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STRONGLY DAMPED WAVE EQUATION

AND ITS YOSIDA APPROXIMATIONS

Matheus C. Bortolan — Alexandre N. Carvalho

Abstract. In this work we study the continuity for the family of global

attractors of the equations utt − ∆u− ∆ut − ε∆utt = f(u) at ε = 0 when

Ω is a bounded smooth domain of Rn, with n ≥ 3, and the nonlinearity f
satisfies a subcritical growth condition. Also, we obtain an uniform bound

for the fractal dimension of these global attractors.

1. Introduction

We study the continuity of global attractors of the following semilinear evo-

lution equation of second order in time

(1.1)


utt −∆u−∆ut − ε∆utt = f(u), t > 0,

(u(0), ut(0)) = (u0, v0),

u|∂Ω = 0,

and we give an uniform bound for the fractal dimension of these global attractors.

We know that, for ε = 0, this equation is the usual strongly damped wave

equation, and its asymptotic dynamics – related to global atrtactors – has already

been vastly explored; see for instance [6], [7], [9], [12], [15], [22], [23], [26]–[28].

2010 Mathematics Subject Classification. 34D45, 37L30.
Key words and phrases. Global attractor, Yosida approximation, continuity of attractors,

fractal dimension.
The first named author partially supported by FAPESP 2012/23724-1.

The second named author partially supported by CNPq 305230/2011-5.

563



564 M.C. Bortolan — A.N. Carvalho

However, for each ε > 0 fixed, we have a special form of the improved Boussi-

nesq equation (see [4], [19], [20], [25]) with damping −∆ut, which, among other

things, is used to describe ion-sound waves in plasma (see [20], [21]).

For each ε > 0 fixed, this equation has been studied in [8], in terms of exis-

tence and uniqueness of solutions, existence of global attractors and asymptotic

bootstrapping; in this case, the linear part of the equation (after a change of

variables) is a bounded operator. Here, since we want to study the continuity of

attractors at ε = 0, we will use the properties of the limiting problem with ε = 0

(local and global well posedness, regularity and existence of global attractors) as

reported in [6], [7].

Throughout this paper, we will assume that f : R → R is a continuously

differentiable function, respecting a growth condition with subcritical exponent;

that is, there exist constants c > 0 and ρ < (n+ 2)/(n− 2) such that for all

s1, s2 ∈ R

(1.2) |f(s1)− f(s2)| ≤ c|s1 − s2|(1 + |s1|ρ−1 + |s2|ρ−1),

and also, if λ1 denotes the first eigenvalue of −∆ with Dirichlet boundary con-

ditions in Ω, we assume the following dissipation condition

(1.3) lim sup
|s|→∞

f(s)

s
< λ1.

To begin our study, we will write further A for −∆ with the Dirichlet boundary

conditions. Our problem then takes the form

(1.4)

utt +Au+Aut + εAutt = f(u), t > 0,

(u(0), v(0)) = (u0, v0).

and it is well-known that A : H1
0 (Ω) ∩ H2(Ω) ⊂ L2(Ω) → L2(Ω) is a closed,

densely define operator which has the following properties:

(O1) A is self-adjoint with compact resolvent;

(O2) A is an operator of positive type;

(O3) σ(A) = σp(A) = {λn}n∈N, λ1 > 0, λi ≤ λi+1, for all i ≥ 1 (repeated

to take into account the multiplicity), λn
n→∞−−−→ ∞ and if vn ∈ L2(Ω)

are unitary eigenvectors associated with λn then {vn}n∈N constitutes an

orthonormal basis for L2(Ω).

Remark 1.1. We included in Appendix A the proof of the main results of

functional analysis we will use, in order to make explicit the uniformity of the

constants obtained for ε ∈ [0, 1].

The key point in our analysis is the observation that the differential equation

in (1.4), for ε > 0, can be obtained from its limit, for ε = 0, with a suitable

exchange of the unbounded operator A by its Yosida approximation Λε (see
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definition below). The techniques developed here to deal with these singular

perturbation problem may be of aid to deal with other natural singular pertur-

bation problems that appear in the literature in this form (see for example the

Navier–Stokes–Voight problem in [14]).

Definition 1.2. Let A be a closed, densely defined operator such that R+ ⊂
ρ(−A). Then, for each ε ∈ [0, 1] we define the operator Λε : D(Λε) ⊂ X → X,

given by

D(Λε) = {x ∈ X : (I + εA)−1x ∈ D(A)},

and for x ∈ D(Λε) we set

Λεx = A(I + εA)−1x.

The operators Λε are called Yosida approximations of A.

In fact the differential equation in (1.4) can be rewritten as utt+Λεu+Λεut =

(I+ εA)−1f(u) with Λεu0
ε→0−−→ Au0 for all u0 ∈ D(A) and (I+ εA)−1u0

ε→0−−→ u0

for all u0 ∈ X. We exploit this feature and a suitable change of variables to fix

(independently of ε) the phase space to carry on our analysis.

Now, if X
.
= L2(Ω), we will consider the double sided fractional power scales

• {Xα, α ∈ R}, generated by (X,A);

• {Xα
ε , α ∈ R}ε∈[0,1], generated by (X,Λε) (see Definition 1.2);

• {X̃α
ε , α ∈ R}ε∈[0,1] generated by (X, I + εA);

where A, Λε and I + εA have domains X1, X1
ε and X̃1

ε , respectively, and are

positive type operators.

Now we consider the isometric isomorphism Φε : X1/2×X̃1/2
ε → X×X given

in its matrix form by

Φε =

[
A1/2 0

0 (I + εA)1/2

]
, for each ε ∈ [0, 1].

If we apply the change of variables
[
w
z

]
= Φε

[
u
ut

]
, problem (1.4) can be rewrit-

ten as

(1.5)


(I + εA)1/2zt +A1/2w +A(I + εA)−1/2z = f(A−1/2w),

wt = A1/2(I + εA)−1/2z,

(w(0), z(0)) = (A1/2u0, (I + εA)1/2v0),

or

(1.6)


zt +A1/2(I + εA)−1/2w +A(I + εA)−1z = (I + εA)−1/2f(A−1/2w),

wt = A1/2(I + εA)−1/2z,

(w(0), z(0)) = (A1/2u0, (I + εA)1/2v0).
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The later is a first order ODE that can writen in X ×X as

(1.7)


d

dt

[
w

z

]
+Aε

[
w

z

]
= Fε

([
w

z

])
in [0,∞),

(w(0), z(0)) = (w0, z0),

where (w0, z0) = Φε(u0, v0), in variables (t, w, z), where Aε : D(Aε) ⊂ X ×X →
X ×X is a linear operator given by

D(Aε) =

{[
w

z

]
∈ X ×X1/2

ε : w + Λ1/2
ε z ∈ X1/2

ε

}
,

and

Aε
[
w

z

]
=

[
−Λ

1/2
ε z

Λ
1/2
ε (w + Λ

1/2
ε z)

]
.

Of course, if [wz ] ∈ X1/2
ε ×X1

ε we have that

Aε
[
w

z

]
=

[
−Λ

1/2
ε z

Λ
1/2
ε w + Λεz

]
=

[
0 −Λ

1/2
ε

Λ
1/2
ε Λε

] [
w

z

]
,

with X
1/2
ε ×X1

ε being a dense subset of D(Aε) and a locally Lipschitz map

(1.8) Fε
([
w

z

])
=

[
0

feε (w)

]
,

where feε (w) = (I + εA)−1/2f(A−1/2w).

Remark 1.3. It is important to notice that for each ε > 0, D(Aε) = X ×X
and Aε ∈ L(X × X). The characterization above becomes important when

dealing with the case ε = 0, since A0 is an unbounded operator. The primary

concern of our work is to deal with the uniformity in ε ∈ [0, 1] of the class of

problems (1.4), hence placing the problems under the same framework is crucial.

We divide our work from now on in six sections and an appendix. In Section 2

we deal with the linear problem associated with equation (1.7). More specifically,

we prove that −Aε generates an analytic semigroup {e−Aε : t ≥ 0}, and we

obtain convergence in the uniform norm of operators of the associated semigroups

when ε→ 0+ as follows:

Theorem 1.4. For any α ∈ [0, 1/2) and γ ∈ [0, 1] there exists a constant

Cγ > 0 such that

‖e−Aεt − e−A0t‖L(X×X) ≤ Cγεαγt−γe−ω1t,

for all t > 0. In particular, e−Aεt
L(X×X)−−−−−→ e−A0t as ε → 0+, with uniform

convergence for any interval [T,∞), T > 0.



Strongly Damped Wave Equation and its Yosida Approximations 567

In Section 3 we prove local and global well posedness results for equation

(1.1) and we deal with all the cases at once. For each ε > 0, these results are

contained in Theorems 1.1 and 1.2 of [8] as for the case ε = 0 these results

are contained in the results of Section 3 of [6]. To this end, a fine analysis of

the fractional powers of the operators −Aε is required (such analysis is done

in Subsection 2.2). The main results of this section can be summarized in the

results below:

Theorem 1.5. For any initial data
[
u0
v0

]
lying in a bounded subset B of

X1/2×X̃1/2
ε there exists a number κ = κ(B, ε) and a unique solution [0, κ) 3 t 7→[

uε
vε

]
(t, u0, v0) ∈ X1/2×X̃1/2

ε of (1.4) which depends continuously on its variables

(t, u0, v0) ∈ [0, κ)×X1/2 × X̃1/2
ε and such that, for any s ∈ [(ρ− 1)(n− 2)/4, 1]

and γ ∈ (0, 1− s/2),[
uε
vε

]
( · , u0, z0) ∈ C((0, τ), (X1/2 × X̃1/2

ε )γ) ∩ C1((0, τ), (X1/2 × X̃1/2
ε )γ−),

and either κ =∞ or
∥∥[ uε

vε

]
(t, u0, v0)

∥∥
X1/2×X̃1/2

ε
→∞ as t→ κ−. Moreover, the

solution satisfies in X1/2 × X̃1/2
ε the variation of constants formula[

uε
vε

]
(t, w0, z0) = e−Ãεt

[
u0

v0

]
+

∫ t

0

e−Ãε(t−s)Gε
([
uε
vε

]
(s, u0, v0)

)
ds,

for t ∈ [0, κ), where

Gε
([
u

v

])
= Φ−1

0,εFεΦ0,ε

([
u

v

])
.

Theorem 1.6. Problem (1.1) defines a C0-semigroup {Sε(t) : t ≥ 0} on

X1/2 × X̃1/2
ε for each ε ∈ [0, 1], which has bounded orbits of bounded sets, de-

fined by

Sε(t)

[
u0

v0

]
= Φ−1

ε Tε(t)Φε

[
u0

v0

]
,

or equivalently,

Sε(t)

[
u0

v0

]
= e−Ãεt

[
u0

v0

]
+

∫ t

0

e−Ãε(t−s)Gε
(
Sε(s)

[
u0

v0

])
ds, for all t ≥ 0.

In Section 4 we prove the existence of global attractors for the semigroups

{Sε(t) : t ≥ 0} generated by equations (1.1), which is given by

Theorem 1.7. The semigroup {Sε(t) : t ≥ 0} has a global attractor Ãε in

X1/2 × X̃1/2
ε , for each ε ∈ [0, 1].

In [8] the authors prove the existence of global attractors for each ε > 0 and

also provide bounds (ε dependent) for the global attractors (see Theorem 1.3 of

this reference). In [9] they prove the same for the case ε = 0 (see the results of
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Subsection 4.2 in this reference); however, simply joining the results would not

lead to a uniform bound for ε ∈ [0, 1]. We also prove the following

Theorem 1.8. If s ∈ [0, 1 − (ρ− 1)(n− 2)/4), then
⋃

ε∈[0,1]

Ãε is bounded in

X(s+1)/2 ×Xs/2.

In Section 5 we are able to prove the upper semicontinuity of the global

attractors {Ãε}ε∈[0,1] at ε = 0:

Theorem 1.9. The family {Ãε}ε∈[0,1] is upper semicontinuous in ε = 0, in

X1/2 ×X.

This result was also proven in [24], using a different technique, dealing with

energy estimates of solutions (see Lemma 5.12 in this reference). Under (natural)

additional assumptions we can also prove the lower semicontinuity

Theorem 1.10. Assume that f is a C2 function on R with f, f ′ and f ′′

bounded in R. Also, assume that the set E of equilibrium points of (1.7) is finite

and that each point of E is a hyperbolic point for (1.7) with ε = 0. Then the

family of global attractors {Ãε}ε∈[0,1] is lower semicontinuous at ε = 0.

Lastly, in Section 6 using some further uniform estimates for the semigroup

generated by equation (1.7) we obtain an uniform estimate for the fractal di-

mension c(Ãε) of the global attractor Ãε.

Theorem 1.11. There exists a number τ0 > 0 such that c(Ãε) ≤ τ0 for any

ε ∈ [0, 1]

In [24, Lemma 5.10], the authors prove an estimate for the fractal dimension

of the global attractors using exponential attractors, but the bound depends on

ε ∈ [0, 1].

Remark 1.12. We note that, most of our results are proved using tech-

niques from functional analysis, resorting to energy estimates when is absolutely

necessary. We were able to obtain some fine estimates using a bootstrapping

argument in the subcritical case. This equation has been considered in [11],

where they proved the upper semicontinuity of the global attractors of (1.1) as

well as to obtain bounds for the fractal dimension of the attractors, but is not

uniform in ε ∈ [0, 1]. Here we also prove the lower semicontinuity of the global

attractors, besides recovering the upper semicontinuity and obtaining uniform

(w.r.t. ε) bounds for the dimension using a different technique.
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2. The linear problem and the uniform convergence

of the linear semigroups

In this section we study the linear problem associated with equations (1.7)

in X ×X, given by 
d

dt

[
w

z

]
+Aε

[
w

z

]
= 0, t > 0,

[
w(0)

z(0)

]
=

[
w0

z0

]
∈ X ×X,

more precisely, we will prove that the family of operators {Aε}ε∈[0,1] is uniformly

sectorial ; that is, we can find φ ∈ (0, π/2), M ≥ 1 and a real number ω such

that the sector

Sω,φ = {λ ∈ C : φ ≤ |arg(λ− ω)| ≤ π, λ 6= ω}

is in the resolvent set of Aε for all ε ∈ [0, 1] and

‖(λ−Aε)−1‖L(X×X) ≤
M

|λ− ω|
, for all λ ∈ Sω,φ,

and moreover, we will prove that we can take ω < 0, which will give us an uniform

exponential decay for the generated analytic semigroups {e−Aεt : t ≥ 0}ε∈[0,1].

2.1. Uniform sectoriality. In this subsection, our goal is to prove the uni-

form sectoriality of {Aε}ε∈[0,1] in order to obtain a convergence of the generated

linear semigroups {e−Aεt : t ≥ 0}ε∈[0,1] as ε→ 0+.

First we begin obtaining an uniform decay in time for the generated semi-

groups, and to this purpose we define the notations of the inner products we will

use throughout our work.

Definition 2.1. In X we denote the usual inner product ( · , · ) and in X×X
we use the inner product 〈 · , · 〉 given by〈[

w1

z1

]
,

[
w2

z2

]〉
.
= (w1, w2) + (z1, z2).

With this notation set, we are able define for each pair (ε, β) ∈ [0, 1]× [0, 1],

a map from (X ×X)2 into C by〈[
w1

z1

]
,

[
w2

z2

]〉
ε,β

=

〈[
w1

z1

]
,

[
w2

z2

]〉
+
β

2
(w1,Λ

−1/2
ε z2) +

β

2
(z1,Λ

−1/2
ε w2).

In what follows we will need a result of basic functional analysis, that we

state below.
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Proposition 2.2. The family of operators {Λ−βε }(ε,β)∈[0,1]×[0,1] is uniformly

bounded. In particular, there exists a constant µ > 0 such that

(Λβεx, x) ≥ µ‖x‖2X , for all x ∈ X1
ε .

Proof. See Appendix A. �

With this result we can prove a uniform equivalence between 〈 · , · 〉ε,β and

〈 · , · 〉.

Proposition 2.3. For all (ε, β) ∈ [0, 1] × [0, 1], if we define
∥∥[w

z

]∥∥2

ε,β

.
=〈[

w
z

]
,
[
w
z

]〉
ε,β

, we have[
1− βµ

2

]∥∥∥∥[wz
]∥∥∥∥2

X×X
≤
∥∥∥∥[wz

]∥∥∥∥2

ε,β

≤
[
1 +

βµ

2

]∥∥∥∥[wz
]∥∥∥∥2

X×X
.

Proof. We have, since Λ
−1/2
ε is self-adjoint, that〈[

w

z

]
,

[
w

z

]〉
ε,β

=

〈[
w

z

]
,

[
w

z

]〉
+ βRe(w,Λ−1/2

ε z)

=

∥∥∥∥[wz
]∥∥∥∥2

X×X
+ βRe(w,Λ−1/2

ε z),

but

|Re(w,Λ−1/2
ε z)| ≤ |(w,Λ−1/2

ε z)| ≤ ‖w‖X‖Λ−1/2
ε z‖X

≤ ‖Λ−1/2
ε ‖L(X)‖w‖X‖z‖X ≤

1

2
‖Λ−1/2

ε ‖L(X)

∥∥∥∥[wz
]∥∥∥∥2

X×X
,

By Proposition 2.2, ‖Λ−1/2
ε ‖L(X) ≤ µ and hence

|Re(w,Λ−1/2
ε z)| ≤ µ

2

∥∥∥∥[wz
]∥∥∥∥2

X×X
,

which concludes the proof. �

Corollary 2.4. There exists β0 ∈ (0, 1] such that 〈 · , · 〉ε,β is an inner

product in X ×X for all (ε, β) ∈ [0, 1]× [0, β0].

Proof. Almost all the properties of an inner product are easily verified; and

for the coercivity it suffices to choose β0 ∈ (0, 1] such that 1− β0µ/2 > 0 in the

previous proposition. �

So far we are able to construct uniform equivalent norms in X ×X and the

next step is to prove that there exists a positive constant δ > 0 such that Aε−δI
is acretive, for all ε ∈ [0, 1].
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Proposition 2.5. There exist β1 ∈ (0, β0] and a constant δ > 0 such that

Re

〈
(Aε − δI)

[
w

z

]
,

[
w

z

]〉
ε,β1

≥ 0,

for all ε ∈ [0, 1] and
[
w
z

]
∈ D(Aε).

Proof. We have for
[
w
z

]
∈ X1/2

ε ×X1
ε that〈

Aε
[
w

z

]
,

[
w

z

]〉
ε,β

=

〈[
−Λ

1/2
ε z

Λ
1/2
ε w + Λεz

]
,

[
w

z

]〉
ε,β

= −(Λ1/2
ε z, w) + (Λ1/2

ε w, z) + (Λεz, z)−
β

2
(z, z) +

β

2
(w,w) +

β

2
(Λ1/2

ε w, z),

which implies, since Λ
1/2
ε is self-adjoint, that

Re

〈
Aε
[
w

z

]
,

[
w

z

]〉
ε

= ‖Λ1/2
ε z‖2X −

β

2
‖z‖X +

β

2
‖w‖2X +

β

2
Re(Λ1/2

ε z, w).

But |Re(Λ
1/2
ε z, w)| ≤ (‖Λ1/2

ε z‖2X + ‖w‖2X)/2 and hence

Re

〈
Aε
[
w

z

]
,

[
w

z

]〉
ε

≥
(

1− β

4

)
‖Λ1/2

ε z‖2X −
β

2
‖z‖2X +

β

4
‖w‖2X

≥
[(

1− β

4

)
µ2 − β

2

]
‖z‖2X +

β

4
‖w‖2X .

Now we choose β1 ∈ (0, β0] such that (1 − β1/2)µ2 − β1/2 > 0 and thus, by

Proposition 2.3, we have

Re

〈
Aε
[
w

z

]
,

[
w

z

]〉
ε,β1

≥ δ

〈[
w

z

]
,

[
w

z

]〉
ε,β1

,

where δ = (1 + β1µ1/2)−1 min{(1− β1/2)µ2
1 − β1/2, β/4} > 0, and therefore

Re

〈
(Aε − δI)

[
w

z

]
,

[
w

z

]〉
ε,β1

≥ 0. �

From this we conclude that each operator δI −Aε generates a strongly con-

tinuous semigroup of contractions in X × X with the norm ‖ · ‖ε,β1
, which in

turn, using Proposition 2.3, lead us to the following result:

Theorem 2.6. There exist constants M ≥ 1 and δ > 0, such that

‖e−Aεt‖L(X×X) ≤Me−δt, for all t ≥ 0 and ε ∈ [0, 1].

Proof. Since
∥∥e(δI−Aε)t

[
w
z

]∥∥
ε,β1
≤
∥∥[w

z

]∥∥
ε,β1

, Proposition 2.3 imples that

there exists M ≥ 1 such that∥∥∥∥e(δI−Aε)t
[
w

z

]∥∥∥∥
X×X

≤M
∥∥∥∥[wz

]∥∥∥∥
X×X

,
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and concludes the proof. �

Corollary 2.7. Given ϕ ∈ (π/2, π), there exists a constant Mϕ ≥ 1 such

that

‖(λ−Aε)−1‖L(X×X) ≤
Mϕ

|λ− δ|
, for all λ ∈ Sδ,ϕ and ε ∈ [0, 1].

Proof. From the Inverse Laplace Transform, we know that

(λ−Aε)−1 = −
∫ ∞

0

eλte−Aεt dt,

for all λ ∈ C such that Reλ < δ and therefore

‖(λ−Aε)−1‖L(X×X) ≤
M

δ − Reλ
,

for all ε ∈ [0, 1]. Now, given ϕ ∈ (π/2, π), we have that

‖(λ−Aε)−1‖L(X×X) ≤
M

| cosϕ|
1

|λ− δ|
,

for all λ ∈ Sδ,ϕ and ε ∈ [0, 1]. �

So far we have proven that each −Aε generates a strongly-continuous semi-

group in X ×X (which for ε > 0 is trivial, since Aε is bounded in X ×X) and

furthermore we proved an uniform exponential decay for the generated semi-

groups for ε ∈ [0, 1]. But we would like to prove the convergence of e−Aεt to

e−A0t in L(X ×X) as ε→ 0+, and to this purpose, we will need to work a little

more.

For ε ∈ [0, 1] define D(Bε) = D(Aε), D(Pε) = X ×X and

Bε
.
= Aε +

[
0 0

0 I

]
, Pε

.
=

[
I 0

Λ
−1/2
ε I

]
,

so that

P−1
ε =

[
I 0

−Λ
−1/2
ε I

]
.

Also, if we set D(Dε) =
{[

w
z

]
∈ X ×X : P−1

ε

[
w
z

]
∈ D(Bε)

}
, we can define

Dε
.
= PεBεP−1

ε .

Remark 2.8. It is simple to see that D(Dε) = X ×X1
ε and hence

Dε =

[
I −Λ

1/2
ε

0 Λε

]
.

Finally, define D(D̃ε) = D(Dε) = X ×X1
ε and

D̃ε
.
=

[
I 0

0 Λε

]
.
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For what follows we will need the definition and one result concerning the

numerical range of an operator, which are given below.

Definition 2.9. If B : D(B) ⊂ Z → Z is a closed densely defined operator

in a complex Hilbert space Z with inner product 〈 · , · 〉, then the numerical range

W (B) of B is the set

W (B) = {〈Bz, z〉 : z ∈ D(B), ‖z‖Z = 1}.

Theorem 2.10. Let B : D(B) ⊂ Z → Z be a closed densely defined operator

in a complex Hilbert space Z, W (B) its numerical range and Σ an open connected

set in C \W (B). If Σ ∩ ρ(B) 6= ∅ then Σ ⊂ ρ(B) and

‖(λ−B)−1‖L(Z) ≤
1

d(λ,W (B))
, for all λ ∈ Σ,

where d(λ,W (B)) is the distance between λ and W (B).

Proof. See Theorem 21.11 of [3]. �

With this result at hand, we can prove our first lemma.

Lemma 2.11. The operators D̃ε : D(D̃ε) ⊂ X × X → X × X constitute

a family of uniformly sectorial operators.

Proof. Using again Proposition 2.2, there exists µ > 0 such that for all

z ∈ X1
ε we have (Λεz, z) ≥ µ(z, z). Thus, for

[
w
z

]
∈ D(D̃ε), we obtain〈

D̃ε
[
w

z

]
,

[
w

z

]〉
= (w,w) + (Λεz, z) ≥ (w,w) + µ(z, z) ≥ µ̃

〈[
w

z

]
,

[
w

z

]〉
,

where µ̃ = min{1, µ} > 0 and therefore the numerical image W (D̃ε) is contained

in [µ̃,∞), for all ε ∈ [0, 1].

Defining Σ
.
= C \ [µ̃,∞) we have that 0 ∈ Σ ∩ ρ(D̃ε) for all ε ∈ [0, 1] and

hence, by Theorem 2.10, Σ ⊂ ρ(D̃ε), for all ε ∈ [0, 1], and

‖(λ− D̃ε)−1‖L(X×X) ≤
1

d(λ,W (D̃ε))
≤ 1

d(λ, [µ̃,∞))
, for all λ ∈ Σ.

Now given φ ∈ (0, π/2), if λ ∈ Sµ̃,φ we have that d(λ, [µ̃,∞)) ≥ |λ− µ̃| sinφ, and

hence

‖(λ− D̃ε)−1‖L(X×X) ≤
1

sinφ|λ− µ̃|
, for all λ ∈ Sµ̃,φ and ε ∈ [0, 1]. �

To continue, we will need well know results in functional analysis, concerning

interpolation of fractional powers of an operator, which we will state below.
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Definition 2.12. Let C ≥ 1. A closed densely defined linear operator

B : D(B) ⊂ Z → Z is said an operator of positive type with constant C if [0,∞) ∈
ρ(−B) and

(1 + s)‖(s+B)−1‖L(Z) ≤ C, for all s ∈ [0,∞).

The set of all operators of positive type in Z with constant C will be denoted

by PC(Z).

Proposition 2.13. Let A be an operator of positive type with constant C

in X, then the Yosida approximations Λε of A are positive type operators with

constant 1 + C, for all ε ∈ [0, 1].

Proof. See Appendix A. �

Theorem 2.14. Assume that B ∈ PC(Z) and 0 ≤ α ≤ 1, then there exists

a constant K > 0 such that

‖Bαz‖Z ≤ K‖Bz‖αZ‖z‖1−αZ , for all z ∈ D(B);

moreover, the constant K depends only on the constant C and not on the par-

ticular operator B.

Proof. See Theorem 1.4.4 of [17]. �

Corollary 2.15. There exists a constant K > 0, independent of ε ∈ [0, 1],

such that if 0 ≤ α ≤ 1 we have

‖Λαε x‖X ≤ K‖Λεx‖αX‖x‖1−αX , for all x ∈ X1
ε .

Lemma 2.16. The operators Dε : D(Dε) ⊂ X × X → X × X constitute

a family of uniformly sectorial operators.

Proof. We have that D̃ε −Dε =
[

0 Λ1/2
ε

0 0

]
, and hence for all

[
w
z

]
∈ X ×X1

ε∥∥∥∥(D̃ε −Dε)
[
w

z

]∥∥∥∥
X×X

= ‖Λ1/2
ε z‖X

≤ K‖Λεz‖1/2X ‖z‖
1/2
X ≤ Kη

2
‖Λεz‖X +

K

2η
‖z‖X ,

for all η > 0, where K > 0 is the constant given in Theorem 2.14, which is

independent of ε ∈ [0, 1] and therefore∥∥∥∥(D̃ε −Dε)
[
w

z

]∥∥∥∥
X×X

≤ Kη

2

∥∥∥∥D̃ε[wz
]∥∥∥∥

X×X
+
K

2η

∥∥∥∥[wz
]∥∥∥∥

X×X
.

By Theorem 1.3.2 of [17] and Lemma 2.11 we have that the family {Dε}ε∈[0,1] is

uniformly sectorial. �

Lemma 2.17. The operators Bε : D(Bε) ⊂ X×X → X×X constitute a family

of uniformly sectorial operators.
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Proof. We have for all λ ∈ C that

(λ−Dε) = Pε(λ− Bε)P−1
ε ,

hence ρ(Bε) = ρ(Dε), and since the operators Pε,P−1
ε are uniformly bounded in

X ×X (see Proposition 2.2), Lemma 2.16 implies that {Bε}ε∈[0,1] is uniformly

sectorial. �

Theorem 2.18. The operators Aε : D(Aε) ⊂ X × X → X × X constitute

a family of uniformly sectorial operators.

Proof. Since∥∥∥∥[0 0

0 I

][
w

z

]∥∥∥∥
X×X

≤ η
∥∥∥∥Bε[wz

]∥∥∥∥
X×X

+

∥∥∥∥[wz
]∥∥∥∥

X×X
,

for all η > 0, Lemma 2.17 and Theorem 1.3.2 of [17] imply that {Aε}ε∈[0,1] is

uniformly sectorial. �

So far, with our efforts, Theorem 2.18 implies the existence of constants

M ≥ 1, ω ∈ R and φ ∈ (0, π/2) such that

‖(λ−Aε)−1‖L(X×X) ≤
M

|λ− ω|
, for all λ ∈ Sω,φ and ε ∈ [0, 1],

but ω ∈ R can be a negative real number (and using the results reported in [17],

we can see that the number ω ∈ R obtained is, in fact, negative), which does

not guarantee an uniform exponential decay for the generated semigroups. But

these results together with Corollary 2.7 give us conditions to obtain the desired

uniform sectoriality of {Aε}ε∈[0,1] with a uniform exponential decay:

Theorem 2.19. There exist constants M ≥ 1, ω > 0 and ϕ ∈ (0, π/2) such

that ρ(Aε) ⊃ Sω,ϕ and

‖(λ−Aε)−1‖L(X×X) ≤
M

|λ− ω|
, for all λ ∈ Sω,ϕ and ε ∈ [0, 1].

Proof. This follows from Corollary 2.7 and Theorem 2.18. �

Corollary 2.20. −Aε is the infinitesimal generator of an analytic semi-

group {e−Aεt : t ≥ 0} for each ε ∈ [0, 1] and

e−Aεt =
1

2πi

∫
Γ

eλt(λ+Aε)−1dλ, for all ε ∈ [0, 1],

where Γ is a contour in −Sδ,ω such that arg(λ) → ±θ as |λ| → ∞ for some

θ ∈ (π/2, π).

Proof. See Theorem 1.3.4 of [17]. �
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Corollary 2.21. Given ω1 ∈ (0, ω), there exists constant Mω1
≥ 1 such

that

‖Aε(λ−Aε)−1‖L(X×X) ≤Mω1
, for all λ ∈ Sω1,ϕ and ε ∈ [0, 1].

Proof. We have that Aε(λ−Aε)−1 = λ(λ−Aε)−1 − I and hence

‖Aε(λ−Aε)−1‖L(X×X) ≤ |λ|‖(λ−Aε)−1‖L(X×X) + 1 ≤M |λ|
|λ− ω|

+ 1.

Now, for each ω1 ∈ (0, ω), the map Sω1,ϕ 3 λ 7→ λ/(λ− ω) is bounded, hence

there exists Mω1
such that

‖Aε(λ−Aε)−1‖L(X×X) ≤Mω1 , for all λ ∈ Sω1,ϕ. �

To obtain the uniform convergence of resolvents, for λ in a sector of C, we

will need the following result:

Proposition 2.22. If A is a positive type operator and Λε its Yosida ap-

proximation then, for all α ∈ [0, 1/2),

‖Λ−1/2
ε − Λ

−1/2
0 ‖L(X) ≤ Cεα.

Proof. See Appendix A. �

With this result and Corollary 2.21 we can prove:

Corollary 2.23. Given ω1 ∈ (0, ω) we have that

(λ−Aε)−1 L(X×X)−−−−−→ (λ−A0)−1 as ε→ 0+, uniformly for λ ∈ Sω1,ϕ.

Proof. We have that

A−1
ε −A−1

0 =

[
0 Λ

−1/2
ε − Λ

−1/2
0

Λ
−1/22
0 − Λ

−1/2
ε 0

]
,

and

(λ−Aε)−1 − (λ−A0)−1 = Aε(λ−Aε)−1(A−1
ε −A−1

0 )A0(λ−A0)−1.

Therefore Proposition 2.22 and Corollary 2.21 we have, given ω1 ∈ (0, ω) and

α ∈ [0, /12), that

‖(λ−Aε)−1 − (λ−A0)−1‖L(X×X) ≤M2
ω1
Cεα. �

Remark 2.24. If A is the negative Laplacian with Dirichlet boundary con-

ditions, then we can take α = 1/2 (see Remark A.1).

Let w1 ∈ (0, ω). Given r > 0, Corollary 2.20 implies that we can choose the

curve Γ given by Γ = Γ1 ∪ Γr ∪ Γ1, where

Γ1 = {λ ∈ C : λ = −ω1 + sei(π−ϕ), s ≥ r},

Γr = {λ ∈ C : λ = −ω1 + reiξ, ξ ∈ [π − ϕ,ϕ− π]},
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such that, for all ε ∈ [0, 1] and t > 0,

e−Aεt =
1

2πi

∫
Γ

eλt(λ+Aε)−1dλ.

Proof of Theorem 1.4. We have that

e−Aεt − e−A0t =
1

2πi

∫
Γ

eλt[(λ+Aε)−1 − (λ+A0)−1] dλ,

thus, if α ∈ [0, 1/2), then

‖e−Aεt − e−A0t‖L(X×X) ≤
Cεα

2π

∫
Γ

eReλt| dλ|

=
Cεα

2π
e−ω1t

[
2

∫ ∞
r

e−st cosϕ ds+ r

∫ π−ϕ

ϕ−π
ert cos ξ dξ

]
≤ Cεα

2π
e−ω1t

[
2
e−rt cosϕ

t cosϕ
+ 2r(π − ϕ)ert

]
≤ Cεα

π

e−ω1t

t cosϕ
+
Cεα

π
e−ω1tr(π − ϕ),

for any 0 < r < ω1 and therefore making r → 0+, we obtain

‖e−Aεt − e−A0t‖L(X×X) ≤
C

π cosϕ
εαt−1e−ω1t.

But ‖e−Aεt − e−A0t‖L(X×X) ≤ 2Me−ω1t and hence, for γ ∈ [0, 1], we have

‖e−Aεt − e−A0t‖L(X×X) ≤ (2M)1−γ
(

C

π cosϕ

)γ
εαγt−γe−ω1t. �

Remark 2.25. Again, if A is the negative Laplacian with Dirichlet boundary

conditions, we can take α = 1/2.

2.2. Fractional powers of Aε. In this subsection we are interested in some

properties of the fractional powers of the operators Aε. We know that for ε > 0

we are always working with X ×X with an equivalent norm, but again, we are

concerned about the uniformity in ε ∈ [0, 1] for the problems (1.7), and it will

be useful to have some additional properties of the fractional powers of Aε.

Proposition 2.26. Aε is a positive type operator for some constant C ≥ 1.

Proof. We know that δI−Aε is dissipative in X×X with the norm ‖·‖ε,β1
,

by Proposition 2.5, and ρ(δI −Aε)∩ (0,∞) 6= ∅, and thus by Lumer’s Theorem,

we have

‖(λ+ (Aε − δI))−1‖L(X×X),‖ · ‖ε,β1 ≤
1

λ
, for all λ > 0.

Therefore, if µ = λ− δ,

‖(µ+Aε)−1‖L(X×X),‖ · ‖ε,β1 ≤
1

µ+ δ
, for all µ > −δ,



578 M.C. Bortolan — A.N. Carvalho

and thus if µ > 0 we have that

(1 + µ)‖(µ+Aε)−1‖L(X×X),‖ · ‖ε,β1 ≤
µ+ 1

µ+ δ
,

and since the map [0,∞) 3 µ 7→ (µ+ 1)/(µ+ δ) is bounded and the norms

‖ · ‖ε,β1
and ‖ · ‖X×X are uniformly equivalent, the result follows. �

Now, for τ ∈ [0,∞), we have that s ∈ ρ(−Aε),

(τ +Aε)−1 =
1

τ + 1

[
τ + Λε Λ

1/2
ε

−Λ
1/2
ε τ

](
τ2

τ + 1
+ Λε

)−1

,

and hence, for α ∈ (0, 1), we have (see Theorem 1.4.2 of [17]) that

A−αε =
sinπα

π

∫ ∞
0

τ−α

τ + 1

[
τ + Λε Λ

1/2
ε

−Λ
1/2
ε τ

](
τ2

τ + 1
+ Λε

)−1

dτ.

If we set

A−αε =

[
P1,1(ε, α) P1,2(ε, α)

P2,1(ε, α) P2,2(ε, α)

]
,

we have that

P1,1(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
(τ + Λε)

(
τ2

τ + 1
+ Λε

)−1

dτ,

P1,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
Λ1/2
ε

(
τ2

τ + 1
+ Λε

)−1

dτ,

P2,1(ε, α) = −B1,2(ε, α),

P2,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α+1

τ + 1

(
τ2

τ + 1
+ Λε

)−1

dτ.

To continue, we will need the following result.

Proposition 2.27. If A is a positive type operator with constant C then

there exists a constant C1 such that, for any β ∈ (0, 1) and ε ∈ [0, 1],

‖Λβε (µ+ Λε)
−1‖L(X) ≤

C1

(µ+ 1)1−β , for all µ ≥ 0.

Proof. See Appendix A. �

And now we can state our result for the fraciontal powers of Aε.

Proposition 2.28. For each β ∈ (0, 1/2) and α ∈ (β, 1), the operators

ΛβεP1,2(ε, α) and ΛβεP2,2(ε, α) are uniformly bounded for ε ∈ [0, 1].

Proof. For P1,2(ε, α) we have that

ΛβεP1,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
Λ1/2+β
ε

(
τ2

τ + 1
+ Λε

)−1

dτ,
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and thus, by Proposition 2.27, we have

‖ΛβεP1,2(ε, α)‖L(X) ≤
C1 sinπα

π

∫ ∞
0

τ−α

τ + 1

(
τ + 1

τ2 + τ + 1

)1/2−β

dτ

≤ C1 sinπα

π

∫ ∞
0

τ−α

τ + 1
dτ,

and the integral on the right side is convergent, for any α ∈ (0, 1).

For P2,2(ε, α) we have that

ΛβεP2,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α+1

τ + 1
Λβε

(
τ2

τ + 1
+ Λε

)−1

dτ,

and thus, by Proposition 2.27, we have

‖ΛβεP2,2(ε, α)‖L(X) ≤
C1 sinπα

π

∫ ∞
0

τ−α+1

τ + 1

(
τ + 1

τ2 + τ + 1

)1−β

dτ,

and the integral on the right side is convergent, provided that α ∈ (β, 1). �

3. Local and global well posedness results

3.1. Local well posedness result. To state the results of local well posed-

ness of equations (1.7), and consequently of (1.4), we firstly prove the auxiliary

lemma below.

Lemma 3.1. Let f : R→ R, and A is the negative Dirichlet Laplacian in X

with domain X1 = H2(Ω) ∩H1
0 (Ω) and consider its closed extension to H−r =

(Xr/2)′, where Y ′ represents the dual space of the Banach space Y , (in particular,

H−1 = H1
0 (Ω)′). Then

fe(φ)(x) = f(φ(x)), x ∈ Ω,

defines an operator from Xs/2 into H−r which is Lipschitz continuous in bounded

sets provided that condition (1.2) holds and r ∈ [(ρ− 1)(n− 2)/4, 1], s ∈ [r, 1] ∩
[n/2 − 2/(ρ− 1), 1]. If in addition, r can be taken strictly less than 1, then fe

takes bounded sets of Xs/2 into relatively compact sets of H−1.

Proof. Let B be a bounded set in Xs/2 and choose arbitrary φ1, φ2 ∈ B.

Since condition (1.2) holds we use the Sobolev and Hölder inequalities to get

‖fe(φ1)− fe(φ2)‖H−r ≤ C‖fe(φ1)− fe(φ2)‖L2n/(n+2r)(Ω)

≤Ĉ‖φ1 − φ2‖L2n/(n−2r)(Ω)(1 + ‖φ1‖ρ−1
Ln(ρ−1)/(2r)(Ω)

+ ‖φ2‖ρ−1
Ln(ρ−1)/(2r)(Ω)

)

≤C‖φ1 − φ2‖Xs/2(1 + ‖φ1‖ρ−1
Xs/2

+ ‖φ2‖ρ−1
Xs/2

),

for any s ∈ [r, 1] ∩ [n/2 − 2/(ρ− 1), 1]. The last statement holds since H−r is

compact embedded in H−1 for r < 1. �
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To continue, let Wε be the extrapolated space of X × X – which is the

completion of the normed space (X × X, ‖A−1
ε · ‖X×X) – and we consider the

power scale {Wα
ε }α∈[0,1] generated by (Wε, ‖Aαε · ‖Wε

).

Remark 3.2. Note that W1
ε = X ×X for all ε ∈ [0, 1].

Lemma 3.3. Let s ∈ [(ρ− 1)(n− 2)/4, 1] and γ ∈ (0, 1 − s/2), then Fε
(defined in (1.8)) takes W1

ε in Wγ
ε and is Lipschitz continuous in bounded sets.

Proof. Let B be a bounded subset of W1
ε and

[
w1
z1

]
,
[
w2
z2

]
∈ B. We have

that∥∥∥∥Fε([w1

z1

])
−Fε

([
w2

z2

])∥∥∥∥
Wγ
ε

=

∥∥∥∥Aγ−1
ε

[
Fε
([
w1

z1

])
−Fε

([
w2

z2

])]∥∥∥∥
X×X

=

∥∥∥∥[Λr/2ε P1,2(ε, 1−γ)A−r/2(I+εA)(r−1)/2(f(A−1/2w1)−f(A−1/2w2))

Λ
r/2
ε P2,2(ε, 1−γ)A−r/2(I+εA)(r−1)/2(f(A−1/2w1)−f(A−1/2w2))

]∥∥∥∥
X×X

and hence, by Proposition 2.28 along with Proposition 2.2, we have that∥∥∥∥Fε([w1

z1

])
−Fε

([
w2

z2

])∥∥∥∥
Wγ
ε

≤ const.‖f(A−1/2w1)− f(A−1/2w2)‖H−r .

Finally, Lemma 3.1 and Remark 3.2 guarantee that∥∥∥∥Fε([w1

z1

])
−Fε

([
w2

z2

])∥∥∥∥
Wγ
ε

≤ const.

∥∥∥∥[w1

z1

]
−
[
w2

z2

]∥∥∥∥
W1
ε

. �

Now we can state a result of local well posedness for (1.7) in W1
ε .

Theorem 3.4. For any initial data
[
w0
z0

]
lying in a bounded subset B of W1

ε

there exists a number τ = τ(B, ε) and a unique solution

[0, τ) 3 t 7→
[
wε
zε

]
(t, w0, z0) ∈ W1

ε

of (1.7) which depends continuously on its variables (t, w0, z0) ∈ [0, τ)×W1
ε and

such that, for any s ∈ [(ρ− 1)(n− 2)/4, 1] and γ ∈ (0, 1− s/2),[
wε
zε

]
( · , w0, z0) ∈ C((0, τ),W1+γ

ε ) ∩ C1((0, τ),W1+γ−
ε ),

and either τ = ∞ or
∥∥[wε

zε

]
(t, w0, z0)

∥∥
W1
ε
→ ∞ as t → τ−. Moreover, the

solution satisfies in W1
ε the variation of constants formula[

wε
zε

]
(t, w0, z0) = e−Aεt

[
w0

z0

]
+

∫ t

0

e−Aε(t−s)Fε
([
wε
zε

]
(s, w0, z0)

)
ds, t ∈ [0, τ).

Proof. The theorem above is a consequence of the results reported in [17].�
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To state the result of local well posedness for (1.4), we define Ãε : D(Ãε) ⊂
X1/2 × X̃1/2

ε → X1/2 × X̃1/2
ε by

D(Ãε) =

{[
u

v

]
∈ X1/2 × X̃1/2

ε : Φε

[
u

v

]
∈ D(Aε)

}
,

and, for
[
u
v

]
∈ D(Ãε),

Ãε
[
u

v

]
= Φ−1

ε AεΦε
[
u

v

]
.

Since Φε : X1/2 × X̃1/2
ε → X ×X is an isometric isomorphism for all ε ∈ [0, 1],

we have that each Ãε is a closed densely defined operator and also the following

result

Proposition 3.5. Each operator Ãε is a positive type operator (with an

uniform constant) and sectorial (with an uniform sector and uniform constants

M ≥ 1, ϕ ∈ (0, π/2) and ω > 0) in X1/2 × X̃1/2
ε .

Let Zε be the extrapolated space of X1/2 × X̃1/2
ε which is the completion of

the normed space (X1/2 × X̃1/2
ε , ‖Ã−1

ε · ‖X1/2×X̃1/2
ε

) and we consider the power

scale {Zαε }α∈[0,1] generated by (Zε, ‖Ãαε · ‖Zε).

Remark 3.6. Note that Z1
ε = X1/2 × X̃1/2

ε for all ε ∈ [0, 1].

Proof of Theorem 1.5. Let B̃ = Φ0,εB which is a bounded subset of W1
ε .

Thus, by Theorem 3.4, there exists τ = τ(B̃, ε) and a solution [0, τ) 3 t 7→[
w
z

]
(t, w0, z0, ε) ∈ W1

ε . Defining κ = τ and
[
u
v

]
(t, u0, v0, ε) = Φε

[
w
z

]
(t, w0, v0, ε)

we obtain the desired result. �

3.2. Global solutions. We want to prove that problem (1.7) generates

a strongly continuous semigroup, and conclude consequently the analogous result

to (1.1). To this end, from now on we assume that A : H1
0 (Ω) ∩H2(Ω) ⊂ X →

X is the negative Laplacian with Dirichlet boundary condition (hence satisfies

conditions (O1), (O2) and (O3)), and we will begin with the following lemma:

Lemma 3.7. Under the assumptions and notation of Theorem 3.4, if A is the

negative Laplacian with Dirichlet boundary condition in X, then condition (1.3)

implies the existence of a constant C > 0, independent of ε ∈ [0, 1], such that

if
[
w0
z0

]
∈ W1

ε , then solution of equation (1.7) given by [0, τ(w0, z0, ε)) 3 t 7→[w(t,w0,z0,ε)
z(t,w0,z0,ε)

]
∈ W1

ε fulfills the estimate∥∥∥∥[w(t, w0, z0, ε)

z(t, w0, z0, ε)

]∥∥∥∥2

X×X
≤ C(1 + ‖z0‖2X + ‖w0‖ρ+1

X ).
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Proof. We take the X scalar product ( · , · ) of each side of the first equation

in (1.5) with A−1/2wt to get

(3.1)
1

2

d

dt
(‖w‖2X2

+ ‖z‖2X)− (fe(A−1/2w), A−1/2wt) = −‖Λ1/2
ε z‖2X .

SinceA is the negative Laplacian with Dirichlet boundary condition, the Poincaré

inequality reads

‖A1/2φ‖2X ≥ λ1‖φ‖2X , φ ∈ X1/2,

which for φ = A−1/2ψ translates into the estimate

(3.2) ‖ψ‖2X ≥ λ1‖A−1/2ψ‖2X , ψ ∈ X.

If F is the primitive function of f in R we then have∫
Ω

f(A−1/2w)A−1/2wt dx =
d

dt

∫
Ω

F (A−1/2w) dx.

We now remark that (1.3) implies the existence of constants C, ξ > 0, for which

F (t) =

∫ t

0

f(s) ds ≤ 1

2
(λ1 − ξ)t2 + C, t ∈ R.

As a consequence we infer

(F (A−1/2w), 1) ≤ 1

2
(λ1 − ξ)‖A−1/2w‖2X + C|Ω|,

which with the aid of (3.2) reads

(3.3)

∫
Ω

F (A−1/2w) dx ≤ 1

2

(
1− ξ

λ1

)
‖w‖2X + C|Ω|.

Connecting (3.1)–(3.3) we get for

(3.4) L(w, z)
.
=

1

2
‖w‖2X +

1

2
‖z‖2X −

∫
Ω

F (A−1/2w) dx

that

(3.5)
d

dt
L(w, z) = −‖Λ1/2

ε z‖2X ≤ 0

and hence

(3.6)
ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| ≤ L(w, z) ≤ L(w0, z0),

as long as the solution exists. We then have

ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| ≤

1

2
‖w0‖2X +

1

2
‖z0‖2X −

∫
Ω

F (A−1/2w0) dx

and gives us

ξ

λ1
‖w‖2X + ‖z‖2X ≤ ‖w0‖2X + ‖z0‖2X − 2

∫
Ω

F (A−1/2w0) dx+ 2C|Ω|

where

‖F (A−1/2w0)‖L1(Ω) ≤ const.(1 + ‖w0‖ρ+1
X ),
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with the constant independent of ε, since condition (1.3) implies that |F (s)| ≤
const.(1 + |s|ρ+1) for s ∈ R. Thus

‖w‖2X + ‖z‖2X ≤ C(1 + ‖z0‖2X + ‖w0‖ρ+1
X ). �

Theorem 3.8. Under the assumptions of Lemma 3.7, the solutions from

Theorem 3.4 exist globally in time and the problem (1.7) defines a C0-semigroup

{Tε(t) : t ≥ 0} on W1
ε for each ε ∈ [0, 1], which has bounded orbits of bounded

sets, defined by

Tε(t)

[
w0

z0

]
= e−Aεt

[
w0

z0

]
+

∫ t

0

e−Aε(t−s)Fε
(
Tε(s)

[
w0

z0

])
ds, for all t ≥ 0.

Proof of Theorem 1.6. Is a direct consequence of Theorem 3.8. �

4. Existence of attractors and uniform bounds

In this section our goal is to prove the existence of a global attractor Aε of

the semigroup {Tε(t) : t ≥ 0} for each ε ∈ [0, 1] and to prove that {Tε(t) : t ≥ 0}
is a gradient semigroup.

Let E =
{[

φ
0

]
: φ ∈ E1

}
, where E1 = {φ ∈ X : A1/2φ = f(A−1/2φ)}. It is

clear that E is the set of equilibrium points of {Tε(t) : t ≥ 0}, for all ε ∈ [0, 1].

First we need an auxiliary lemma:

Lemma 4.1. If X = L2(Ω) and A is the negative Laplacian with Dirichlet

boundary condition and domain X1 = H2(Ω) ∩H1
0 (Ω), then

(4.1) (A−1/2φ,A1/2ψ) =

∫
Ω

φψ dx, φ ∈ L2n/(n+2)(Ω), ψ ∈ X1/2.

Proof. See Lemma 2.1 of [9]. �

Now we can give an estimate for the bound of the equilibrium set E .

Lemma 4.2. E is bounded in X ×X, moreover, for each φ ∈ E1, A−1/2φ ∈
L∞(Ω).

Proof. Let φ ∈ X1/2 such that
[
φ
0

]
∈ E . Thus, by Lemma 4.1, we have

‖φ‖2X = (φ, φ) = (φ,A−1/2f(A−1/2φ))

= (A1/2A−1/2φ,A−1/2f(A−1/2)φ) =

∫
Ω

f(A−1/2φ)A−1/2φdx,

and hence, with (1.3) and the aid of the Poincaré inequality, we have that

‖φ‖2X =

∫
Ω

f(A−1/2φ)A−1/2φdx

≤ (λ1 − ξ)‖A−1/2φ‖2X + C|Ω| ≤ (1− ξλ−1
1 )‖φ‖2X + C|Ω|.
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Therefore

sup[
φ
0

]
∈E

‖φ‖2X ≤ λ1ξ
−1C|Ω|.

For the second part, if ψ ∈ E1, then ψ = A−1/2φ ∈ X1/2 is a solution of the

problem

Aψ = f(ψ),

and hence, since f has subcritical growth, it follows by a bootstrapping argument

that ψ ∈ L∞(Ω). �

Corollary 4.3. The set Ẽ =
{[

A−1/2φ
0

]
: φ ∈ E1

}
is the set of equilibrium

points of (1.1). Moreover, this set is uniformly bounded in X1/2 × X̃
1/2
ε , for

ε ∈ [0, 1], and Ẽ ⊂ L∞(Ω)× L∞(Ω).

Lemma 3.7 gives us also the following result:

Proposition 4.4. Under the assumptions of Lemma 3.7 the function L : X×
X → R satisfies:

(a) L(Tε( · )
[
w0
z0

]
) is bounded from below and non-increasing in [0,∞) for

any
[
w0
z0

]
∈ X ×X;

(b) If
[
w0
z0

]
∈ X ×X and L(Tε( · )

[
w0
z0

]
) = const. in [0,∞) then

[
w0
z0

]
∈ E.

Proof. Equations (3.5) and (3.6) show that L(Tε( · )
[
w0
z0

]
) is decreasing and

bounded below in [0,∞). If L(Tε( · )
[
w0
z0

]
) = const. in [0,∞), then

L
(
Tε(t)

[
w0

z0

])
= L

([
w0

z0

])
,

for all t ∈ [0,∞). If Tε(t)
[
w0
z0

]
=
[wε(t)
zε(t)

]
then zε(t) = 0 for all t ≥ 0, and in

particular, z0 = 0. Also d
dtwε(t) = Λ

1/2
ε zε(t) = 0 for all t > 0, thus wε(t) is

constant which implies that wε(t) = w0 for all t ≥ 0. Finally, equation (1.6)

implies that A1/2w0 = f(A−1/2w0) and therefore
[
w0
z0

]
∈ E . �

Proposition 4.5. Under the assumptions of Lemma 3.7, for each ε ∈ [0, 1]

there exists a function Vε : X1/2 × X̃1/2
ε → R satisfying:

(a) Vε(Sε( · )
[
u0
v0

]
) is bounded from below and non-increasing in [0,∞) for

any
[
u0
v0

]
∈ X1/2 × X̃1/2

ε ;

(b) If
[
u0
v0

]
∈ X1/2 × X̃

1/2
ε and Vε(Sε( · )

[
u0
v0

]
) = const. in [0,∞) then[

u0
v0

]
∈ Ẽ.

Proof. Just define, for each ε ∈ [0, 1],

Vε
([
u

v

])
= L

(
Φ0,ε

[
u

v

])
,

and this functional has the desired properties. �
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To ensure the existence of an attractor Aε for the semigroup {Tε(t) : t ≥ 0},
for each ε ∈ [0, 1], it remains to show that {Tε(t) : t ≥ 0} is an asymptotically

compact semigroup, for each ε ∈ [0, 1].

Proposition 4.6. For each ε ∈ [0, 1], the semigroup {Tε(t) : t ≥ 0} is

asymptotically compact in X ×X.

Proof. Define, for each ε ∈ [0, 1],

Lε(t)

[
w0

z0

]
= e−Aεt

[
w0

z0

]
and Uε(t)

[
w0
z0

]
=

∫ t

0

e−Aε(t−s)Fε
(
Tε(s)

[
w0

z0

])
.

From Lemma 3.1, f(A−1/2 · ) take bounded subsets of X into precompact sets

of H−s for s ∈ [(ρ− 1)(n− 2)/4, 1), thus Fε takes bounded sets of X × X

into precompact sets of X × X, Tε(t) is the sum of an exponentially decaying

semigroup with a compact family of maps, which implies that the semigroup is

asymptotically compact. �

Theorem 4.7. The semigroup {Tε(t) : t ≥ 0} has a global attractor Aε in

X ×X, for each ε ∈ [0, 1].

Proof of Theorem 1.7. Define Ãε = Φ−1
0,εAε, for each ε ∈ [0, 1]. �

4.1. Uniform estimates on the global attractors. In this subsection

we are concerned with uniform estimates for the family of attractors {Aε}ε∈[0,1]

and also for {Ãε}ε∈[0,1], since this will be an essential tool to prove the upper

semicontinuity for both of them at ε = 0.

Theorem 4.8.
⋃

ε∈[0,1]

Aε is bounded in X ×X.

Proof. We define, for (ε, γ) ∈ [0, 1]× [0, 1], the functional Vε,γ : X×X → R
by

Vε,γ(w, z) =
1

2
(‖w‖2X + ‖z‖2X)−

∫
Ω

F (A−1/2w) dx+ γRe((I + εA)1/2A−1/2w, z).

Now

Vε,γ(w, z) ≥ 1

2
‖w‖2X +

1

2
‖z‖2X −

1

2

(
1− ξ

λ1

)
‖w‖2X − C|Ω|

+ γRe((I + εA)1/2A−1/2w, z)

≥ ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| −

γ

2
(µ1‖z‖2X + ‖w‖2X)

=

(
ξ

2λ1
− γ

2

)
‖w‖2X +

(
1

2
− µγ

2

)
‖z‖2X − C|Ω|,
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and we choose γ ∈ (0, 1) such that ξ/λ1 − γ > 0, 1− µγ > 0 and γ < µ/2. Now,

if we take
[w(t)
z(t)

]
being a solution of (1.5) we have that

d

dt
Vε,γ(w, z)

= − ‖wt‖2X + γRe((I + εA)1/2A−1/2wt, z) + γRe((I + εA)1/2A−1/2w, zt)

= − ‖wt‖2X + γ‖z‖2X − γRe((I + εA)1/2A−1/2w,A1/2(I + εA)−1/2w)

− γRe(wt, w) + γRe(f(A−1/2w), A−1/2w).

Hence, for each η > 0,

d

dt
Vε,γ(w, z) ≤

(
γ

2η
− 1

)
‖wt‖2X + γ‖z‖2X +

γη

2
‖w‖2X

− γ
(

1− ξ

λ1

)
Re(A1/2(I + εA)−1/2w, (I + εA)1/2A−1/2w)

− γξ

λ1
Re(A1/2(I + εA)−1/2w, (I + εA)1/2A−1/2w)

+ γ(λ1 − ξ)‖A−1/2w‖2X + Cγ|Ω|

≤
(
γη

2
− γξ

λ1

)
‖w‖2X +

(
− µ+

γµ

2η
+ γ

)
‖z‖2X + Cγ|Ω|,

hence, for η = ξ/λ1, we have

d

dt
Vε,γ(w, z) ≤ − γξ

2λ1
‖w‖2X −

(
µ

2
− γ
)
‖z‖2X + Cγ|Ω|.

Now, for any ζ > 0, we have

d

dt
Vε,γ(w, z) ≤ − γξ

2λ1
‖w‖2X −

(
µ

2
− γ
)
‖z‖2X + Cγ|Ω|

± ζ
∫

Ω

F (A−1/2w) dx± γζRe((I + εA)1/2A−1/2w, z),

and thus

d

dt
Vε,γ(w, z) ≤

(
− γξ

2λ1
+
ζ(λ1 − ξ)

2
+
γζ

2

)
‖w‖2X +

(
µ

2
+ γ +

γζµ

2

)
‖z‖2X

+ Cγ|Ω|+ 2Cζ|Ω|+ ζ

∫
Ω

F (A−1/2w) dx− ζγRe((I + εA)1/2A−1/2w, z).

We can choose ζ > 0 such that

− γξ

2λ1
+
ζ(λ1 − ξ)

2
+
γζ

2
< −ζ

2
and

µ

2
+ γ +

γζµ

2
< −ζ

2
,
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and therefore

d

dt
Vε,γ(w, z) ≤ − ζ

2
‖w‖2X −

ζ

2
‖z‖2X

+ ζ

∫
Ω

F (A−1/2w) dx− γζRe((I + εA)1/2A−1/2w, z) + C̃

= − ζVε,γ(w, z) + C̃,

or, equivalently,

d

dt
Vε,γ(w, z) + ζVε,γ(w, z) ≤ C̃.

This implies that, for all t > 0, we have

d

dt
(eζtVε,γ(w, z)) ≤ eζtC̃,

and hence Vε,γ(w, z) ≤ e−ζtVε,γ(w0, z0) + C̃. Therefore∥∥∥∥[wz
]∥∥∥∥2

X×X
≤ Ĉe−ζt(1 + ‖z0‖2X + ‖w0‖2X + ‖w0‖ρ+1

X ) + R̃,

for all t > 0 and given a bounded set B inX×X, there exists TB ≥ 0, independent

of ε ∈ [0, 1], such that ∥∥∥∥[wz
]∥∥∥∥2

X×X
≤ 2R̃, for all t ≥ TB,

and we conclude the proof of the theorem. �

With this uniform bound in X ×X, using the subcritical growth of f we are

able to provide an uniform estimate in a more regular space.

Theorem 4.9. If s ∈ [0, 1 − (ρ− 1)(n− 2)/4), then
⋃

ε∈[0,1]

Aε is bounded in

Xs/2 ×Xs/2.

Proof. If
[w( · ,w0,z0,ε)
z( · ,w0,z0,ε)

]
is a solution of (1.6) in the attractor Aε then[

w(t, w0, z0, ε)

z(t, w0, z0, ε)

]
=

∫ t

−∞
e−Aε(t−s)Fε

([
w(s, w0, z0, ε)

z(s, w0, z0, ε)

])
,

for all t ∈ R. Thus, if we take α ∈ (1/12, 1), we have∥∥∥∥[w(t, w0, z0, ε)

z(t, w0, z0, ε)

]∥∥∥∥
Xs/2×Xs/2

≤
∫ t

−∞
‖Aαε e−Aε(t−s)‖L(X×X)

·
∥∥∥∥[Λ1/2

ε P1,2(ε, α)A(s−1)/2f(A−1/2w(s, w0, z0, ε))

Λ
1/2
ε P2,2(ε, α)A(s−1)/2f(A−1/2w(s, w0, z0, ε))

]∥∥∥∥
X×X

,
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and there exists a constant M̃ ≥ 1 such that (using Proposition 2.28)∥∥∥∥[w(t, w0, z0, ε)

z(t, w0, z0, ε)

]∥∥∥∥
Xs/2×Xs/2

≤ M̃
∫ t

−∞
e−ω(t−s)(t− s)−α‖f(A−1/2w(s, w0, z0, ε))‖Hs−1 ,

and since, by Theorem 4.8, ‖w(s, w0, z0, ε)‖X is uniformly bounded in X we have

that
⋃

ε∈[0,1]

Aε is bounded in Xs/2 ×Xs/2. �

Corollary 4.10.
⋃

ε∈[0,1]

Aε is precompact in X ×X.

Proof. It follows directly from the fact that Xs/2 × Xs/2 is compact em-

bedded in X ×X. �

To finish this section and give a proof of Theorem 1.8, we need the following

result.

Proposition 4.11. Let A be an operator of positive type with constant C ≥ 1

in X, then the operators I + εA : D(I + εA) ⊂ X → X are of positive type with

constant C. Moreover, the family of operators {(I + εA)−β}(ε,β)∈[0,1]×[0,1] is

uniformly bounded.

Proof. See Appendix A. �

Proof of Theorem 1.8. It follows from the previous theorem and Propo-

sition 4.11. �

Corollary 4.12.
⋃

ε∈[0,1]

Ãε is precompact in X1/2 ×X.

5. Continuity of attractors

5.1. Upper semicontinuity of attractors. This section is devoted to the

study of the upper semicontinuity of the family of global attractors {Aε}ε∈[0,1]

at ε = 0 and as a consequence, the upper semicontinuity of {Ãε}ε∈[0,1]

To start this discussion, we have the following lemma:

Lemma 5.1. If
{[w0

ε

z0ε

]}
ε∈(0,1]

⊂ X ×X is such that[
w0
ε

z0
ε

]
ε→0+

−−−−→
[
w0

0

z0
0

]
for some

[
w0

0

z0
0

]
∈ X ×X,

then we have [
wε(t)

zε(t)

]
ε→0+

−−−−→
[
w0(t)

z0(t)

]
, for each t ≥ 0,
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where
[wε( · )
zε( · )

]
is the solution of (1.7) with initial condition

[
wε(0)

zε(0)

]
=

[
w0
ε

z0
ε

]
, for each ε ∈ [0, 1].

Proof. We know that, for each
[w0

ε

z0ε

]
∈ X × X, the solution of (1.7) is

given by

[
wε(t)

zε(t)

]
= e−Aεt

[
w0
ε

z0
ε

]
+

∫ t

0

e−Aε(t−s)Fε
([
wε(s)

zε(s)

])
ds,

for each t ≥ 0. Thus we have

[
wε(t)

zε(t)

]
−
[
w0(t)

z0(t)

]
= e−Aεt

[
w0
ε

z0
ε

]
− e−A0t

[
w0

0

z0
0

]
︸ ︷︷ ︸

I1(ε)

+

∫ t

0

e−Aε(t−s)Fε
([
wε(s)

zε(s)

])
− e−A0(t−s)F0

([
w0(s)

z0(s)

])
ds︸ ︷︷ ︸

I2(ε)

.

We analise I1(ε) and I2(ε) separately. First, note that

I1 = e−Aεt
([
w0
ε

z0
ε

]
−
[
w0

0

z0
0

])
+ (e−Aεt − e−A0t)

[
w0

0

z0
0

]
,

and the hypothesis together with Theorem 1.4 ensures that I1(ε)→ 0 as ε→ 0+.

Now

I2(ε) =

∫ t

0

e−Aε(t−s)
[
Fε
([
wε(s)

zε(s)

])
−Fε

([
w0(s)

z0(s)

])]
ds︸ ︷︷ ︸

I12 (ε)

+

∫ t

0

[e−Aε(t−s) − e−A0(t−s)]Fε
([
w0(s)

z0(s)

])
ds︸ ︷︷ ︸

I22 (ε)

+

∫ t

0

e−A0(t−s)
[
Fε
([
w0(s)

z0(s)

])
−F0

([
w0(s)

z0(s)

])]
ds︸ ︷︷ ︸

I32 (ε)

,
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and again we will analise I1
2 (ε), I2

2 (ε) and I3
2 (ε) separately. For I1

2 (ε) we have

that, given α ∈ (1/2, 1),

‖I1
2 (ε)‖X×X

≤
∫ t

0

‖Aαε e−Aε(t−s)‖L(X×X)

∥∥∥∥A−αε [
Fε
([
wε(s)

zε(s)

])
−Fε

([
w0(s)

z0(s)

])]∥∥∥∥
X×X

ds

≤
∫ t

0

Ce−ω(t−s)(t− s)−α
∥∥∥∥[wε(s)zε(s)

]
−
[
w0(s)

z0(s)

]∥∥∥∥
X×X

ds.

For I2
2 (ε) we have that, given s ∈ [(ρ− 1)(n− 2)/4, 1) and γ ∈ (s, 1),

‖I2
2 (ε)‖X×X

≤
∫ t

0

‖e−Aε(t−s) − e−A0(t−s)‖L(X×X)‖(I + εA)−1/2f(A−1/2w0(s))‖X ds

≤
∫ t

0

MC1e
−ω(t−s)(t− s)−γε(γ−s)/2‖f(A−1/2w0(s))‖H−s ds ≤ C̃ε(γ−s)/2.

For I3
2 (ε) we have that, for a given α ∈ (1/2, 1) and s ∈ [(ρ− 1)(n− 2)/4, 1),

‖I3
2 (ε)‖X×X

≤
∫ t

0

‖Aα0 e−A0(t−s)‖L(X×X)

∥∥∥∥A−α0

[
Fε
([
w0(s)

z0(s)

])
−F0

([
w0(s)

z0(s)

])]∥∥∥∥
X×X

ds

≤
∫ t

0

Ce−ω(t−s)(t− s)−α‖[A−1/2(I + εA)−1/2 −A−1/2]f(A−1/2w0(s))‖X ds

=

∫ t

0

Ce−ω(t−s)(t− s)−α

· ‖[A(s−1)/2(I + εA)−1/2 −A(s−1)/2]A−s/2f(A−1/2w0(s))‖X ds

≤ C̃ε(1−s)2.

Joining these estimates we proved that∥∥∥∥[wε(t)zε(t)

]
−
[
w0(t)

z0(t)

]∥∥∥∥
X×X

≤ l(ε) +

∫ t

0

Ce−ω(t−s)(t− s)−α
∥∥∥∥[wε(s)zε(s)

]
−
[
w0(s)

z0(s)

]∥∥∥∥
X×X

ds,

where l(ε) → 0 as ε → 0+, and using a Singular Gronwall’s Lemma (see

Lemma 7.1.1 in [17]), we have that∥∥∥∥[wε(t)zε(t)

]
−
[
w0(t)

z0(t)

]∥∥∥∥
X×X

→ 0, as ε→ 0+, for each t ≥ 0. �

Using this result together with Corollary 4.10 we can prove the following:
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Lemma 5.2. If
{[w0

ε

z0ε

]}
ε∈(0,1]

⊂ X × X is such that
[w0

ε

z0ε

]
∈ Aε for each

ε ∈ (0, 1] and
[w0

ε

z0ε

] ε→0+

−−−−→
[w0

0

z00

]
for some

[w0
0

z00

]
∈ X ×X, then

[w0
0

z00

]
∈ A0.

Proof. Let
[wε(t)
zε(t)

]
be the global solution through

[w0
ε

z0ε

]
, for each ε ∈ (0, 1].

Since
[wε(−1)
zε(−1)

]
∈

⋃
ε∈[0,1]

Aε, there exists a subsequence εn1 → 0 as n1 → ∞ and

a point
[w0(−1)
z0(−1)

]
∈ X ×X such that[

wεn1
(−1)

zεn1
(−1)

]
→
[
w0(−1)

z0(−1)

]
, as n1 →∞.

By Lemma 5.1, [
w0
ε

z0
ε

]
= Tε(1)

[
wεn1

(−1)

zεn1
(−1)

]
→ T0(1)

[
w0(−1)

z0(−1)

]
,

and hence T0(1)
[w0(−1)
z0(−1)

]
=
[w0

0

z00

]
. Inductively, if we have chosen a subsequence

{nk} of {nk−1} and a point
[w0(−k)
z0(−k)

]
∈ X ×X such that[

wεnk (−k)

zεnk (−k)

]
→
[
w0(−k)

z0(−k)

]
, as nk →∞.

Again, using Lemma 5.1, we have[
wε(−k + 1)

zε(−k + 1)

]
= Tε(1)

[
wεn1

(−k)

zεn1
(−k)

]
→ T0(1)

[
w0(−k)

z0(−k)

]
,

and hence

T0(1)

[
w0(−k)

z0(−k)

]
=

[
w0(−k + 1)

z0(−k + 1)

]
.

Now define, for each t ∈ R,

[
w0(t)

z0(t)

]
=



[w0(−k)
z0(−k)

]
if t = −k ∈ Z−,

T0(t+ k)
[w0(−k)
z0(−k)

]
if t ∈ (−k,−k + 1),[w0

0

z00

]
if t = 0,

T0(t)
[w0

0

z00

]
if t > 0.

and thus
[w0(t)
z0(t)

]
is a bounded global solution through

[w0
0

z00

]
of {T0(t) : t ≥ 0}

and therefore
[w0

0

z00

]
∈ A0. �

Lemmas 5.1 and 5.2 together with Lemma 3.2 of [5] prove the upper semi-

continuity at ε = 0 of {Aε}ε∈[0,1] and we have the following result:

Theorem 5.3. The family {Aε}ε∈[0,1] is upper semicontinuous in ε = 0.
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With the upper semicontinuity of the family {Aε}ε∈[0,1] at ε = 0 we are one

step away to prove the upper semicontinuity of the family of global attractors

{Ãε}ε∈[0,1] at ε = 0. All we need is the following proposition:

Proposition 5.4. If s ∈ [0, 1] and x ∈ D(As/2) then

‖(I + εA)−1/2x− x‖X ≤ Cεs/2‖As/2x‖X .

Proof of Theorem 1.9. Just note that∥∥∥∥[uεvε
]
−
[
u0

v0

]∥∥∥∥
X1/2×X

≤
∥∥∥∥[ wε

(I + εA)−1/2zε

]
−
[
w0

z0

]∥∥∥∥
X×X

≤‖(I + εA)−1/2zε − zε‖X +

∥∥∥∥[wεzε
]
−
[
w0

z0

]∥∥∥∥
X×X

,

for any
[
uε
vε

]
∈ Cε. Now the result follows Proposition 5.4 and Theorem 5.3. �

5.2. Lower semicontinuity of attractors. The study of lower semicon-

tinuity of attractors is a harder deal than the upper semicontinuity and requires

a fine study of the local structures in the global attractors; that is, we need to

study the continuity of the local unstable manifolds of the linearized problems

around each equilibrium point
[
φ
0

]
∈ E (recall Section 4), which is given by

(Pε)
d

dt

[
w

z

]
+Aε,φ

[
w

z

]
= Fε,φ

([
w

z

])
,

where

Aε,φ = Aε −DFε
([
φ

0

])
,

Fε,φ
([
w

z

])
= Fε

([
w + φ

z

])
−Fε

([
φ

0

])
−DFε

([
φ

0

])[
w

z

]
.

From now on we will make the following assumption:

(LS1) φ is an non-degenerate equilibrium for A1/2u = fe ◦ A−1/2(u); that is

1 ∈ ρ(A−1/2D(fe ◦A−1/2)(φ)) and hence I −A−1/2D(fe ◦A−1/2)(φ) is

invertible.

It is easy to see that

DFε
([
φ

0

])
=

[
0 0

(I + εA)−1/2D(fe ◦A−1/2)(φ) 0

]
,

We now will study the convergence of the linear local unstable manifolds of

the problems (Pε), and to begin we discuss the generation of analytic semigroups

by −Aε,φ.

Proposition 5.5. Using the notations of Lemma 4.2, D(fe ◦ A−1/2)(φ) is

a bounded linear operator in X if φ ∈ E1.
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Proof. We know that, for each φ ∈ E1 and η ∈ X,

(D(fe ◦A−1/2)(φ)η)(x) = f ′(A−1/2φ(x))A−1/2η(x),

and hence

‖D(fe ◦A−1/2)(φ)η‖2X =

∫
Ω

|f ′(A−1/2φ(x))A−1/2η(x)|2 dx.

SinceA−1/2φ ∈ L∞(Ω) (by Lemma 4.2) and |f ′(s)| ≤ c(1+|s|ρ−1), f ′(A−1/2φ( · ))
in L∞(Ω), thus

‖D(fe ◦A−1/2)(φ)η‖X ≤ K‖η‖X . �

Corollary 5.6.
{
DFε

([
φ
0

])}
ε∈[0,1]

is an uniformly bounded linear family

of operators in X ×X.

Corollary 5.7. {Aε,φ}ε∈[0,1] is an uniformly sectorial family of operators

in X ×X, hence each −Aε,φ generates an analytic semigroup {e−Aε,φ : t ≥ 0}
and there exist constants M ≥ 1, ω ∈ R such that

‖e−Aε,φt‖L(X×X) ≤Me−ωt, for all t ≥ 0 and all ε ∈ [0, 1],

also there exists a ϕ ∈ (0, π/2) such that

‖(λ−Aε,φ)−1‖ ≤ M

|λ− ω|
, or all λ ∈ Sω,ϕ and all ε ∈ [0, 1].

It is by a simple calculation, and recalling that 0 ∈ ρ(Aε) for all ε ∈ [0, 1],

that we can see that

Aε,φ = Aε(I −A−1
ε DFε(

[
φ
0

]
)) = AεB,

where B is the invertible linear bounded operator given by

B =

[
I −A−1/2D(fe ◦A−1/2)(φ) 0

0 I

]
.

Therefore, using the assumption (LS1), we have that 0 ∈ ρ(Aε,φ) and A−1
ε,φ =

B−1A−1
ε which gives

‖A−1
ε,φ −A

−1
0,φ‖L(X) ≤ ‖B−1‖L(X)‖A−1

ε −A−1
0 ‖ ≤ Cε.

Now let K ⊆ C be a compact set and assume that K ⊆ ρ(A0,φ). Since

A0,φ(λ−A0,φ)−1 and (λ−A0,φ)A0,φ are in L(X) and they are inverse with each

other, we have that λA−1
0,φ − I = (λ − A0,φ)A0,φ is an invertible operator and

since

(λA−1
ε,φ − I)− (λA−1

0,φ − I) = λ(A−1
ε,φ −A

−1
0,φ),

we have that, for ε sufficiently small, (λA−1
ε,φ − I) is invertible and

(λA−1
ε,φ − I)−1 − (λA−1

0,φ − I)−1 L(X)−−−→ 0,
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as ε → 0+, uniformly for λ ∈ K. Thus (λ−Aε,φ) is invertible for λ ∈ K and ε

sufficiently small, and

(λ−Aε,φ)−1 − (λ−A0,φ)−1 L(X)−−−→ 0,

as ε→ 0+, and we have proved the following result:

Proposition 5.8. Given K ⊆ C a compact set such that K ⊆ ρ(A0,φ), there

exists ε0 ∈ [0, 1] such that K ⊆ ρ(Aε,φ) for all ε ∈ [0, ε0] and

sup
λ∈K
‖(λ−Aε,φ)−1 − (λ−A0,φ)−1‖L(X×X) → 0, as ε→ 0+.

This lead us to the following result:

Proposition 5.9. If
[
φ
0

]
∈ E is a hyperbolic equilibrium point for the prob-

lem (P0) then there exists ε0 ∈ (0, 1] such that
[
φ
0

]
it is a hyperbolic equilibrium

point for the problems (Pε), for each ε ∈ [0, ε0].

Proof. Since
[
φ
0

]
is a hyperbolic equilibrium point for (P0), σ(A0,φ) is sep-

arated from the imaginary axis; hence there exists a rectangle K = {λ ∈ C :

Reλ ∈ [−a, a] and Imλ ∈ [−b, b]} with a, b > 0 such that σ(A0,φ) ∩K = ∅, and

by Corollary 5.7, we can choose K such that it split C \ Sω,ϕ into two sepa-

rated sets. Then Proposition 5.8 implies that there exists ε0 ∈ (0, 1] such that

σ(Aε,φ) ∩K = ∅ for all ε ∈ [0, ε0] and therefore
[
φ
0

]
is a hyperbolic equilibrium

point for (Pε). �

Now let σ+ = σ(−Aε,φ) ∩ {Reλ > 0} and Γ+ be a closed simple curve in

ρ(−Aε,φ) enclosing σ+. We know that the associated linear unstable manifold

Uε of problem (Pε) is given as the image of the projection Π+
ε defined by

Π+
ε =

1

2πi

∫
Γ+

(λ+Aε,φ)−1dλ,

and Proposition 5.8 implies that

‖Π+
ε −Π+

0 ‖L(X×X) → 0, as ε→ 0+.

Now we have that the convergence of the linear unstable manifolds, we study

unstable manifolds of problem (Pε), and to this end we begin with the following

lemma.

Lemma 5.10. If f : R→ R is a C2 function with f , f ′ and f ′′ bounded in R,

there exists ζ ∈ (0, 1) such that, for all u, v ∈ X,

‖fe(A−1/2u)− fe(A−1/2v)− f ′(A−1/2v)A−1/2(u− v)‖X ≤ c‖u− v‖1+ζ
X .

Proof. First we set

g(u, v) = fe(A−1/2u)− fe(A−1/2v)− f ′(A−1/2v)A−1/2(u− v),
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and we can see that

|g(u, v)| = |fe(A−1/2u)− fe(A−1/2v)− f ′(A−1/2v)A−1/2(u− v)|

= |[f ′(θA−1/2u+ (1− θ)A−1/2v)− f ′(A−1/2v)]A−1/2(u− v)|

= |f ′′(η(θA−1/2u+ (1− θ)A−1/2v) + (1− η)A−1/2v)||θ||A−1/2(u− v)|2,

and it is easy to see that there exist constants c1, c2 > 0 such that

‖g(u, v)‖L1(Ω) ≤ c1‖A−1/2(u− v)‖2L2n/(n−2)(Ω),

‖g(u, v)‖L2n/(n−2)(Ω) ≤ c2‖A−1/2(u− v)‖L2n/(n−2)(Ω).

In this way there exists ζ ∈ (0, 1) such that 1/2 = ζ + (1− ζ)(n− 2)/(2n) and

‖g(u, v)‖X ≤‖g(u, v)‖1−ζL1(Ω)‖g(u, v)‖ζ
L2n/(n−2)(Ω)

≤ c1−ζ1 cζ2‖A−1/2(u− v)‖1+ζ
L2n/(n−2)(Ω)

,

which concludes the proof, since H1
0 (Ω) ↪→ L2n/(n−2)(Ω). �

Corollary 5.11. If f : R→ R is a C2 function with f , f ′ and f ′′ bounded

in R, there exists a ζ ∈ (0, 1) such that∥∥∥∥Fε,φ([w1

z1

])
−Fε,φ

([
w2

z2

])∥∥∥∥
X×X

≤ c
∥∥∥∥[w1

v1

]
−
[
w2

v2

]∥∥∥∥1+ζ

X×X
,

for each ε ∈ [0, 1].

Proposition 5.12. In the conditions above, for each ε ∈ [0, ε0] there exists

a local unstable manifold W u,ε
loc

([
φ
0

])
which is a graph over a ball Br(0) of Uε.

Moreover, the family of local unstable manifolds
{
W u,ε

loc

([
φ
0

])}
ε∈[0,ε0]

is continu-

ous at ε = 0.

Proof. This is a consequence of Corollary 5.11 and the results reported

in [18]. �

Theorem 5.13. Suppose that all the conditions above are satisfied and as-

sume also that the set of equilibrium points E and each
[
φ
0

]
∈ E is a hyperbolic

equilibrium point for (P0), then family of global attractors {Aε}ε∈[0,1] is lower

semicontinuous at ε = 0.

Proof. Proposition 5.9 implies that E consists of hyperbolic points of (Pε)

for each ε ∈ [0, ε0] and by Proposition 5.12, the family of local unstable manifolds{
W u,ε

loc

([
φ
0

])}
ε∈[0,ε0]

is continuous at ε = 0. Finally, Proposition 4.4 implies, in

particular, that

A0 =
⋃[
φ
0

]
∈E

W u,0
loc

([
φ

0

])
,

and the result follows from the results reported in [2], [16]. �
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Proof of Theorem 1.10. It is analogous to the proof of Theorem 1.9,

using Theorem 5.13 instead of Theorem 5.3. �

6. Fractal dimension of attractors and entropy numbers

In this section, we are interested in giving uniform bounds for the fractal

dimension of the global attractors Aε of the semigroups {Tε(t) : t ≥ 0} generated

by equation (1.7). To begin, let us recall the definitions of fractal dimension and

entropy numbers.

Definition 6.1. Let Z be a metric space and K a compact subset of Z. For

each r > 0 let NZ(r,K) be the minimum number of balls of radius r necessary

to cover K. The fractal dimension of K is defined by

c(K) ≤ lim sup
r→0+

ln NZ(r,K)

ln(1/r)
.

Definition 6.2. Let Z and W two Banach spaces such that Z is compactly

embedded in W. We define the entropy numbers ek of Z in W by

ek = inf

{
η > 0 : BZ1 (0) ⊂

2k−1⋃
j=1

BWη (wj), wj ∈ W for 1 ≤ j ≤ 2k−1

}
.

Roughly speaking, ek is the solution of the equation NW(η,BZ1 (0)) = 2k−1.

Firstly, using Theorem 4 of [10], we are able to estimate the fractal dimension

of the global attractors of (1.7). To this end, we prove two auxiliary lemmas.

Lemma 6.3. For any γ ∈ (0, 1), there exists a continuous function hγ : R→ R
such that, for all

[
w0
z0

]
,
[
w1
z1

]
∈ X ×X,∥∥∥∥Tε(t)[w0

z0

]
− Tε(t)

[
w1

z1

]∥∥∥∥
H−γ×H−γ

≤ hγ(t)

∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
H−γ×H−γ

.

Proof. Using the variation of constants formula, we have that∥∥∥∥Tε(t)[w0

z0

]
− Tε(t)

[
w1

z1

]∥∥∥∥
H−γ×H−γ

≤Me−ωt
∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
H−γ×H−γ

+

∫ t

0

Me−ω(t−s)(t−s)−α
∥∥∥∥A−αε [

Fε
(
Tε(s)

[
w0

z0

])
−Fε

(
Tε(s)

[
w1

z1

])]∥∥∥∥
H−γ×H−γ

ds

≤Me−ωt
∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
H−γ×H−γ

+Mγ

∫ t

0

e−ω(t−s)(t− s)−α
∥∥∥∥Tε(s)[w0

z0

]
− Tε(s)

[
w1

z1

]∥∥∥∥
H−γ×H−γ

ds,

for α ∈ (1/2, 1), and the result follows from a singular version of Grownwall’s

Lemma (Lemma 7.1.1 in [17]). �
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Lemma 6.4. There exists γ ∈ (0, 1) and a continuous function k : R → R
such that, for all

[
w0
z0

]
,
[
w1
z1

]
∈ X ×X,∥∥∥∥Tε(t)[w0

z0

]
− Tε(t)

[
w1

z1

]∥∥∥∥
X×X

≤Me−ωt
∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
X×X

+ k(t)

∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
H−γ×H−γ

.

Proof. We can write Tε(t) = Lε(t) + Uε(t) where

Lε(t) · = e−Aεt · and Uε(t) · =

∫ t

0

e−Aε(t−s)Fε(Tε(s) · ) ds.

It is easy to see that∥∥∥∥Lε(t)[w0

z0

]
− Lε(t)

[
w1

z1

]∥∥∥∥
X×X

≤Me−ωt
∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
X×X

.

Also, if we choose α ∈ (1/2, 1) and γ ∈ (0, 1), we have that∥∥∥∥Uε(t)[w0

z0

]
− Uε(t)

[
w1

z1

]∥∥∥∥
X×X

≤M
∫ t

0

e−ω(t−s)(t− s)−α‖A−αε [Fε(Tε(s)
[
w0
z0

]
)−Fε(Tε(s)

[
w1
z1

]
)]‖X×X ds

≤Mγ

∫ t

0

e−ω(t−s)(t− s)−α‖Tε(s)
[
w0
z0

]
− Tε(s)

[
w1
z1

]
‖H−γ×H−γ ds,

and by Lemma 6.3, there exists a function k : R→ R such that∥∥∥∥Uε(t)[w0

z0

]
− Uε(t)

[
w1

z1

]∥∥∥∥
X×X

≤ k(t)

∥∥∥∥[w0

z0

]
−
[
w1

z1

]∥∥∥∥
H−γ×H−γ

. �

Theorem 6.5. Let t0 ≥ 0 such that λ
.
= Me−ωt0 < 1/2 and define K

.
=

k(t0), where k is the continuous function given in Lemma 6.4. Then, for any

ν ∈ (0, 1/2− λ), we have that

c(Aε) ≤
ln NH−γ×H−γ (ν/K,BX×X1 (0))

ln(1/(2(λ+ ν)))
.

Proof. Is a direct consequence of Theorem 4 of [10]. �

Now, using the results of Section 3.3.2 in [13], we can see that there exists

a constant c > 0 such that, for the spaces X = L2(Ω) and H−γ , we have

ek ≤ ck−γ/n, and therefore, taking k0 sufficiently large so that ck−γ/n ≤ ν/K,

for k ≥ k0, we have that

NH−γ×H−γ

( ν
K
,BX×X1 (0)

)
≤ 22k−2,
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which implies that

log NH−γ×H−γ

(
ν

K
,BX×X1 (0)

)
≤ 2 ln 2

(ν/cK)−n/γ − 1

− ln(2(λ+ ν))
.

Defining g(ν) = ((ν/cK)−n/γ − 1)/(− ln(2(λ+ ν))) we can see that

lim
ν→0+

g(ν) = +∞ and lim
ν→(1/2−λ)−

g(ν) = +∞,

which means that g(ν) has a minimum ν0 in the interval (0, 1/2− λ) and hence

c(Aε) ≤ 2 ln 2g(ν0), which proves the following result:

Theorem 6.6. For any ε ∈ [0, 1] we have that c(Aε) ≤ 2 ln 2g(ν0).

As a direct consequence, we have:

Proof of Theorem 1.11. The result follows noting that Φε : X1/2 ×
X̃

1/2
ε → X×X is an isometric isomorphism and Ãε = Φ−1

ε Aε, thus c(Ãε) = c(Aε)
and taking τ0 = 2 ln 2g(ν0). �

Remark 6.7. It is worthwhile to point out that is this last result, the fractal

dimension must be rightly interpreted. The fractal dimension c(Ãε) is obtained

using X1/2×X̃1/2
ε as the metric base space while c(Aε) is obtained using X×X.

Appendix A. Results on functional analysis

In this appendix we prove the basic results of functional analysis we used

throughout our work.

Proof of Proposition 2.2. By Proposition 2.13 we have that, for β ∈
(0, 1),

Λ−βε =
sinπβ

π

∫ ∞
0

s−β(s+ Λε)
−1 ds,

and hence

‖Λ−βε ‖L(X) ≤ (1 + C)
sinπβ

π

∫ ∞
0

s−β

s+ 1
ds ≤ (1 + C)

sinπβ

π

[
1

1− β
+

1

β

]
,

and the cases β = 0, 1 are trivial. Iin particular, there exists a constant µ > 0

such that

(Λβεx, x) = (Λβ/2ε x,Λβ/2ε x) ≥ µ‖x‖2X , for all ε ∈ [0, 1] and β ∈ [0, 1]. �

Proof of Proposition 2.13. Let s ∈ [0,∞). We have that

s+ Λε = s+A(I + εA)−1 = [sI + (εs+ 1)A](I + εA)−1

= (εs+ 1)

(
s

εs+ 1
+A

)
(I + εA)−1,
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thus s+ Λε is invertible and

(s+ Λε)
−1 =

1

εs+ 1
(I + εA)

(
s

εs+ 1
+A

)−1

=
ε

εs+ 1
I +

1

(εs+ 1)2

(
s

εs+ 1
+A

)−1

.

Therefore (1 + s)‖(s+ Λε)
−1‖L(X) ≤ 1 + C, for all s ∈ [0,∞) and ε ∈ [0, 1]. �

Proof of Proposition 2.27. By Theorem 2.14 we have that

‖Λβε (µ+ Λε)
−1x‖X ≤K‖Λε(µ+ Λε)

−1x‖βX‖(µ+ Λε)
−1x‖X

≤ K(1 + C)βC1−β

(µ+ 1)1−β ‖x‖X . �

Proof of Proposition 2.22. We know that, for any given α ∈ [0, 1/2),

Λ−1/2
ε − Λ

−1/2
0 =

1

π

∫ ∞
0

s−1/2(s+ Λε)
−1(Λ0 − Λε)(s+ Λ0)−1 ds

=
1

π

∫ ∞
0

s−1/2Λαε (s+ Λε)
−1Λ1−α

ε (Λ−1
ε − Λ−1

0 )Λ0(s+ Λ0)−1 ds,

therefore

‖Λ−1/2
ε − Λ

−1/2
0 ‖L(X) ≤

Cεα

π

∫ ∞
0

s−1/2

(s+ 1)1−α ds,

and the integral above is convergent for α ∈ [0, 1/2). �

Remark A.1. In the general case of a positive type operator, we cannot

obtain the decay rate of ε1/2 with the technique of the last proposition. However,

when we work with specific properties of a given operator, we may be able to

obtain such rate. For instance, if A is the negative Laplacian with Dirichlet

boundary conditions, we are able to prove the previous result with α = 1/2 as

follows: let vn ∈ X an unitary eigenvector of A associated with λn, then

(Λ−1/2
ε − Λ

−1/2
0 )vn =

[
(1 + ελn)1/2

λ
1/2
n

− 1

λ
1/2
n

]
vn =

ελ
1/2
n

1 + (1 + ελn)1/2
vn.

Therefore ‖(Λ−1/2
ε −Λ

−1/2
0 )vn‖X ≤ ε1/2, and since the eigenfunctions constitute

an orthonormal basis of X, we obtain the desired result.

Proof of Proposition 4.11. Let s > 0 and ε ∈ [0, 1]. If ε = 0 then

(s+ I + εA)−1 = (s+ I)−1 = (s+ 1)−1I,

and, if ε ∈ (0, 1], we have

(s+ I + εA)−1 =
1

ε

(
s+ 1

ε
+A

)−1

,
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which proves in both cases that (0,∞) ⊂ ρ(−(I + εA)). Also, it is now easy to

see that

(s+ 1)‖(s+ I + εA)−1‖L(X) ≤ C,

and this proves that I + εA is a positive type operator with constant C. For the

last statement, we know that

(I + εA)−β =
sinπβ

π

∫ ∞
0

s−β(s+ I + εA)−1 ds,

and thus

‖(I + εA)−β‖L(X) ≤
C

π

∫ ∞
0

s−β

s+ 1
ds

≤ C sinπβ

π

[ ∫ 1

0

s−β ds+

∫ ∞
1

s−β−1 ds

]
=
C sinπβ

π

[
1

1− β
+

1

β

]
,

which proves the result. �

Proof of Proposition 5.4. We have that

(I + εA)−1/2x− x

=
1

π

∫ ∞
0

t−1/2(t+ I + εA)−1x · dt− 1

π

∫ ∞
0

t−1/2(t+ I)−1x · dt

=
1

π

∫ ∞
0

t−1/2[(t+ I + εA)−1 − (t+ I)−1]x · dt

= − 1

π

∫ ∞
0

εt−1/2

t+ 1
A(t+ I + εA)−1x · dt

= − 1

π

∫ ∞
0

t−1/2

t+ 1
A

(
t+ 1

ε
+A

)−1

x · dt

= − 1

π

∫ ∞
0

t−1/2

t+ 1
A1−s/2

(
t+ 1

ε
+A

)−1

As/2x · dt,

and therefore, by Proposition 2.27, we have

‖(I + εA)−1/2x− x‖X ≤
1

π

∫ ∞
0

Kεs/2
t−1/2

(t+ 1)1+s/2
‖As/2x‖X dt

≤Cεs/2‖As/2x‖ dt. �
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