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PERIODIC SOLUTIONS OF SINGULAR EQUATIONS

Antonio J. Ureña

Abstract. We study second-order ordinary differential equations of New-

tonian type. The forcing terms under consideration are the product of
a nonlinearity which is singular at the origin with an indefinite weight.

Under some additional assumptions we show the existence of periodic so-

lutions.

1. Introduction and main result

The purpose of this note is to study the solvability of the T -periodic problem

associated to the equation

(1.1) ẍ = h(t) g(x), x > 0,

under the following assumptions: T > 0 is a fixed period and

(h0) the weight function h : R→ R is T -periodic and locally integrable,

(g) the nonlinearity g : ]0,+∞[→ ]0,+∞[ is a decreasing homeomorphism.

In particular, at x = 0 there is a singularity, and we are interested in T -periodic

solutions x = x(t) which avoid this singularity in the sense that x(t) > 0 for all

t ∈ [0, T ].
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As a model, we have in mind the so-called generalized Emden–Fowler equa-

tion with negative exponent −p,

(1.2) ẍ =
h(t)

xp
,

corresponding to the choice g(x) = 1/xp (here p is a positive constant). Periodic

solutions of equations of this type appear in some problems of engineering, in-

cluding the stabilization of matter-wave breathers in Bose–Einstein condensates,

the propagation of guided waves in optical fibres, or the electromagnetic trapping

of a neutral atom near a charged wire [4]. In the case of p = 2, this equation also

is used to model the one-dimensional oscillations of a free α-particle subject to

the influence of the electric field created by a charge of a time-depending magni-

tude fixed at the origin (magnetic interaction between the charges is excluded).

The Dirichlet problem associated to (1.2) has been treated by many authors.

To the best of our knowledge, the history starts with Nachman and Callegari [14],

who considered the particular case p = 1 and h(t) = −t. A mayor breakthrough

came with the work of Taliaferro [16], who gave necessary and sufficient condi-

tions on the (negative but otherwise arbitrary) weight function h for the solvabil-

ity of this problem. This paper received a lot of interest and was subsequently

generalized in different directions by Luning and Perry [13], Bobisud, O’Regan

and Royalty [2], Gatica, Oliker and Waltman [7], Guo [10], Janus and Myjak

[12], Habets and Zanolin [11], and Gaudenzi, Habets and Zanolin [8], among

others. See, e.g. [1] for a classical review on the subject.

Contrastingly, the corresponding periodic problem seems to have received

little attention in the literature, except for the pioneer work by Bravo and Torres

[4]. When p = 3 and the weight function h is piecewise-constant with only two

values, they used a careful phase-plane analysis to prove that (1.2) has a periodic

solution if and only if the two values of h have different sign and the integral of

h over a period is negative. The question arises: how do these results extend to

equation (1.1) under more general assumptions on h and g?

It suffices to integrate both sides of (1.1) to obtain the first necessary condi-

tion for the existence of a T -periodic solution: the weight function h (assumed

nontrivial) should change sign (remember that the nonlinearity g is positive). It

means that we are dealing with indefinite problems. In particular,

(h1) meas{t ∈ [0, T ] : h(t) > 0} > 0.

On the other hand, after dividing both sides of the equation by g and integrat-

ing by parts the left side, one obtains that, at least when g : ]0,+∞[→ ]0,+∞[

is a C1-diffeomorphism, the second necessary condition for a T -periodic solution

to exist is that

(h2)
1

T

∫ T

0

h(t) dt < 0.
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Our previous question can now be made more precise: what additional con-

ditions on the nonlinearity g and the weight function h can be added to (g) and

(h0)–(h2) in order to ensure the existence of a T -periodic solution of (1.1)?

We shall focus our attention on two families of weight functions: the class of

piecewise-constant functions and the class of functions having only nondegenerate

zeroes. The (discontinuous) T -periodic function h : R→ R is said to be piecewise-

constant if there is a partition 0 = t0 < t1 < . . . < tp = T of [0, T ] such

that h|]ti−1,ti[ ≡ hi is constant for each i = 1, . . . , p. On the other hand, the

continuous and T -periodic function h is said to have only nondegenerate zeroes

provided that it is continuously differentiable, with nonvanishing derivative, in

a neighbourhood of each of its zeroes.

Our assumptions on the nonlinearity g will consist of making more precise

the strength of the singularity at x = 0. With this purpose we shall say that this

singularity is strong (resp. very strong) provided that∫ 1

0

g(x) dx = +∞
(

resp.

∫ 1

0

xg(x) dx = +∞
)
.

Combining the assumptions on h with those on g we shall distinguish two

possible situations:

(A) The weight function h is piecewise constant and the singularity of g at

x = 0 is strong.

(B) The weight function h has only nondegenerate zeroes and the singularity

of g at x = 0 is very strong.

The main result of this paper is the following:

Theorem 1.1. Assume (g) and (h0)–(h2). Assume further that we are either

in situation (A) or in situation (B). Then (1.1) has a T -periodic solution.

Some comments on the definition of strong singularity considered above:

In [9], Gordon introduced a notion of ‘strong force’ which has become very

popular. Adapting his definition to our situation, the nonlinearity g is a strong

force provided that there exist some ε > 0 and a C2 function ϕ : ]0, ε[ → R
with ϕ(x) → +∞ as x → 0 such that the ‘potential energy’ function G (x) :=

−
∫ x

1
g(y) dy satisfies G (x) ≥ ϕ′(x)2 for every x > 0. It is easy to check that this

implies that
∫ 1

0
G (x)dx = +∞, and, integrating by parts,

∫ 1

0
xg(x) dx = +∞.

Thus, Gordon’s notion of strong force actually implies that the singularity of g

at x = 0 is very strong in the sense considered above. The converse does not

hold; it suffices to check that the model nonlinearity g(x) = 1/xp has a strong

singularity at x = 0 provided that p ≥ 1, and a very strong singularity at x = 0

provided that p ≥ 2, while it is a strong force in the sense of Gordon when p ≥ 3.

The related Neumann problem has been recently studied by Boscaggin and

Zanolin [3]. They introduce a suitable change of variables and subsequently look
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for the intersection points between the curves of solutions departing or arriving

with zero velocity. In this way, they show the existence of Neumann solutions

in many cases where the weight function changes sign once on the given time

interval. While their results apply to a much wider range of nonlinearities g

than those considered in the present paper, it looks likely that the arguments

which follow can be adapted to prove the existence of Neumann solutions in

some situations when the weight function changes sign an arbitrary number of

times.

Theorem 1.1 motivates the question of the necessity of its various assump-

tions. For instance, it seems natural to ask whether the result still holds if the

only-nondegenerate-zeroes assumption is removed from situation (B), or when

the condition on the strength of the singularity is removed from situations (A)

and (B). In a forthcoming paper [15] it will be shown that the answer to both

questions is negative.

This paper is structured in the following way. In Section 2 we consider the

semiperiodic problem, i.e. we look for solutions x : [0, T ] → R of our equation

satisfying x(0) = x(T ), but with no condition on the slopes ẋ(0), ẋ(T ). This less

restrictive problem is underdetermined, and continuation methods from degree

theory imply the existence of a continuum Σ of solutions containing curves with

any positive minimum value. Next, we observe that some elements x = x(t) of

Σ with large minimum value satisfy ẋ(T ) ≤ ẋ(0). In Section 3 we see that the

solutions of the semiperiodic problem satisfying this property have a bounded

oscillation on the time interval [0, T ]. A partial converse of this result is estab-

lished in Section 4, where we observe that the solutions whose minimum value

is small have a large oscillation. It means that Σ must contain also some curves

x = x(t) with ẋ(T ) ≥ x(0), and being connected, it must contain a solution of

the semiperiodic problem with ẋ(0) = ẋ(T ). This is a T -periodic solution of our

equation, and Theorem 1.1 follows.

2. The semiperiodic problem

Throughout this section we assume (h0)–(h2) and (g). Let us momentarily

weaken the periodic boundary conditions and consider firstly an underdeter-

mined problem, which we shall call (SP) (the initials coming from ‘semiperiodic

problem’). It consists of equation (1.1) and the boundary condition

x(0) = x(T ).

Solutions of (SP) may not give rise to periodic solutions of (1.1) because the

derivatives at times t = 0 and t = T may be different. Problem (SP), being less

restrictive, should be easier to solve than the full periodic problem. Indeed, the

main result of this section, which will be obtained from continuation arguments

of degree theory, states that (SP) has many solutions.
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Proposition 2.1. There exists a connected set Σ ⊂ C1[0, T ] of solutions of

(SP) satisfying

(2.1)
{

min
[0,T ]

x : x ∈ Σ
}

= ]0,+∞[.

We shall prepare the proof of this result by means of some lemmas. The first

one exploits the fact that the right hand side of our equation becomes weaker and

weaker as we approach the infinity to give a priori bounds for the oscillation of

solutions of (1.1) (not necessarily satisfying any boundary condition), provided

that the derivative vanishes at some time when the solution is far away from the

origin.

Lemma 2.2. There exists some M > 1 with the following property: any

solution x = x(t) of (1.1) having a critical value xc ≥M is defined on the whole

time interval [0, T ] and satisfies |x(t)− xc| < 1 for all t ∈ [0, T ].

Proof. We letM := g−1(1/(T‖h‖L1(0,T )))+1 and choose a solution x = x(t)

of our equation with x(tc) = xc ≥ M and ẋ(tc) = 0 for some tc ∈ [0, T ]. The

reasoning for t ∈ [0, tc] being analogous, we can limit ourselves to establish the

result for t ∈ [tc, T ]. With this purpose we use a contradiction argument and

assume that there is some t1 ∈ ]tc, T ] such that |x(t) − x(tc)| < 1 for every

t ∈ [tc, t1[ and |x(t1) − x(tc)| = 1. Now, x(s) > g−1(1/(T‖h‖L1(0,T ))), or, what

is the same, 0 < g(x(s)) < 1/(T‖h‖L1(0,T )) for any s ∈ [tc, t1[. It follows that

|ẋ(t)| = |ẋ(t)− ẋ(tc)| =
∣∣∣∣ ∫ t

tc

h(s)g(x(s)) ds

∣∣∣∣ < 1

T
for any t ∈ [tc, t1],

and integrating again we deduce that |x(t1) − x(tc)| ≤
∫ t1
tc
|ẋ(t)| dt < 1. This

assertion contradicts the choice of t1 and concludes the proof. �

From now on we fix M > 1 as given by Lemma 2.2 and define α0 := M + 1.

Choose some number β0 ≥M + 3, and pick solutions α = α(t), β = β(t) of (1.1)

satisfying the initial condition

x(0) = γ, ẋ(0) = 0,

with γ = α0 and γ = β0, respectively. Lemma 2.2 gives

α(t) < M + 2 ≤ β0 − 1 < β(t) for any t ∈ [0, T ],

so that, for any x0 ∈ [M + 2, β0 − 1], the functions α, β make up an ordered

pair of lower and upper solutions for the Dirichlet problem (SP)x0 , consisting in

combining equation (1.1) with the initial condition

x(0) = x(T ) = x0.

Consequently, the usual upper and lower solutions method for the Dirichlet prob-

lem (see, e.g. [6]) implies that (SP)x0 is solvable. The arbitrariness of β0 ≥M+3
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means that this is true for every x0 ≥ M + 2, and we deduce the existence of

infinitely many solutions of (SP).

With the purpose of proving Proposition 2.1 we need to refine this argument

and construct large connected sets of solutions of (SP). We start by observing

that, again by Lemma 2.2, if β0 ≥ M + 5, then for every x0 ∈ [M + 3, β0 − 2]

and any solution x = x(t) of (SP)x0
with α(t) ≤ x(t) ≤ β(t) on [0, T ] one has

(2.2) α(t) < M + 2 ≤ x0 − 1 < x(t) < x0 + 1 ≤ β0 − 1 < β(t)

for every t ∈ [0, T ], the fact which will be used later.

We now rewrite our problem as a fixed-point equation depending on a pa-

rameter. This is a standard procedure, so that we describe it briefly. We shall

work on the Banach space X := C(R/TZ) of continuous and T -periodic func-

tions on the real line. This space splits as the direct sum of the 1-dimensional

subspace of constant functions, canonically identified to R, and the hyperplane

X̃ := {x ∈ X : x(0) = 0}. Correspondingly, we decompose functions x ∈ X in

the form x = x0 + x̃, where x0 = x(0) and x̃ ∈ X̃. Problem (SP)x0
now becomes

a fixed point equation in X̃, depending on the parameter x0:

(2.3) x̃ = F [x0, x̃] := KN [x0, x̃].

Here, N [x0, x̃](t) = h(t)g(x0 + x̃(t)) and (Kx)(t) :=
∫ T

0
G(t, s)x(s) ds are, re-

spectively, the Nemytskĭı operator associated to the right hand side of our equa-

tion, and the integral operator whose kernel G = G(t, s) is the Green function

for the 1-dimensional Poisson equation ü = ϕ(t) under homogeneous Dirichlet

boundary conditions. Equation (2.3) makes sense on the set

Ω := {(x0, x̃) ∈ ]0,+∞[× X̃ : x0 + x̃(t) > 0 for any t ⊂ R},

which is open in R × X̃. Observe that N : Ω → L1(R/TZ) is continuous, while

K : L1(R/TZ)→ X̃ is linear and compact. Moreover, N takes closed subsets of

R× X̃ which are contained in Ω into bounded subsets of L1(R/TZ). In this way,

F := K ◦N : Ω → X̃ is completely continuous, and the Leray–Schauder degree

theory applies.

We let, as before, α0 := M + 1, and fix some number β0 ≥ α0 + 5, together

with corresponding solutions α = α(t), β = β(t) of (I)α0
and (I)β0

, respectively.

Consider the set

Ω∗ := {(x0, x̃) ∈ R× X̃ : M + 3 ≤ x0 ≤ β0 − 2

and α(t) < x0 + x̃(t) < β(t) for all t ∈ [0, T ]},

and observe that Ω∗ is bounded and open relative to [α0 + 2, β0 − 2] × X̃, its

closure Ω∗ being contained in Ω. Moreover, in view of (2.2), no solution (x0, x̃)

of (2.3) belongs to the boundary Ω∗ \ Ω∗. And well-known arguments (see, e.g.

[6, Chapter III]) show that, for each x0 ∈ [M + 3, β0 − 2], the Leray–Schauder
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fixed-point degree of F [x0, · ] on the section Ω∗ ∩ ({x0} × X̃) is one. Combining

the excision property of the degree with Lemma 2.2 we see that, indeed,

(2.4) degLS
(
IdX̃ − F (x0, · ), B̃, 0

)
= 1

(we denote by B̃ to the open unit ball on X̃). In principle, this is true for every

x0 ∈ [M +3, β0−2], but the arbitrariness of β0 ≥M +5 means that the equality

above actually holds for every x0 ≥M + 3.

Proof of Proposition 2.1. In view of the arguments above, it suffices

to find a connected set Σ ⊂ R × X̃ of solutions of (2.3) with
{

min
[0,T ]

(x0 + x̃) :

(x0, x̃) ∈ Σ
}

= ]0,+∞[.

Our departing point will be the computation of the degree done in (2.4);

reasoning as in [5, pp. 168–169] we find a connected component Σ of the set of

solutions (x0, x̃) ∈ Ω of (2.3) such that Σ∩({x0}×B̃) 6= ∅ for every x0 ≥M+3. It

follows that the interval
{

mint∈[0,T ](x0 + x̃) : (x0, x̃) ∈ Σ
}

contains [M+3,+∞[,

so that it only remains to check that

(2.5) inf
(x0,x̃)∈Σ

[
min
[0,T ]

(x0 + x̃)
]

= 0.

Standard continuation theorems state that the connected set Σ, which comes

from [M + 3,+∞[ × B̃, cannot be entirely contained there, and must instead

satisfy one of the following three possibilities:

(i) The projection of Σ on X̃ is unbounded in X̃.

(ii) The projection of Σ on X̃ is bounded in X̃, and Σ ∩ ∂Ω 6= ∅. Observe

that it includes in particular the possibility that the projection of Σ on

R is the whole interval ]0,+∞[.

(iii) The projection of Σ on X̃ is bounded in X̃, and Σ∩({x0}×X̃) 6⊂ {x0}×B̃
for every x0 ≥M + 3.

(See Figure 1.) Let us start by showing that case (iii) cannot happen in our

problem. Indeed, if one assumes the projection of Σ on X̃ to be bounded, there

must exist some M1 > 0 such that min
[0,T ]

(x0 + x̃) > M for every (x0, x̃) ∈ Σ with

x0 > M1. Lemma 2.2 then implies that Σ ∩ ({x0} × X̃) ⊂ {x0} × B̃ if x0 > M1,

contradicting (iii).

Finally, we observe that cases (i) and (ii) imply (2.5). This is obviously true

for case (ii), as ∂Ω =
{

(x0, x̃) ∈ [0,+∞[ × X̃ : min
[0,T ]

(x0 + x̃) = 0
}

. Concerning

case (i), we use a contradiction argument and assume instead the existence of

some ρ > 0 such that x0 + x̃ ≥ ρ for any t ∈ [0, T ]. Our Nemytskii operator

N : Ω→ L1(R/TZ) is bounded on the set Ωρ := {(x0, x̃) ∈ R× X̃ : x0 + x̃(t) ≥
ρ for all t ∈ [0, T ]}, and (2.3) implies that the projection of Σ on X̃ is bounded.

This is a contradiction and concludes the proof. �
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−→
x0

x̃↑

Case (i)

−→
x0

x̃↑

Case (ii)

−→
x0

x̃↑

Case (iii)

Figure 1. The possibilities of the set Σ.

To conclude this section we study the difference of slope of the elements in

our connected set Σ at the endpoints of the time interval [0, T ]. We show that

the final slope must be smaller than the initial slope, at least for some functions

x ∈ Σ.

Lemma 2.3. Let the connected set Σ be as given by Proposition 2.1. Then it

contains some curves x = x(t) with ẋ(T ) ≤ ẋ(0).

Proof. It is divided into three steps.

Step 1. There exists a constant C > 0 (depending only on h and T ), such

that every solution x = x(t) of (SP) satisfies

max
[0,T ]

x−min
[0,T ]

x ≤ Cg(minx).

Indeed, since g : ]0,+∞[→ ]0,+∞[ is decreasing, the Nemytskĭı operator N

has the following property:

‖N [x0, x̃]‖L1 ≤ ‖h‖L1g
(

min
[0,T ]

x
)
.

On the other hand, the operator K : L1(R/TZ) → X̃ being continuous, we

see that every solution (x0, x̃) of (2.3) satisfies

‖x̃‖L∞ ≤ ‖K‖‖h‖L1g
(

min
[0,T ]

(x0 + x̃)
)
.

Thus, the result follows after taking C := 2‖K‖ ‖h‖L1 .

Step 2. There is a constant 0 < ε < 1 with the following property: if x = x(t)

is a solution of (SP) with ẋ(0) < ẋ(T ), then g
(

max
[0,T ]

x
)
< εg

(
min
[0,T ]

x
)

.

To check this we integrate both sides of the differential equation, to find

0 < ẋ(T )− ẋ(0) =

∫ T

0

h(t)g(x(t)) dt

≤ g
(

min
[0,T ]

x
)∫ T

0

h+(t) dt− g
(

max
[0,T ]

x
)∫ T

0

h−(t)dt,
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where h = h+ − h−, h+ := max(h, 0) and h− := min(−h, 0). Consequently, we

see that

g
(

max
[0,T ]

x
)
< εg

(
min
[0,T ]

x
)
,

where ε :=
∫ T

0
h+(t) dt/

∫ T
0
h−(t) dt. Observe that 0 < ε < 1 as claimed (since∫ T

0
h(t) dt < 0).

Step 3. The end of the proof.

Combining the first and second steps we see that, if x = x(t) is a solution of

(SP) with ẋ(0) < ẋ(T ), then g(minx+Cg(minx)) < εg(minx), where 0 < ε < 1

is a constant. We prove the result by a contradiction argument and assume

instead that all elements x ∈ Σ satisfy ẋ(0) < ẋ(T ); this yields

(2.6) g(u+ Cg(u)) < εg(u), u > 0.

We consider the increasing sequence {un}n of positive numbers defined by

u0 := 1, un := un−1 + Cg(un−1) if n ≥ 1,

and it follows from (2.6) that g(un) < εg(un−1), and hence,

(2.7) g(un) < εng(u0) for every n ≥ 1.

Since un = u0 +C(g(u0) + g(u1) + . . .+ g(un−1)) we deduce that {un} is a con-

vergent sequence, and in view of (2.7), its limit must be a zero of g. This is

impossible since g was assumed always positive, and the proof is complete. �

3. The oscillation of lower solutions is bounded

Throughout this section we assume (h0)–(h2) and (g); furthermore, the sin-

gularity of g at x = 0 will be assumed to be strong. We shall prepare to the

proof of Theorem 1.1 with several auxiliary results. To start with, we consider

the homeomorphism G of the interval [0,+∞[ to itself defined by

(3.1) G(x) :=

∫ x

0

1

g(y)
dy, x ≥ 0.

The lemma below gives bounds for the distance between points in [0,+∞[ pro-

vided that the distance between their images is controlled.

Lemma 3.1. For any M > 0 there exists some N > 0 such that whenever

x, y ≥ 0 satisfy |G(x)− G(y)| ≤M then |x− y| ≤ N .

Proof. Using a contradiction argument, assume the existence of sequences

{xn}n, {yn}n ⊂ [0,+∞[ such that

(a) |xn − yn| → ∞,

(b) sup
n
|G(xn)− G(yn)| <∞.
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The first condition implies that either {xn}n or {yn}n (or both) are unbounded,

and after passing to a subsequence we may assume that, for instance, xn → +∞.

Thus, G(xn) → +∞, and (b) implies that also G(yn) → +∞, or, what is the

same, yn → +∞.

In particular, for n big enough, xn, yn ≥ g−1(1). For such values of n one

has

|G(yn)− G(xn)| =
∣∣∣∣ ∫ yn

xn

1

g(z)
dz

∣∣∣∣ ≥ |yn − xn|,
and, remembering (a), we deduce that |G(yn)−G(xn)| → +∞. This contradicts

(b) and concludes the proof of the lemma. �

It will be convenient to single out those solutions of (SP) which exit the

time interval [0, T ] with a smaller slope that they entered it. With this aim we

consider problem (LP) consisting of equation (1.1) and the boundary conditions

x(0) = x(T ), ẋ(0) ≥ ẋ(T ).

The name of problem (LP) comes from the fact that its solutions are lower so-

lutions for the associated periodic problem. Lemma 2.3 can now be reformulated

as follows: the connected set Σ given by Proposition 2.1 contains some curves

which are solutions of (LP). Our strategy to prove Theorem 1.1 will consist in

showing that Σ cannot be entirely composed of solutions of (LP) (and hence it

contains some periodic solutions), because the oscillation (meaning the differ-

ence between the maximum and the minimum values) of the solutions of (LP)

is bounded, and it forces the set of such solutions to be uniformly bounded from

below by a positive constant. The remaining of the paper is devoted to checking

og these facts.

Lemma 3.2. There exists a constant N > 0 (depending on h and g but not

on x) with the following property: every solution x = x(t) of (LP) satisfies

max
[0,T ]

x−min
[0,T ]

x < N .

Proof. In view of Lemma 3.1 it suffices to show that every solution x = x(t)

of (LP) satisfies

(3.2) |G(x(t2))− G(x(t1))| ≤ 2‖h‖L1 for every t1, t2 ∈ [0, T ],

the function G being defined as in (3.1). This task will be divided into two steps.

Step 1. Assume firstly that g : ]0,+∞[ → ]0,+∞[ is a decreasing diffeo-

morphism of class C1. Then, the function t 7→ ẋ(t)/g(x(t)) is continuously

differentiable on [0, T ], and

(3.3)
d

dt

[
ẋ(t)

g(x(t))

]
= h(t)− g′(x(t)) ẋ(t)2

g(x(t))2
.
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We integrate both sides of the equality, to find that

−
∫ T

0

g′(x(t)) ẋ(t)2

g(x(t))2
dt =

ẋ(T )

g(x(T ))
− ẋ(0)

g(x(0))
−
∫ T

0

h(t) dt ≤ −
∫ T

0

h(t) dt ≤ ‖h‖L1 ,

the first inequality follows from the boundary conditions in (LP). Since g′ is

always negative, the expression inside the left integral has constant negative

sign, and we deduce ∥∥∥∥g′(x) ẋ2

g(x)2

∥∥∥∥
L1

≤ ‖h‖L1 ,

and then, going back to (3.3), the triangle inequality gives∥∥∥∥ ddt
[
ẋ

g(x)

]∥∥∥∥
L1

≤ 2‖h‖L1 .

Moreover, ẋ(t) must vanish at some point t ∈ [0, T ] (by Rolle’s Theorem), and

we conclude ∥∥∥∥ ẋ

g(x)

∥∥∥∥
L∞

=

∥∥∥∥ ddt
[
G(x)

]∥∥∥∥
L∞
≤ 2‖h‖L1 ,

implying (3.2).

Step 2. Let us now go into the general case in which g is a (not necessarily

differentiable) decreasing homeomorphism of ]0,+∞[ to itself. Fix a solution

x = x(t) of (LP); it is easy to construct, for any ε > 0, a C1 diffeomorphism

gε : ]0,+∞[→ ]0,+∞[ such that

(3.4)

(
1

1 + ε

)
g(y) < gε(y) < (1 + ε)g(y) if y ∈

[
min
[0,T ]

x,max
[0,T ]

x
]
.

We are led to consider the modified weight function hε ∈ L1(0, T ) defined by

hε(t) := g(x(t))h(t)/gε(x(t)). It satisfies

−(1 + ε)|h(t)| < hε(t) < (1 + ε)|h(t)|, t ∈ [0, T ],

and we observe that x = x(t) is a solution of

(3.5) ẍ(t) = hε(t)gε(x(t)), t ∈ [0, T ],

for any ε > 0. Since gε is a C1 diffeomorphism of ]0,+∞[ the first step applies,

and gives

|Gε(x(t2))− Gε(x(t1))| ≤ 2‖hε‖L1 ≤ 2(1 + ε)‖h‖L1 for every t1, t2 ∈ [0, T ],

where Gε(u) :=
∫ u

0
(1/gε(y)) dy. Observe, on the other hand, that

|Gε(x(t2))− Gε(x(t1))| =
∣∣∣∣ ∫ x(t2)

x(t1)

1

gε(y)
dy

∣∣∣∣
≥ 1

1 + ε

∣∣∣∣ ∫ x(t2)

x(t1)

1

g(y)
dy

∣∣∣∣ =
|G(x(t2))− G(x(t1))|

1 + ε
,
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and hence,

|G(x(t2))− G(x(t1))| ≤ 2(1 + ε)2‖h‖L1 , t1, t2 ∈ [0, T ].

Here, ε > 0 is arbitrary, and letting ε → 0 we get (3.2). This completes the

proof of the lemma. �

We consider next the ‘potential energy’ function

(3.6) G (x) := −
∫ x

1

g(y) dy, x > 0.

Observe that it is strictly decreasing and convex. In this section we are assuming

that the singularity of g at x = 0 is strong, and hence,

lim
x→0

G (x) = +∞.

Let now {hn}n and {ρn}n be sequences of positive numbers with ρn → 0 and

hnG (ρn)→ +∞. Fix some compact interval [t0, t1] and choose, for each positive

integer n, a W 2,1 solution xn : [t0, t1]→ ]0,+∞[ of the initial value problemẍn(t) ≥ hng(xn(t)), t ∈ [t0, t1],

xn(t0) = ρn, ẋn(t0) ≥ 0.

Lemma 3.3. Under the above, xn(t) → +∞ as n → ∞, for any given t ∈
]t0, t1].

Proof. There is no loss of generality in assuming that xn(t1) ≥ 1 for each

n (otherwise we would replace t1 by t∗1 := t1 + 1 and extend each function xn to

[t0, t
∗
1] by setting xn(t) := xn(t1) + ẋn(t1)(t− t1) + (1 + hng(xn(t1)))(t− t1)2 if

t ∈ ]t1, t1 + 1]). Since each function xn is strictly convex, we see that, for n big

enough, there exists a unique number τn ∈ [t0, t1] such that xn(τn) = 1.

It suffices to check that τn → t0. With this aim we consider, for each n ∈ N,

the ‘energy function’

En(t) :=
ẋn(t)2

2
+ hnG (xn(t)), t ∈ ]t0, t1].

This is a W 1,1 function on [0,+∞[ with nonnegative derivative. Hence,

En(t) ≥ En(0) ≥ hnG (ρn), t ∈ ]t0, t1],

i.e. (since the derivatives ẋn are nonnegative),

ẋn(t) ≥
√

2hn
√

G (ρn)− G (xn(t)), t ∈ ]t0, t1].
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Divide both sides of this inequality by the right one and integrate between

t = t0 and t = τn, to get

0 ≤ τn − t0 ≤
1√
2hn

∫ τn

t0

ẋn(t)√
G (ρn)− G (xn(t))

dt

=
1√
2hn

∫ 1

ρn

dy√
G (ρn)− G (y)

dy =
1√

2hnG (ρn)

∫ 1

ρn

1√
1− G (y)/G (ρn)

dy.

By assumption, hn G (ρn)→ +∞, and hence, it remains only to show the bound-

edness of the sequence {∫ 1

ρn

1√
1− G (y)/G (ρn)

dy

}
n

.

With this goal we remember that the nonlinearity g is decreasing, so that G is

convex. Moreover, G (1) = 0, and consequently,

G (y) ≤ G (ρn)

1− ρn
(1− y), if y ∈ [ρn, 1],

and hence,

G (y)

G (ρn)
≤ 1− y

1− ρn
, y ∈ [ρn, 1],

so that∫ 1

ρn

1√
1− G (y)

G (ρn)

dy ≤
√

1− ρn
∫ 1

ρn

1√
y − ρn

dy = 2(1− ρn)→ 2 as n→ +∞.

The result follows. �

We are immediately led to the following:

Corollary 3.4. Let the sequence {xn}n ⊂W 2,1([t0, t1]) satisfy

min
[t0,t1]

xn → 0, ẍn(t) ≥ hg(xn(t))on [t0, t1],

for some constant h > 0. Then, max
[t0,t1]

xn → +∞.

Proof. For any number n we choose some number τn ∈ [t0, t1] where xn
attains its minimum. If τn ≤ (t0 + t1)/2 we define yn : [0, (t0 + t1)/2] → R by

yn(t) := xn(τn + t), while, if τn ≥ (t0 + t1)/2 we set yn : [0, (t0 + t1)/2] → R
by yn(t) := xn(τn − t). The result follows by applying Lemma 3.3 to this new

sequence. �
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4. The oscillation explodes as solutions approach the singularity

In this final section we complete the proof of Theorem 1.1. Thus, we hence-

forth assume the framework of this result, i.e. that (h0)–(h2) and (g) hold;

furthermore, we assume that either situation (A) or situation (B) hold. After

introducing a translation of time we see that, for the sake of proving Theorem 1.1

there is no loss of generality in further assuming that there is some ε > 0 such

that

(4.1) h(t) ≥ h > 0 if t ∈ [0, ε] ∪ [T − ε, T ].

Combining Proposition 2.1 and Lemmas 2.3–3.2 with the comments preced-

ing Lemma 3.2 we see that it will suffice to show the following:

Proposition 4.1. Under the assumptions above, let {xn}n ⊂ W 2,1([0, T ])

be a sequence of solutions of (1.1) with min
[0,T ]

xn → 0. Then, max
[0,T ]

xn → +∞.

The proof of Proposition 4.1 is especially simple in situation (A). Indeed,

denoting by I1 = ]0, b1[, I2 = ]a2, b2[, . . . , Ip = ]ap, T [ the collection of (open)

intervals where h is constant and positive, there must exist one of them, say, Ik
such that min

[0,T ]
xn = min

Ik
xn for infinitely many indexes n. The result comes by

applying Corollary 3.4 to the corresponding subsequence.

Thus, from now on we assume that situation (B) holds. Using a contradic-

tion argument we further assume the existence of a sequence xn : [0, T ] → R of

solutions of (1.1) such that

(4.2) min
[0,T ]

xn → 0 but
{

max
[0,T ]

xn

}
n

is bounded.

We denote by Z = {b1 < a2 < b2 < . . . < ap} the set of zeroes of h in the time

interval ]0, T [, which are divided into two classes; the ai’s, where the derivative

of h is positive, and the bi’s, where the derivative of h is negative. Observe

also that, in view of (4.1), h is positive on the set I+ := [0, b1[ ∪ ]a2, b2[ ∪ . . . ∪
]ap−1, bp−1[ ∪ ]ap, T ], and negative on I− := ]b1, a2[ ∪ . . . ∪ ]bp−1, ap[. We shall

start our argument with the following:

Lemma 4.2. min
Z
xn → 0.

Proof. We assume, on the contrary, that after passing to a subsequence

there exists some constant δ0 > 0 such that min
Z
xn ≥ δ0 for every n. Let the

sequence {τn}n ⊂ [0, T ] be defined by xn(τn) = min
[0,T ]

xn → 0. Since all functions

xn are strictly concave on each one of the intervals which compose Z ∪ I−, we

see that τn ∈ I+ for every n ∈ N. Thus, after possibly passing to a subsequence,

we may assume that τn → τ∗ ∈ Z ∪ I+. We distinguish two cases.
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Case 1. [τ∗ ∈ I+]. Corollary 3.4 implies that max
[0,T ]

xn → +∞, contradicting

the second part of (4.2).

Case 2. [τ∗ ∈ Z]. We apply the Mean Value Theorem to xn on the time

interval Jn := [min{τn, τ∗},max{τn, τ∗}], and obtain the existence of a sequence

cn → τ∗ with cn ∈ Jn for every n, such that σn ẋn(cn) → +∞. Here, σn = 1

if τn < cn < τ∗ and σn = −1 if τ∗ < cn < τn. But ẋn is increasing on Jn,

and we deduce that |ẋn(τ∗)| → +∞. Since xn(τ∗) ≥ δ0 for every n it is easy to

check that max
[0,T ]

xn → +∞. This contradicts again the second part of (4.2) and

concludes the proof of the lemma. �

We continue now with the proof of Proposition 4.1 in situation (B). Since

the set Z is finite, after possibly passing to a subsequence we may assume the

existence of a point z∗ ∈ Z such that xn(z∗) → 0. Two possibilities appear;

either z∗ ∈ {a2, . . . , ap} or z∗ ∈ {b1, . . . , bp−1}, but after possibly reversing the

direction of time we may assume that z∗ = ak for some k ∈ {2, . . . , p}.

Lemma 4.3. lim sup
n→+∞

ẋn(ak) < 0.

Proof. Our first task will consist in observing that ẋn(ak) < 0 provided

that n is big enough. We use a contradiction argument and assume instead

that, after possibly passing to a subsequence, one has ẋn(ak) ≥ 0 for every

n. Since xn is concave on [bk−1, ak], it follows that 0 < xn(t) ≤ xn(ak) and

ẍn(t) ≤ h(t)g(xn(ak)) on [bk−1, ak], and, integrating twice this inequality,

xn(bk−1) ≤ xn(ak)− ẋn(ak)(ak− bk−1) +g(xn(ak))

∫ ak

bk−1

(t− bk−1)h(t) dt→ −∞

as n→ +∞. This is a contradiction because all functions xn are positive.

Using again a contradiction argument, assume now that ẋn(ak) < 0 for

every n but ẋn(ak) → 0. Since xn is concave on [bk−1, ak], it follows that

0 < xn(t) ≤ ρn := xn(ak) − (ak − bk−1)ẋn(ak) for every t ∈ [bk−1, ak] and

ẍn(t) ≤ h(t)g(ρn) on [bk−1, ak]. Arguing as before, we deduce

xn(bk−1) ≤ xn(ak)− ẋn(ak)(ak − bk−1) + g(ρn)

∫ ak

bk−1

(t− bk−1)h(t) dt→ −∞

as n → +∞, since ρn → 0. This is again a contradiction and concludes the

proof. �

Since h is positive on ]ak, bk[, all functions xn are strictly convex on the

closed interval [ak, bk]. Our next result gives some further information on these

functions.

Lemma 4.4. For n big enough there is an unique point tn ∈ ]ak, bk[ such that

ẋn(tn) = 0. Moreover, tn → ak as n→ +∞.
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Proof. The uniqueness of the critical point is immediate from the convexity

of xn on [ak, bk]. Thus, using a contradiction argument, we assume that, after

possibly passing to a subsequence, there exists some 0 < τ∗ < bk − ak such

that ẋn(t) < 0 for every t ∈ [ak, ak + τ∗] and every n ∈ N. Applying the

Mean Value Theorem to the function xn on the time interval [ak, ak + τ∗/2] we

obtain the existence of a sequence ak < rn < ak + τ∗ such that ẋn(rn) → 0.

But the functions ẋn are all of them increasing on [ak, bk], and hence, both

sequences {ẋn(ak + τ∗/2)}n and {ẋn(ak + τ∗)}n converge to 0. On the other

hand, xn(t) ≤ xn(ak) for every t ∈ [ak, ak + τ∗], and we deduce

ẋn(ak+τ∗)−ẋn(ak+τ∗/2) =

∫ τ∗

τ∗/2

h(t)g(xn(t)) dt ≥ g(xn(ak))

∫ τ∗

τ∗/2

h(t) dt→ +∞

as n→ +∞, a contradiction. The proof is complete. �

We find again two possibilities: either ẋn(ak) → −∞ or we may assume,

after possibly passing to a subsequence, that ẋn(ak) → −v < 0. We conclude

the proof of Proposition 4.1 by studying both cases separately.

Proof of Proposition 4.1.

Case 1. [ẋn(ak)→ −∞ as n→ +∞. Fix some point t∗ ∈ ]ak, bk[. We recall

that h is continuously differentiable around its zero ak to find some 0 < ε < t∗−ak
such that, for every t ∈ ]ak, ak + ε],

0 < h(s) < h(t), if s ∈ ]ak, t[, h(t) < h(s), if s ∈ ]t, t∗].

For n big enough, xn(ak) < 1 and the points tn ∈ ]ak, bk[ given by Lemma 4.4

satisfy 0 < tn − ak < ε < t∗ − tn. We consider the function En : [ak, tn] → R
defined by

En(t) :=
1

2
ẋn(t)2 + h(tn)G (xn(t)),

where G is given by (3.6). Direct differentiation shows that En is increasing on

its domain, and hence,

En(tn) = h(tn)G (xn(tn)) ≥ En(ak) ≥ ẋn(ak)2/2→ +∞ as n→ +∞,

the second inequality follows from the fact that G (y) > 0 if y < 1. Applying

Lemma 3.3 to the functions t 7→ xn(tn+ t) on the interval [t0, t1] = [0, ε], we find

that xn(tn + ε)→ +∞, contradicting the second part of (4.2).

Case 2. ẋn(ak)→ −v < 0.

Fix some point t∗ ∈]bk−1, ak[; being concave on [t∗, ak], all functions xn lie

below their tangent line at t = ak, i.e.

xn(t) ≤ xn(ak) + (t− ak)ẋn(ak), t ∈ [t∗, ak].
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In particular, xn(t∗) ≤ xn(ak)− (ak − t∗)ẋn(ak), and the sequence {xn(t∗)}n is

bounded. Moreover,

ẋn(t∗) = ẋn(ak)−
∫ ak

t∗

h(t)g(xn(t)) dt

≥ ẋn(ak)−
∫ ak

t∗

h(t)g(xn(ak)− (ak − t)ẋn(ak)) dt,

and, by Fatou’s Lemma,

lim inf
n→+∞

ẋn(t∗) ≥ −v −
∫ ak

t∗

h(t)g((ak − t)v) dt = +∞,

the last equality arising from the fact that, being in situation (B), ak is a non-

degenerate zero of h and the singularity of g at x = 0 is very strong. Thus,

ẋn(t∗)→ +∞, and since {xn(t∗)}n is bounded and the functions xn are concave

on [bk−1, t∗] we deduce that they all vanish somewhere on this interval, at least

for big n. This is impossible and concludes the proof. �
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