such that λn ↓ λ∗ as n → ∞ (cf. (3.10)). For

n ≥ let un = uλn ∈ intC+ be a positive solution of problem (Pλn). We have

(3.29) A(un) + βun = λnu
q−1
n −Nf (un) for all n ≥ 1.

By virtue of hypotheses H(f)(a), (b), given any ξ>0, we can find C16 =C16(ξ)>0

such that

(3.30) f(z, x)x ≥ ξxq−1 − C16 for a.a. z ∈ Ω, all x ≥ 0.

On (3.29) we act with un ∈ intC+ and obtain

σ(un) = λn‖un‖qq −
∫

Ω

f(z, un)un dz ≤ λn‖un‖qq − ξ‖un‖qq + C16|Ω|N ,

hence

(3.31) σ(un) + (ξ − λn)‖un‖qq ≤ C16|Ω|N .

Choosing ξ > sup
n≥1

λn big, and recalling that q > 2, from (2.4) and (3.31) we infer

that {un}n≥1 ⊂ H1
0 (Ω) is bounded. Therefore we may assume that

un
w−→ u∗ in H1

0 (Ω) and un → u∗ in L2s′(Ω) and in Lr(Ω) as n→∞.

So, passing to the limit as n→∞ in (3.29), we obtain

A(u∗) + βu∗ = λ∗u
q−1
∗ −Nf (u∗),

hence u∗ ∈ C+ is a solution of (Pλ∗). We need to show that u∗ 6= 0 (then we

will have u∗ ∈ intC+). We argue by contradiction. So, suppose that u∗ = 0. We

set yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1, So, passing to a suitable

subsequence, if necessary, we may assume that

(3.32) yn
w−→ y in H1

0 (Ω) and yn → y in L2s′(Ω) and in Lr(Ω) as n→∞.

From (3.29) we have

(3.33) A(yn) + βyn = λnu
q−2
n yn −

Nf (un)

‖un‖
for all n ≥ 1.

By virtue of hypothesis H(f)(a), we can find C17 > 0 such that

0 ≤ f(z, x) ≤ C17(1 + xr−1) for a.a. z ∈ Ω, all x ≥ 0,



436 S. Aizicovici — N.S. Papageorgiou — V. Staicu

and we conclude that{Nf (un)/‖un‖}n≥1 ⊂ Lr
′
(Ω) is bounded. We may assume

that

(3.34)
Nf (un)

‖un‖
w−→ −yξ in Lr

′
(Ω) with ξ ∈ L∞(Ω)+, ξ ≤ η

(see [1]). On (3.33) we act with yn − y ∈ H1
0 (Ω), pass to the limit as n → ∞

and use (3.32) and (3.34), as before (see the proof of Proposition 3.1). By the

Kadec–Klee property of Hilbert spaces we infer that

(3.35) yn → y in H1
0 (Ω), hence ‖y‖ = 1.

So, if we pass to the limit as n→∞ in (3.33) and use (3.35), then

(3.36) A(y) + βy = ξy with y ≥ 0, ‖y‖ = 1.

But since ξ ≤ η ≤ λ̂1, η 6= λ̂1, we have λ̂1(ξ) > λ̂1(λ̂1) = 1, and so it follows that

y may not be an eigenfunction of (3.36); consequently, y ≡ 0, a contradiction.

This proves that u∗ 6= 0, and so u∗ ∈ intC+ is a positive solution of (Pλ∗), and

we conclude that λ∗ ∈ L. �

Proposition 3.5. If hypotheses H(β) and H(f) hold and λ ≥ λ∗, then prob-

lem (Pλ) has a smallest positive solution uλ ∈ intC+.

Proof. Let λ ≥ λ∗ and let S(λ) be the set of positive solutions of (Pλ).

From Propositions 3.2 and 3.3 we know that S(λ) 6= ∅ and S(λ) ⊂ intC+. Let

C be a chain (i.e. a totally ordered subset) of S(λ). Invoking Dunford and

Schwartz [5, p. 336], we can find {un}n≥1 ⊂ C such that

inf
c

= inf
n≥1

un.

Moreover, by virtue of Lemma 1.1.5 of [11, p. 15], we can choose {un}n≥1 to be

decreasing. Then

A(un) + βun = λuq−1
n −Nf (un) and 0 ≤ un ≤ u1 for all n ≥ 1,

hence {un}n≥1 ⊂ H1
0 (Ω) is bounded. So, we may assume that

un
w−→ uλ in H1

0 (Ω), and un → uλ in L2s′(Ω) and in Lr(Ω) as n→∞.

Assuming that uλ = 0 and using yn = un/‖un‖, n ≥ 1, as in the proof

of Proposition 3.3, we reach a contradiction. So, uλ 6= 0 and uλ ∈ S(λ).

Then uλ = inf C ∈ S(λ) and since C is an arbitrary chain, we can apply

the Kuratowski–Zorn lemma and find uλ ∈ S(λ), a minimal element. From

Lemma 4.3 of Filippakis, Kristaly and Papageorgiou [6] it follows that S(λ)

is downward directed (i.e. if u, u′ ∈ S(λ), one can find y ∈ S(λ) such that

y ≤ min{u, u′}). Therefore, we conclude that uλ ∈ intC+ is the smallest posi-

tive solution of (Pλ). �
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Summarizing the above results for problem (Pλ), we conclude that the fol-

lowing bifurcation-type theorem holds true:

Theorem 3.6. If hypotheses H(β) and H(f) hold, then there exists λ∗ > 0

such that:

(a) for λ > λ∗, problem (Pλ) has at least two positive smooth solutions

u0, û ∈ intC+;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;

(c) for λ ∈ (0, λ∗), problem (Pλ) has no positive solution.

Moreover, problem (Pλ) has a smallest positive solution uλ ∈ intC+, for every

λ ≥ λ∗.
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