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STRONGLY DAMPED WAVE EQUATION
AND ITS YOSIDA APPROXIMATIONS

MATHEUS C. BORTOLAN — ALEXANDRE N. CARVALHO

ABSTRACT. In this work we study the continuity for the family of global
attractors of the equations utt — Au — Aup — eAuge = f(u) at € = 0 when
Q) is a bounded smooth domain of R™, with n > 3, and the nonlinearity f
satisfies a subcritical growth condition. Also, we obtain an uniform bound
for the fractal dimension of these global attractors.

1. Introduction

We study the continuity of global attractors of the following semilinear evo-
lution equation of second order in time

U — Au — Aup — eAuyy = f(u), t>0,
(1.1) (w(0),u(0)) = (uo, vo),
ulpo = 0,

and we give an uniform bound for the fractal dimension of these global attractors.

We know that, for € = 0, this equation is the usual strongly damped wave
equation, and its asymptotic dynamics — related to global atrtactors — has already
been vastly explored; see for instance [6], [7], [9], [12], [15], [22], [23], [26]-[28].
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However, for each € > 0 fixed, we have a special form of the improved Boussi-
nesq equation (see [4], [19], [20], [25]) with damping —Auwu,, which, among other
things, is used to describe ion-sound waves in plasma (see [20], [21]).

For each € > 0 fixed, this equation has been studied in [8], in terms of exis-
tence and uniqueness of solutions, existence of global attractors and asymptotic
bootstrapping; in this case, the linear part of the equation (after a change of
variables) is a bounded operator. Here, since we want to study the continuity of
attractors at € = 0, we will use the properties of the limiting problem with ¢ = 0
(local and global well posedness, regularity and existence of global attractors) as
reported in [6], [7].

Throughout this paper, we will assume that f: R — R is a continuously
differentiable function, respecting a growth condition with subcritical exponent;
that is, there exist constants ¢ > 0 and p < (n+2)/(n —2) such that for all
81,82 € R

(1.2) [f(s1) = f(s2)] < clst = saf (14 [sa|*™" + [s2]71),

and also, if A\; denotes the first eigenvalue of —A with Dirichlet boundary con-
ditions in €2, we assume the following dissipation condition

(1.3) limsup@ < A1
|s]—o0 s

To begin our study, we will write further A for —A with the Dirichlet boundary
conditions. Our problem then takes the form

g + Au+ Auy + eAuy = f(u), t>0,
(u(0),v(0)) = (uo,vo).

and it is well-known that A: H}(Q) N H?(Q) C L?(Q) — L*(Q) is a closed,
densely define operator which has the following properties:

(1.4)

(01) A is self-adjoint with compact resolvent;

(0O2) A is an operator of positive type;

(03) 0(A) = 0p(A) = {Antnew, A1 > 0, Ay < Ajqq, for all ¢ > 1 (repeated
to take into account the multiplicity), A, —— oo and if v, € L?(Q)
are unitary eigenvectors associated with A, then {v, }nen constitutes an
orthonormal basis for L?(Q).

REMARK 1.1. We included in Appendix A the proof of the main results of
functional analysis we will use, in order to make explicit the uniformity of the
constants obtained for € € [0, 1].

The key point in our analysis is the observation that the differential equation
n (1.4), for € > 0, can be obtained from its limit, for ¢ = 0, with a suitable
exchange of the unbounded operator A by its Yosida approzimation A. (see
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definition below). The techniques developed here to deal with these singular
perturbation problem may be of aid to deal with other natural singular pertur-
bation problems that appear in the literature in this form (see for example the
Navier—Stokes—Voight problem in [14]).

DEFINITION 1.2. Let A be a closed, densely defined operator such that Rt C
p(—A). Then, for each ¢ € [0,1] we define the operator A.: D(A;) C X — X,
given by

D(A) ={x € X : (I +eA) 'z € D(A)},
and for x € D(A.) we set
Acx = AT +eA) .

The operators A, are called Yosida approximations of A.

In fact the differential equation in (1.4) can be rewritten as uy +Acu+Acuy =
(I +eA)~tf(u) with Acug =28 Aug for all ug € D(A) and (I +eA) tug i G
for all up € X. We exploit this feature and a suitable change of variables to fix
(independently of €) the phase space to carry on our analysis.

Now, if X = L?(Q2), we will consider the double sided fractional power scales

o {X* a € R}, generated by (X, A);
o {X&, a€R}.gp,, generated by (X, A.) (see Definition 1.2);
. {)?80‘, a € R}.¢jo,1) generated by (X, I+ cA);
where A, A. and I + A have domains X!, X! and )?51, respectively, and are
positive type operators.
Now we consider the isometric isomorphism ®.: X1/2 x X2/? = X x X given

in its matrix form by

Al/2 0

P, =
0 (I+eA)/?

, for each € € [0,1].

If we apply the change of variables [%] = ®.[ .. |, problem (1.4) can be rewrit-
ten as

(I +eA) 2z + AV 2w + A(I + eA) 122 = f(A™1w),
(1.5) wy = AY2(I +A)~1/22,

(w(0),2(0)) = (A" 2uq, (I +cA)?uy),

or

2+ A1/2(I+5A)’1/2w + A(I-i—EA)*lZ _ (I+€A)*1/2f(A*1/2w)7
(1.6) w = AY2(I +cA)~12,
(w(0), 2(0)) = (A 2uq, (I +cA)*?uy).
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The later is a first order ODE that can writen in X x X as

(1.7) c(zitm A m fe@j) in [0, 00),

(w(0),2(0)) = (wo, 20),

where (wo, z9) = P (uo, vo), in variables (¢,w, z), where A.: D(A.) C X x X —
X x X is a linear operator given by

D(A.) = { m EX x XM2iw4+ AV e Xg/Q},

A[f-

Of course, if [*] € X2/? x X! we have that

«[1]- ]

with X7 /2 X! being a dense subset of D(A.) and a locally Lipschitz map

(18) 7 (M) - [f;()w)}

where f¢(w) = (I +cA)~YV2f(A=2w).

and

AV (w + AY?2)

—A;/zz 1

0 —AL?
AYZE AL

—Ai/Zz
A;/zw + Az

REMARK 1.3. Tt is important to notice that for each ¢ > 0, D(A.) = X x X
and A. € L£(X x X). The characterization above becomes important when
dealing with the case ¢ = 0, since Ag is an unbounded operator. The primary
concern of our work is to deal with the uniformity in e € [0, 1] of the class of
problems (1.4), hence placing the problems under the same framework is crucial.

We divide our work from now on in six sections and an appendix. In Section 2
we deal with the linear problem associated with equation (1.7). More specifically,
we prove that —A. generates an analytic semigroup {e~% : ¢ > 0}, and we
obtain convergence in the uniform norm of operators of the associated semigroups
when ¢ — 07 as follows:

THEOREM 1.4. For any a € [0,1/2) and v € [0, 1] there exists a constant
Cy > 0 such that

e~ At — eiAOt”E(XxX) < Cye™t™Tem !,

_ ALt L(XXxX) — Aot

for all t > 0. In particular, e —> e as ¢ — 07, with uniform

convergence for any interval [T, 00), T > 0.
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In Section 3 we prove local and global well posedness results for equation
(1.1) and we deal with all the cases at once. For each ¢ > 0, these results are
contained in Theorems 1.1 and 1.2 of [8] as for the case ¢ = 0 these results
are contained in the results of Section 3 of [6]. To this end, a fine analysis of
the fractional powers of the operators —A. is required (such analysis is done
in Subsection 2.2). The main results of this section can be summarized in the
results below:

Uo

THEOREM 1.5. For any initial data [vg ] lying in a bounded subset B of
X2 x X2 there exists a number k = k(B,e) and a unique solution [0, k) > t
[4e](t, uo, v0) € X1/2 x X212 of (1.4) which depends continuously on its variables
(t,u0,v0) € [0,K) x X/2 x X% and such that, for any s € [(p—1)(n—2)/4,1]
and v € (0,1 — s/2),

H (- 0, 20) € C((0, ), (X2 x K2)7) A1 CH((0,7), (X2 x KM2)7),

Ve

and either kK = oo or || [ﬁj](t,uo, Uo)Hxl/2X 12 = 00 ast — Kk~ . Moreover, the

Xe
solution satisfies in X/? x Xal/2 the variation of constants formula

~ t ~
|:u5:| (t, wo, ZO) — e—Agt [UO] + / e—.AE(t—s)gE ( |:us:| (S, o, 7)0)) dS,
Ve Vo 0 Ve
fort €0, k), where
o:([2]) = owz7mne([])
v ’ v

THEOREM 1.6. Problem (1.1) defines a C°-semigroup {S-(t) : t > 0} on
X2 x X1/? for each ¢ € [0,1], which has bounded orbits of bounded sets, de-
fined by

S.(t) [“0] = 7L (1), [“0} ,
Vo Vo

or equivalently,

Se(t) [uo} = At [uo} + /t e_“zs(t—s)gs (Sﬁ(s) [UO]> ds, for allt>0.
0

Vo Vo Vo
In Section 4 we prove the existence of global attractors for the semigroups

{S:(t) : t > 0} generated by equations (1.1), which is given by

THEOREM 1.7. The semigroup {S-(t) : t > 0} has a global attractor A, in
X2 x X2, for each € € [0, 1].

In [8] the authors prove the existence of global attractors for each € > 0 and
also provide bounds (e dependent) for the global attractors (see Theorem 1.3 of
this reference). In [9] they prove the same for the case e = 0 (see the results of
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Subsection 4.2 in this reference); however, simply joining the results would not
lead to a uniform bound for € € [0,1]. We also prove the following
THEOREM 1.8. Ifs € [0,1— (p—1)(n—2)/4), then |J A. is bounded in

€€l0,1]
X (s+1)/2 o x5/2,

In Section 5 we are able to prove the upper semicontinuity of the global
attractors {A.}.c[0,1) at € = 0:

THEOREM 1.9. The family {As}ae[o,l] is upper semicontinuous in € = 0, in
XYV2x X,

This result was also proven in [24], using a different technique, dealing with
energy estimates of solutions (see Lemma 5.12 in this reference). Under (natural)
additional assumptions we can also prove the lower semicontinuity

THEOREM 1.10. Assume that f is a C? function on R with f,f and f"
bounded in R. Also, assume that the set € of equilibrium points of (1.7) is finite
and that each point of £ is a hyperbolic point for (1.7) with e = 0. Then the
family of global attractors {1&5}56[0,1] is lower semicontinuous at € = 0.

Lastly, in Section 6 using some further uniform estimates for the semigroup
generated by equation (1.7) we obtain an uniform estimate for the fractal di-
mension ¢(A.) of the global attractor A..

THEOREM 1.11. There exists a number 79 > 0 such that c(A;) < 79 for any
e €10,1]

In [24, Lemma 5.10], the authors prove an estimate for the fractal dimension
of the global attractors using exponential attractors, but the bound depends on
e €[0,1].

REMARK 1.12. We note that, most of our results are proved using tech-
niques from functional analysis, resorting to energy estimates when is absolutely
necessary. We were able to obtain some fine estimates using a bootstrapping
argument in the subcritical case. This equation has been considered in [11],
where they proved the upper semicontinuity of the global attractors of (1.1) as
well as to obtain bounds for the fractal dimension of the attractors, but is not
uniform in e € [0, 1]. Here we also prove the lower semicontinuity of the global
attractors, besides recovering the upper semicontinuity and obtaining uniform

(w.r.t. €) bounds for the dimension using a different technique.
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2. The linear problem and the uniform convergence
of the linear semigroups

In this section we study the linear problem associated with equations (1.7)

w w
a0 s
z z

a
dt
0] 2] enx
z 20

in X x X, given by

more precisely, we will prove that the family of operators {A.} celo,1] 1s uniformly
sectorial; that is, we can find ¢ € (0,7/2), M > 1 and a real number w such
that the sector

Swp={Ae€C:¢<|arg(\—w)| <7, A #w}

is in the resolvent set of A, for all € € [0,1] and

- M
1A = A ™Y xxx) < L for all A € Sy, 4,

and moreover, we will prove that we can take w < 0, which will give us an uniform
exponential decay for the generated analytic semigroups {e~"<t : ¢ > 0}eef0,1]-

2.1. Uniform sectoriality. In this subsection, our goal is to prove the uni-
form sectoriality of {A:}.¢[o,1) in order to obtain a convergence of the generated
Al > 0}egpo1) as € — 0T,

First we begin obtaining an uniform decay in time for the generated semi-

linear semigroups {e

groups, and to this purpose we define the notations of the inner products we will
use throughout our work.

DEFINITION 2.1. In X we denote the usual inner product (-, -) and in X x X
we use the inner product (-, -) given by

<[Zj] Bﬂ> = (wi,wa) + (21, 22).

With this notation set, we are able define for each pair (¢, 3) € [0,1] x [0, 1],
a map from (X x X)? into C by

(), (=R Seaeornc

In what follows we will need a result of basic functional analysis, that we
state below.
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PROPOSITION 2.2. The family of operators {A;B}(a,,@)e[o,l]x[o,l} is uniformly
bounded. In particular, there exists a constant > 0 such that

(APz,2) > pllz|%, forallze XL
PRrROOF. See Appendix A. O

With this result we can prove a uniform equivalence between (-, -)_ 5 and

<7>

PROPOSITION 2.3. For all (g,8) € [0,1] x [0,1], if we define ||[Z’]||:B =
<[7§L [’;’]>€,B, we have
[ [ 1| R 2 1)
2 Zllxxx ~ WLzlllep 2 Zlllxxx
ProoOF. We have, since A§1/2 is self-adjoint, that
(D), = ([ 1T omers
z| |z z| |z
e,
w112
:‘ [ } +ﬁRe(w,AE_1/2,z),
2l xxx
but
[Re(w, A7%2)] < |(w, A71/22)] < [lw]|x [|AZ1?2]|x
1 wl|?
< 1A 2lecollwlxlelle < 1Az e |[2]|
Zlllxxx
By Proposition 2.2, ||A5_1/2||L(X) < u and hence
w2
Rew a2 < 4[]
20 Lz ] llxxx
which concludes the proof. O

COROLLARY 2.4. There exists Bo € (0,1] such that (-, ) 4 is an inner
product in X x X for all (g,B) € [0,1] x [0, Bo].

PROOF. Almost all the properties of an inner product are easily verified; and
for the coercivity it suffices to choose By € (0,1] such that 1 — Bpp/2 > 0 in the
previous proposition. O

So far we are able to construct uniform equivalent norms in X x X and the
next step is to prove that there exists a positive constant § > 0 such that A, — 7
is acretive, for all € € [0, 1].
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PROPOSITION 2.5. There exist 51 € (0, Bo] and a constant § > 0 such that

Re <(A5 — 61 m m > >0,
.61

for alle €[0,1] and [¥] € D(A.).

PrOOF. We have for [’z”] IS Xal/2 x X! that

(L) (LS 1)

= —(A;/Qz, w) + (A;/Qw,z) + (Aez,2) — g(z, z2)+ = (w,w) + f(A;/Qw, z),

which implies, since A;/ % is self-adjoint, that

Re <As HiN > = 1AV~ el + Dlg + 2 Re(al/2 ).

z

But |Re(A;/22,w)| < (||A§/22||§( + |lw||%)/2 and hence

Re <Ae Mt [“’D > (1= 5 )IA2515 = Dhelie + S holis

> |(1-5)e2 - E] et + Sl

Now we choose 31 € (0, 3] such that (1 — 81/2)u? — 81/2 > 0 and thus, by
Proposition 2.3, we have

el [T) =o([)

where § = (1 + Byp1/2) "t min{(1 — B1/2)u? — B1/2,3/4} > 0, and therefore

Re <(AE — 81 m m > > 0. O
e\

From this we conclude that each operator 61 — A. generates a strongly con-
tinuous semigroup of contractions in X x X with the norm || - ||z g,, which in
turn, using Proposition 2.3, lead us to the following result:

THEOREM 2.6. There exist constants M > 1 and § > 0, such that
\\67A5t||[;(XXX) < Me %, forallt>0ande e [0, 1].

PROOF. Since ||e(5I’AE)t['§] ||E 5 < H [7;’] Proposition 2.3 imples that

there exists M > 1 such that

p(6T—Ao)t {w]

||5,Bl’

Z |-

XxX

‘XXX
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and concludes the proof. O

COROLLARY 2.7. Given ¢ € (mw/2,m), there exists a constant M, > 1 such
that

A= A) Hlexxx) < for all X\ € S5, and ¢ € [0, 1].

M,
A —d]’
PROOF. From the Inverse Laplace Transform, we know that
(oo}
A—A) ' = —/ eMeAt gt
0
for all A € C such that Re A < ¢ and therefore
M
-1
H()‘ - As) ||L(X><X) < ma

for all € € [0,1]. Now, given ¢ € (7/2,7), we have that
M 1
|cos | [N — 43|’
for all A € S5, and € € [0, 1]. O

I = A) T lexxx) <

So far we have proven that each —A. generates a strongly-continuous semi-
group in X X X (which for ¢ > 0 is trivial, since A, is bounded in X x X) and
furthermore we proved an uniform exponential decay for the generated semi-
groups for ¢ € [0,1]. But we would like to prove the convergence of e~4<* to
e~ot in £(X x X) as ¢ — 0%, and to this purpose, we will need to work a little

more.
For € € [0,1] define D(B.) = D(A:), D(P.) = X x X and
0 0 oo
Bs:As+ 0 I‘| ) Ps: A;1/2 I )
so that ;
_ I 0
Pe L= _AE—1/2 Il

Also, if we set D(D.) = {[%] € X x X : P71[¥] € D(B.)}, we can define
D. = P.B.P .

REMARK 2.8. It is simple to see that D(D.) = X x X! and hence

_Al/2
D. — I Ac
0 A,

Finally, define D(D.) = D(D.) = X x X! and

Dsifo

0 A.
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For what follows we will need the definition and one result concerning the
numerical range of an operator, which are given below.

DEFINITION 2.9. If B: D(B) C Z — Z is a closed densely defined operator
in a complex Hilbert space Z with inner product (-, - ), then the numerical range
W (B) of B is the set

W(B) ={(Bz,z): z € D(B), ||z|lz =1}.

THEOREM 2.10. Let B: D(B) C Z — Z be a closed densely defined operator
in a complex Hilbert space Z, W (B) its numerical range and ¥ an open connected
set in C\W(B). If SN p(B) # 0 then ¥ C p(B) and

1
IA=B) Yez) € ————, forallex,
d(\, W (B))

where d(A\, W (B)) is the distance between A\ and W (B).
PRrROOF. See Theorem 21.11 of [3]. O
With this result at hand, we can prove our first lemma.

LEMMA 2.11. The operators D.: D(D.) C X x X — X x X constitute
a family of uniformly sectorial operators.

ProoF. Using again Proposition 2.2, there exists yu > 0 such that for all
z € X! we have (A.z,z) > p(z,z). Thus, for [¥] € D(D,), we obtain

<255 m 7 [Ij > — (w,w) + (Auz, 2) > (w,w) + plz,2) > i < m , m > 7

where 7i = min{1, z} > 0 and therefore the numerical image W (D, ) is contained
in [f1, 00), for all € € [0,1].
Defining ¥ = C\ [f,00) we have that 0 € ¥ N p(D,) for all € € [0,1] and

hence, by Theorem 2.10, ¥ C p(D,), for all € € [0, 1], and
1 1
<

||(A _DE)_ Hl:(XXX) < d()\,W(ﬁa)) o d()‘a [ﬁ,OO))

, forall A € X.

Now given ¢ € (0,7/2), if A € S5 4 we have that d(), [, 00)) > |\ — fz| sin ¢, and
hence

~ 1
”()‘_De) 1Hﬁ(XxX <

—— X, forall m 1. O
) S0 o — 7l orall A € S; 4 and € € [0, 1]

To continue, we will need well know results in functional analysis, concerning
interpolation of fractional powers of an operator, which we will state below.
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DEFINITION 2.12. Let C > 1. A closed densely defined linear operator
B: D(B) C Z — Z is said an operator of positive type with constant C if [0, 00) €
p(—B) and

(L4 38)(s+B) gz £ C, forall s € [0,00).

The set of all operators of positive type in Z with constant C will be denoted
by Pc(2).

PROPOSITION 2.13. Let A be an operator of positive type with constant C
in X, then the Yosida approximations A. of A are positive type operators with
constant 1+ C, for all € € [0,1].

PRrROOF. See Appendix A. O

THEOREM 2.14. Assume that B € Pc(Z) and 0 < a < 1, then there exists
a constant K > 0 such that

1B2llz < K||B2l|% |2l 7", for all = € D(B);

moreover, the constant K depends only on the constant C' and not on the par-
ticular operator B.

PROOF. See Theorem 1.4.4 of [17]. O

COROLLARY 2.15. There exists a constant K > 0, independent of € € [0, 1],
such that if 0 < a <1 we have

IA2zllx < K[AcalS ol for allz € XL

LEMMA 2.16. The operators D.: D(D.) C X x X — X x X constitute
a family of uniformly sectorial operators.

PROOF. We have that D, — D, = [8 A%/z}, and hence for all [?] € X x X}

oo

= ||AY 2] x
z

’XXX
1/2 1/2 Kn K
< KA EY" < I8zl + 5 llzlx,

for all > 0, where K > 0 is the constant given in Theorem 2.14, which is
independent of € € [0,1] and therefore

~ Knl| ~ K
Ll S | W (]
“lllxxx 2 llxxx 20012 xwx
By Theorem 1.3.2 of [17] and Lemma 2.11 we have that the family {D.}.¢jo,1 is
uniformly sectorial. O

LEMMA 2.17. The operators B.: D(B.) C X xX — X xX constitute a family
of uniformly sectorial operators.
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PRrROOF. We have for all A € C that
A=D.)=P.(\—B.)P_ 1,

hence p(B.) = p(D.), and since the operators P., P-! are uniformly bounded in
X x X (see Proposition 2.2), Lemma 2.16 implies that {B.}.c[o,1) is uniformly
sectorial. O

THEOREM 2.18. The operators A.: D(A:) C X x X — X x X constitute
a family of uniformly sectorial operators.
PRrROOF. Since

s e N [

for all # > 0, Lemma 2.17 and Theorem 1.3.2 of [17] imply that {A.}.co,1] is
uniformly sectorial. O

)

XxX

il

o

’XXX ‘XXX

So far, with our efforts, Theorem 2.18 implies the existence of constants
M >1,weRand ¢ € (0,7/2) such that
1 M
A= Ad) " lzxxx) < L for all A € S, 4 and ¢ € [0, 1],

but w € R can be a negative real number (and using the results reported in [17],
we can see that the number w € R obtained is, in fact, negative), which does
not guarantee an uniform exponential decay for the generated semigroups. But
these results together with Corollary 2.7 give us conditions to obtain the desired
uniform sectoriality of {Ac}.c[0,1] With a uniform exponential decay:

THEOREM 2.19. There exist constants M > 1, w > 0 and ¢ € (0,7/2) such
that p(A:) D S, and

M
[A = A) " 2xxx) < Yt forall A€ S, , and € € [0,1].

Proor. This follows from Corollary 2.7 and Theorem 2.18. (|

COROLLARY 2.20. —A. is the infinitesimal generator of an analytic semi-
group {e=A<t . t > 0} for each e € [0,1] and

1
At — / M+ A)7NdN,  for alle € [0,1],
2mi Jr

where T' is a contour in —Ss,, such that arg(\) — £60 as |A\| — oo for some
0 e (n/2,m).

PROOF. See Theorem 1.3.4 of [17]. O
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COROLLARY 2.21. Given wy € (0,w), there exists constant My, > 1 such
that

HAE()\ - AE)_IH[,(XXX) < Mwlv fO’I“ all A € Sw1,<,0 and € € [07 1]
PrROOF. We have that A-(A — A.)~! = A(A — A.) ™! — I and hence
Al
A= wl
Now, for each w; € (0,w), the map Sy, », 2 A = A/(A —w) is bounded, hence

there exists M, such that

HAs()‘ - A8)71||£(X><X) <M,,, for all A € Swhtp' U

+ 1.

A=A — A) Hlzxexx) < AN = As)71||L(X><X) +1<M

To obtain the uniform convergence of resolvents, for A in a sector of C, we
will need the following result:

PROPOSITION 2.22. If A is a positive type operator and A. its Yosida ap-
prozimation then, for all a € [0,1/2),

A2 = A5 P ex) < Ce.
PROOF. See Appendix A. O
With this result and Corollary 2.21 we can prove:

COROLLARY 2.23. Given wy € (0,w) we have that

A=At LX), (A= Ao)™" ase — 0T, uniformly for A € S, .
ProoF. We have that
—1/2 —1/2
e e 0 AZY _Ao/
€ 0 A51/22 Nt 0 )

and
A= A)™ = (A= Ag) = AN = A)THATT = A Ao(A — Ag)

Therefore Proposition 2.22 and Corollary 2.21 we have, given w; € (0,w) and
a €10, /12), that

I = Aoy = (A= Ao) Ml gxwx) < M2, Ce O

REMARK 2.24. If A is the negative Laplacian with Dirichlet boundary con-
ditions, then we can take o = 1/2 (see Remark A.1).

Let w1 € (0,w). Given r > 0, Corollary 2.20 implies that we can choose the
curve I' given by ' =T'; UL, UT', where

I :{)\G(C:)\:flersei(”*“"), s>}
T, ={A€C: A= —w; +re®, £ €m—p,0—nl},
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such that, for all € € [0,1] and ¢ > 0,
1
—Act At -1
= — A+ A d\.
€ 21 /Fe (A +Ac)
PROOF OF THEOREM 1.4. We have that
1
e~ At _ g—Aot — —/ A+ AN = (AN + Ag) Y d),
2me Jr
thus, if « € [0,1/2), then

Ce”
||67'A€t _ 67A0t||L(X><X) < /6Re)\t| d/\|
T

2
= el [T [7 Tertetag]
2w r Q=T
C a —rtcos e
< ie*wlt |:2€ + 27'(71— — (p)ert:|
27 tcos ¢
C(ia —wqt CEa
¢ eiwltr(ﬂ- - @)7
T tcosy T

for any 0 < r < w; and therefore making » — 07, we obtain

||e_A5t Eat_le_wlt.

— e A £ xxx) < reos s

But [le=At — e7 A0t £y x) < 2Me~“*" and hence, for 7 € [0,1], we have

~
||e_A5t _ e_AOth:(XxX) < (QM)I—'}/( ) Ea'yt—’ye—wlt. 0

T COS P
REMARK 2.25. Again, if A is the negative Laplacian with Dirichlet boundary

conditions, we can take a = 1/2.

2.2. Fractional powers of A.. In this subsection we are interested in some
properties of the fractional powers of the operators A.. We know that for e > 0
we are always working with X x X with an equivalent norm, but again, we are
concerned about the uniformity in € € [0, 1] for the problems (1.7), and it will
be useful to have some additional properties of the fractional powers of A..

PROPOSITION 2.26. A, is a positive type operator for some constant C' > 1.

ProoF. We know that 61 — A, is dissipative in X x X with the norm ||-||c g, ,
by Proposition 2.5, and p(61 — .A:) N (0,00) # 0, and thus by Lumer’s Theorem,
we have

- 1
IO+ (A = 8D) " Hlex ) 1esy, < Y for all A > 0.
Therefore, if p=X—96,

1
—1
(4 A) " leexx) - fes, < A for all pn > 4,
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and thus if 4 > 0 we have that

_ JI !

1 o)t . S —

A+l 4 A) 7 e - flepy < P
and since the map [0,00) 3 p +— (u+1)/(1+0) is bounded and the norms
Il le.5, and || - ||xxx are uniformly equivalent, the result follows. O

Now, for 7 € [0,00), we have that s € p(—A.),

72 -t
A
(T+1 + E) ’

and hence, for a € (0,1), we have (see Theorem 1.4.2 of [17]) that
sinra [ 77¢ 72 -1
R A dr.
AZ /0 (T 1 + 5> T

s T+1
P171(€,Oé) P172(€,Oé)
P271(€,Oé) P272(€,Oé) ’

A AY?
—A;/Q T

11

(7’+A5) —m

T+A. AP
—A;/2 T

If we set

Ao =

we have that

. © _—a 2 -1
Pri(e,a) = 222 / T (r+A) (T + A€> dr,
0

™ T4+ 1 T+ 1
sintae [ 77¢ 72 -t
Pra(e ) = 7r /o T+ 1A;/2 <T +1 + AE) dr,

P2,1(Ea Oé) = _BI,Q(Eu Oé),

sinwra [ 7ot/ 72 -1
P = A dr.
2’2(€’a) T /0 T+ 1 <T+1 + E) T

To continue, we will need the following result.

ProPOSITION 2.27. If A is a positive type operator with constant C then
there exists a constant Cy such that, for any B € (0,1) and € € [0,1],

Cy
RS
PROOF. See Appendix A. O

[AZ (1 + M) Mgy < for all > 0.
And now we can state our result for the fraciontal powers of A..

PROPOSITION 2.28. For each f € (0,1/2) and o € (B,1), the operators
APP 5(e, ) and AP Py o(s, ) are uniformly bounded for € € [0, 1].

PrROOF. For P 5(e, ) we have that

sinma [ T7¢ T2 -1
ePrale @) m /0 TH+1° T+1 °°F "
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and thus, by Proposition 2.27, we have

Ch si © _—a 1 1/2—-p
||A?P1,2(€,O¢)Hc(x) < 1sm7ra/ T ( T+ > dr
0

T TH+1I\T24+7+1
Cisi R
< 1sm7ra/ T ar.
U o T+1

and the integral on the right side is convergent, for any « € (0,1).
For Ps 2(e, ) we have that

sinra [ 7ot T2 -t
APP. = AP Ac) d
SERICL) T /0 T+1 E(T+1+ ) i

and thus, by Proposition 2.27, we have

Cysinma [ 7ot T+1 1-5
APP, < d
|AZPs (e, )|l 2ox) < - /0 T G r—— T,

and the integral on the right side is convergent, provided that o € (5,1). O

3. Local and global well posedness results

3.1. Local well posedness result. To state the results of local well posed-
ness of equations (1.7), and consequently of (1.4), we firstly prove the auxiliary
lemma below.

LEMMA 3.1. Let f: R — R, and A is the negative Dirichlet Laplacian in X
with domain X' = H?(Q) N HE () and consider its closed extension to H™" =

(XT/2Y where Y represents the dual space of the Banach space Y, (in particular,
H=' = HYQ)"). Then

D)) = f(¢(z)), e,

defines an operator from X*/? into H™" which is Lipschitz continuous in bounded
sets provided that condition (1.2) holds and r € [(p —1)(n —2)/4,1], s € [r, 1] N
[n/2 —2/(p—1),1]. If in addition, r can be taken strictly less than 1, then f¢
takes bounded sets of X*/? into relatively compact sets of H™1.

PROOF. Let B be a bounded set in X*/2 and choose arbitrary ¢, ¢, € B.
Since condition (1.2) holds we use the Sobolev and Holder inequalities to get

[11(81) = FA@2) -+ < ClIf(D1) = f(D2)l| L2n/cnvan (@)
§C||¢1 - ¢2||L2"/(n*2r)(§2)(1 + ||¢1||l£;<1p—1>/(2v~)(9) + ||¢2||l£;<lp—1>/(27~>(gz))
<Cllg1 — dallxcor2(1+ [ 6allr + 2]z,

for any s € [r,1]N[n/2 —2/(p —1),1]. The last statement holds since H ™" is
compact embedded in H~! for r < 1. (]
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To continue, let W. be the extrapolated space of X x X — which is the
completion of the normed space (X x X, || A-! - |[xxx) — and we consider the
power scale {W¢<},e[o,1] generated by (W, [AZ - [|w, ).

REMARK 3.2. Note that W! = X x X for all € € [0, 1].

LEMMA 3.3. Let s € [(p—1)(n—2)/4,1] and v € (0,1 — s/2), then F:
(defined in (1.8)) takes WL in W2 and is Lipschitz continuous in bounded sets.

PROOF. Let B be a bounded subset of W} and [2!],[%2] € B. We have
that

() (DL = e =D -~ (DL

H{ APy (e, 1—7) A 7"/2(I+€A)(T‘1)/2(f(A‘1/2w1)—f(A‘1/2w2))]H
2 Pya(e, 1=7) A2 (T4 A) D2 (F(A™Y2wy) = F(A™2w,) ] |l x e x

and hence, by Proposition 2.28 along with Proposition 2.2, we have that

() -~ (D)

< const.|| f(A™Y2wy) — F(A™Y 2wy .
Finally, Lemma 3.1 and Remark 3.2 guarantee that

= ([]) - =L))o [2]- 12

Now we can state a result of local well posedness for (1.7) in W..

wi

THEOREM 3.4. For any initial data |20 ] lying in a bounded subset B of W}
there exists a number T = 7(B,¢) and a unique solution

[0,7’)9t’—>[ ](t ’wo,Zo)EWI

of (1.7) which depends continuously on its variables (t,wq, 20) € [0,7) x WL and
such that, for any s € [(p —1)(n —2)/4,1] and v € (0,1 — 5/2),

H (-, wo,20) € C((0,7), W) N CH((0,7), W),

Ze

and either T = oo or ”[15:](7571110,2’0)”1/\,1 — o0 as t — 7. Moreover, the

solution satisfies in W2 the variation of constants formula

t
wg} +/ e‘AE(t_s)}'E<[ws] (8,w0,20)> ds, te][0,71).
20 0 Ze

PROOF. The theorem above is a consequence of the results reported in [17].00

[ws] (t,wo, 20) = e~ A
%
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To state the result of local well posedness for (1.4), we define .ZE: D(.Zs) C
X2 x XM o5 X2 5 X2/? by

D(A.) = {m e X2 x X120, m € D(As)},

v
and, for [4] € D(A.),
A, H = P71 AD, H
v v

Since ®.: X1/2 x X}/* - X x X is an isometric isomorphism for all e € [0,1],
we have that each A. is a closed densely defined operator and also the following
result

PropPOSITION 3.5. FEach operator .ZE is a positive type operator (with an
uniform constant) and sectorial (with an uniform sector and uniform constants
M >1, ¢c(0,7/2) and w > 0) in X'/? x X2,

Let Z. be the extrapolated space of X /2 x )?51/2 which is the completion of
the normed space (X1/2 x X2, JAZY N 1/2, 51/2)

scale {28} aejo.1] generated by (2, A2 - ||z.).

and we consider the power

REMARK 3.6. Note that Z1 = X/2 x X2/ for all € € [0, 1].

PROOF OF THEOREM 1.5. Let B = ®( . B which is a bounded subset of W..
Thus, by Theorem 3.4, there exists 7 = 7(B,¢) and a solution [0,7) 3 ¢ ~
[f](t,wo,zms) € WL Defining k = 7 and [Zﬂ(t, U, Vg, €) = @E[’;’](t,wo,vo,s)
we obtain the desired result. U

3.2. Global solutions. We want to prove that problem (1.7) generates
a strongly continuous semigroup, and conclude consequently the analogous result
o (1.1). To this end, from now on we assume that A: Hi(Q) N H*(Q) ¢ X —
X is the negative Laplacian with Dirichlet boundary condition (hence satisfies
conditions (O1), (02) and (03)), and we will begin with the following lemma:

LEMMA 3.7. Under the assumptions and notation of Theorem 3.4, if A is the
negative Laplacian with Dirichlet boundary condition in X, then condition (1.3)
implies the existence of a constant C > 0, independent of € € [0,1], such that
if [20] € W2, then solution of equation (1.7) given by [0,7(wo,20,€)) D t
[w(t’wo’zo’s)] € WL fulfills the estimate

z(t,wo,20,€)

2
1
] H < O+ lzoll% + ol
XxX

U](t, Wo, 20, E)
Z(t,’l,UO, 2076)
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PrROOF. We take the X scalar product (-, -) of each side of the first equation
n (1.5) with A=1/2w; to get
d _ _
o7 —(lwlly, + 11213%) = (f9(AT2w), A7V2uw) = —| ALz
Since A is the negative Laplacian with Dirichlet boundary condition, the Poincaré

(3.1)

inequality reads
[AYV20]% = Mllolk. o€ X2
which for ¢ = A~1/24) translates into the estimate

(3.2) 0% > AT 29)%, v e X.

If F is the primitive function of f in R we then have

/f(A_l/Qw)A_1/2wtdx: i/F(A_lmw) dz.

We now remark that (1.3) implies the existence of constants C, & > 0, for which

/ f(s ds< >\1 Ot2+C, teR.
As a consequence we infer

_ 1 _
(F(A™20),1) < 500 - OIA 2wl + i,
which with the aid of (3.2) reads
1
(3.3) / F(A™Pw) do < 5 (1 - 5) w|% +Cl€].
Q

Connecting (3.1)—(3.3) we get for

(3.4) £lw.2) = gl + 51k - [ P 0)da
that

(3.5) 9 £w,z) = ~AY2]% <0

and hence

(3.6) sl + 120 — €Il < £(w, 2) < L(wo, 20),

21

as long as the solution exists. We then have

13 1 1 1 _
s llwllk + 5 llzl% = €Il < Sllwollk + 5llz0l% — [ F(A™?wo) da
21 2 2 Q
and gives us

§ _
)\Tleli +l2l% < flwollk + l2oll% — 2 QF(A Y2wg) dx + 2|0

where
[ F(A™Y2w0)|| 11 () < const.(1 + [wol/5),
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with the constant independent of e, since condition (1.3) implies that |F(s)| <
const.(1 + |s|?*1) for s € R. Thus

+1
lwlf +lI21% < CA+[lz0l% + lwollX™). O

THEOREM 3.8. Under the assumptions of Lemma 3.7, the solutions from
Theorem 3.4 exist globally in time and the problem (1.7) defines a C°-semigroup
{T.(t) : t >0} on W for each ¢ € [0,1], which has bounded orbits of bounded
sets, defined by

T.(t) Bﬂ — oAt

¢
wo] +/ e~ A(t=5) £ (Ta(s) [w0]> ds, for allt>0.
0 zZ

20 0

PROOF OF THEOREM 1.6. Is a direct consequence of Theorem 3.8. O

4. Existence of attractors and uniform bounds

In this section our goal is to prove the existence of a global attractor A. of
the semigroup {7.(¢) : t > 0} for each € € [0, 1] and to prove that {T.(¢) : t > 0}
is a gradient semigroup.

Let £ = {[{]: 90 €&}, where & = {p € X : AV2¢ = f(A=Y2¢)). Tt is
clear that £ is the set of equilibrium points of {T.(¢) : ¢ > 0}, for all € € [0, 1].

First we need an auxiliary lemma:

LEMMA 4.1. If X = L*(Q) and A is the negative Laplacian with Dirichlet
boundary condition and domain X' = H?(Q) N HE(Q), then

(41)  (A7Y29, AY2y) = / ¢ dr, ¢ L/(Q), e X2
Q

PROOF. See Lemma 2.1 of [9]. O
Now we can give an estimate for the bound of the equilibrium set £.

LEMMA 4.2. & is bounded in X x X, moreover, for each ¢ € &, A~V2¢ e
L>(Q).

PROOF. Let ¢ € X/ such that [‘g] € €. Thus, by Lemma 4.1, we have
l61% = (@) = (¢, A7/2f(A71/29))
= (VAT 2 AT (AT 0) = [ ) A g da,
and hence, with (1.3) and the aid of the Poincaré inequality, we have that
ol = [ £(47 2047 g o
< (M = IAT20]% + 10 < (L= Hlelk + Cl9.
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Therefore

sup [[9]% < MgTICIQ.
[¢]ee
For the second part, if 1 € &, then ¢p = A=/2¢ € X'/2 is a solution of the
problem

Ay = f(),
and hence, since f has subcritical growth, it follows by a bootstrapping argument
that ¢ € L>=(9). O

COROLLARY 4.3. The set € = {[Afz)/%] ¢ € &1} is the set of equilibrium

points of (1.1). Moreover, this set is uniformly bounded in X'/? x )?51/2, for
e €10,1], and € C L>®(Q) x L™(Q).

Lemma 3.7 gives us also the following result:

PROPOSITION 4.4. Under the assumptions of Lemma 3.7 the function L: X X
X — R satisfies:
(a) L(T-(-)[%°]) is bounded from below and non-increasing in [0,00) for
any [20] € X x X;
(b) If [%0] € X x X and L(T.(-)[%]) = const. in [0,00) then [%0] € £.

PROOF. Equations (3.5) and (3.6) show that £(T.(-)[%¢]) is decreasing and
bounded below in [0,00). If L(T.(-)[%°]) = const. in [0, 00), then

e(moln])=<([2])

for all ¢ € [0,00). Tt To()[ %] = [¥%;]] then 2(¢) = 0 for all ¢ > 0, and in
particular, zo = 0. Also 4w.(t) = A;/Qza(t) = 0 for all ¢ > 0, thus w.(t) is
constant which implies that we(t) = wp for all ¢ > 0. Finally, equation (1.6)

implies that AY/2wy = f(A~Y?wg) and therefore [%0] € £. O

PROPOSITION 4.5. Under the assumptions of Lemma 3.7, for each € € [0, 1]
there exists a function Ve: XV/2 x X2/? 5 R satisfying:
(a) Ve(S-(+)[3]) is bounded from below and non-increasing in [0,00) for
any [40] € X1/? x X1
(b) If [%] € XV/2 x X2? and V(S:(+)[%3]) = const. in [0,00) then
[w] e €.

PROOF. Just define, for each ¢ € [0, 1],

(o) = <o 2])

and this functional has the desired properties. O
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To ensure the existence of an attractor A, for the semigroup {7.(¢) : ¢t > 0},
for each e € [0, 1], it remains to show that {Z.(¢) : ¢ > 0} is an asymptotically
compact semigroup, for each ¢ € [0, 1].

PROPOSITION 4.6. For each ¢ € [0,1], the semigroup {T.(t) : t > 0} is
asymptotically compact in X x X.

PrROOF. Define, for each ¢ € [0, 1],

L.(t) {“’0} eAst{wO} and U.(t)[%] = / teAE(ts)}}(Ts(s) [U’OD

20 20 0 20

From Lemma 3.1, f(A~'/2.) take bounded subsets of X into precompact sets
of H=® for s € [(p—1)(n—2)/4,1), thus F. takes bounded sets of X x X
into precompact sets of X x X, T.(¢) is the sum of an exponentially decaying
semigroup with a compact family of maps, which implies that the semigroup is
asymptotically compact. O

THEOREM 4.7. The semigroup {T.(t) : t > 0} has a global attractor A. in
X x X, for each € € [0,1].

PROOF OF THEOREM 1.7. Define A, = @7 !A., for each ¢ € [0,1]. O

4.1. Uniform estimates on the global attractors. In this subsection
we are concerned with uniform estimates for the family of attractors {A.}.cjo 1
and also for {AE}EE[O,I], since this will be an essential tool to prove the upper
semicontinuity for both of them at ¢ = 0.

THEOREM 4.8. |J A. is bounded in X x X.
e€[0,1]

PrOOF. We define, for (¢,7) € [0,1] x [0, 1], the functional V ,: X x X — R
by

1
Ve (w,2) = §(||w||§c+||Z||§c)—/QF(A_1/2w) d +Re((I +e4)2Aw, 2),

Now
1 1 1 ¢
Ven(w,2) > SlwllX + 51215 — 5 (1= 3 ) llwllx - €9
2 2 A1
+yRe((I +eA)2A71 2, 2)
§ 1 gl
> &l + 3l — €191 = ZGallel + i)

S S WTTE S (Lo T
(55— D)l + (5 - 52 )1ali - ce,
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and we choose v € (0,1) such that £/A\1 —v > 0,1 — py >0 and v < /2. Now,
if we take [Ij((f))} being a solution of (1.5) we have that

a
dt
= — [lwe|% +Re((I +cA)2A7 2wy, 2) + yRe((I 4 cA) V2 A7 2w, )
= — Jwellx +Vl2l% — YRe((I +eA) /2 A7 2w, AVA(T + £ A)~/2w)

— yYRe(wy, w) + YRe(f(A™Y2w), A7/ 2w).

VE,’Y(“’? Z)

Hence, for each n > 0,

d v m
Vel < (1)l 4200 + ol

— (1 - i) Re(AY2(I +eA)™Y 2w, (I 4+ cA)V2 A~ 2w)
s
A1
+y(\ = OIAT 2wk + CrlQ)

mo g T
< (B - Tt + (=t 2o )lelie + ot

hence, for n = £/A1, we have

L Re(AY2(I 4 eA) V2w, (I +eA)Y2A712y)

d

i
Ve, < =3l = (5 = )l + €l

Now, for any ¢ > 0, we have

d %
FVenlw.2) < =l = (5 =7 ) el + ol

2
j:(/ “1/20) d + yCRe((I + A) /2 A~ 2w, 2),
and thus
d € (=8 | ¢ 5 YCu 2
it < VM TS s ISR
Veotws) < (= 25+ ST 0 g (B 22 i

+ Q] + 20¢19] + g/ FA2w) dz — CyRe((I + A2 A2y, 2).
Q

We can choose ( > 0 such that

v (=& ¢ ¢ Y ¢
—27)\1+?+7<—§ and §+ +T<_§
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and therefore

d ¢ ¢
Ve (w,2) < = Sl - Sl

+C/ “20) da — yCRe((I + eA)YV2 A 2w, 2) + C
= - C‘/E,’Y(w, Z) + Ca

or, equivalently,

d _
%Vsﬁ(w, z2) + (Ve y(w,2) < C.

This implies that, for all ¢ > 0, we have

d

(Ve (0,2)) < €,

and hence V; - (w,2) < e SV ., (wo, 20) + C. Therefore

w
z
for all £ > 0 and given a bounded set B in X x X, there exists T > 0, independent

of € € [0, 1], such that
w
z

and we conclude the proof of the theorem. O

2

< Ce " (1+ |l20ll% + llwol% + llwoll5) + R,
XxX

2

< 2R, forall t> T,
XxX

With this uniform bound in X x X, using the subcritical growth of f we are
able to provide an uniform estimate in a more regular space.

THEOREM 4.9. If s € [0,1 — (p— 1)(n —2)/4), then |J A, is bounded in
e€(0,1]

X5/2 % X5/2,

ProOOF. If [w( ' ’wo’zo’g)] is a solution of (1.6) in the attractor A. then

z( - ,wo,20,€)

[w(t, Wo, 20, E):| _ /t e—AE(t—s)]:E ( |:w(57 wo, 20, 5):| ) ,
z(t, wo, 20, €) oo z(s,wo, 20, €)
for all t € R. Thus, if we take o € (1/12,1), we have

o)

Z(t,’u}o, ZOaE)

t
< / 1A% A1
Xs/2x Xs/2 _

H{ AY2Py(e, ) A=D/2 (A~ w(s,wo,zw))”
1/2 P22 6 Oé) (9_1)/2,]0(14 1/2 (8,100,2’0,5))

)

XxX
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and there exists a constant M > 1 such that (using Proposition 2.28)

[

Z(t7 Wo, 20, 5)
and since, by Theorem 4.8, ||w(s, wo, 20, €)||x is uniformly bounded in X we have

that |J A. is bounded in X%/ x X*/2, O
e€[0,1]

Xs/2x Xs/2

t
< M/ eI (t — )7 F(ATPw(s, wo, z0,€)) | o1,

COROLLARY 4.10. |J A, is precompact in X x X.
e€[0,1]
PROOF. It follows directly from the fact that X*/2 x X*/2 is compact em-
bedded in X x X. U

To finish this section and give a proof of Theorem 1.8, we need the following
result.

PROPOSITION 4.11. Let A be an operator of positive type with constant C > 1
in X, then the operators I +eA: D(I +cA) C X — X are of positive type with
constant C. Moreover, the family of operators {(I + 5A)_ﬁ}(a,ﬁ)e[0,1}><[071] i
uniformly bounded.

PRrROOF. See Appendix A. O

PROOF OF THEOREM 1.8. It follows from the previous theorem and Propo-
sition 4.11. O

COROLLARY 4.12. | A, is precompact in X1/ x X.
€€0,1]

5. Continuity of attractors

5.1. Upper semicontinuity of attractors. This section is devoted to the
study of the upper semicontinuity of the family of global attractors {A.}.cjo1
at € = 0 and as a consequence, the upper semicontinuity of {1&5}56[071]

To start this discussion, we have the following lemma:

0
LEMMA 5.1. If{[lzué]} C X x X is such that

€€(0,1]

0 0 0
w ~ot [w w
{g} =, [8] forsome[g]e)(xx,
z Z z

e 0 0

then we have

[lj((tt))} o0t BS((tt))] for each t > 0,
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where [1:5(())} is the solution of (1.7) with initial condition

28] [4) e

S

0o

w

ProOF. We know that, for each [

]+ L)

for each t > 0. Thus we have

] € X x X, the solution of (1.7) is

N
0o

given by

We analise I1(g) and I(g) separately. First, note that

0 0
e
€ 0

and the hypothesis together with Theorem 1.4 ensures that I;(¢) — 0 ase — 0F.

e = [l [m([0]) - (] -

wp
20

Now

I3 (e)
t
Jr/ [e—A=(t=3) _ er(ts)]F€<[w0(8)]) s
0 z0(s)
13 (e)

[ ) - ~{)e

130
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and again we will analise I3 (), I3(¢) and I3(g) separately. For I1(g) we have
that, given o € (1/2,1),

173 () | xxx

< e e[ ([ ([REDIL
|

. / Cett =9 FU(())} - LO(S)] ‘md&

For 12(¢) we have that, given s € [(p — 1)(n — 2)/4,1) and v € (s, 1),

g
(=)
—

V2]
~

113 () Il x x x

()
t
S/ le™ A=) — e e ) (T 4+ 2A) 72 F(A™ 2w (5)) || x ds
0
t
< / MCe =9 (1 — 5) 7092 f (A~ 2w (s))| - ds < CeOV=)/2
0

For I3(g) we have that, for a given a € (1/2,1) and s € [(p — 1)(n — 2)/4, 1),

175 ()l x % x

< w2 ([35]) - (LD,

t
= / Cem =) (1 — )" [ATV2(I + eA) ™2 = ATV (AT 2w (s)) || x ds

/ Ce™ w(t— s) )

ACDI(T 4 £4)7Y/2 = AC/2)A=0/2 F(A 2 (5))x d

S 05(178)2.

.]Oining these eStiIna,teS we prOVed tha,t
( ) XxX
/ Cz—w(t—s)( ) wg(s) w, (‘S) ‘
0 25(5) ’ZO(‘S)

where [(¢) — 0 as ¢ — 0T, and using a Singular Gronwall’s Lemma (see
Lemma 7.1.1 in [17]), we have that

Using this result together with Corollary 4.10 we can prove the following:

ds,
XxX

[wﬁ(t)} _ {wo t]H —0, ase— 0", for each t > 0. a
ze(1) 20(t) 1l x x x
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LEMMA 5.2. If {[fg]}ee(o iy © X x X is such that [u}g] € A. for each

2
e € (0,1] and [Ijg] ﬂ) [1::?]] for some [jé’)} € X x X, then [jé)} € Ay.
5 0 0 0

we (t) 2

PROOF. Let [ ) | be the global solution through [lzuo |, for each € € (0, 1].
Since [155((:11))] € |J A, there exists a subsequence &,, — 0 as n; — oo and
c £€[0,1]

a point [ZS((:;))] € X x X such that
-1 -1
{ws”l( )} - {wo( )}, as ny — oo.
Ze,, (—1) zo(—1)
By Lemma 5.1,

] =m0l Col - mo[55]

and hence Tp(1) [1;5((:11))} = [fg’ |. Inductively, if we have chosen a subsequence

{nr} of {nr_1} and a point [;”S((::))] € X x X such that

S
Ze,, (—K) Lz0(—F)
Again, using Lemma 5.1, we have

] -nol )

:|, as Ny — 00.

and hence
gy [P H) - [k )
zo(—k) ( 1)
Now define, for each t € R,

wo(—F) o
[z(;’(_k)] ift=—-keZ_,
wo (—k .
{wo(t)] To(t+ k)20 ] ifte (<k,—k+1),
= 0
2o (1) [“9] if t =0,
%0
wo .
To(t)[zog] if t > 0.
and thus [f{?gﬂ is a bounded global solution through [“’§] of {Tp(t) : t > 0}
%0
and therefore [“0] € Ay. 0
%0

Lemmas 5.1 and 5.2 together with Lemma 3.2 of [5] prove the upper semi-
continuity at € = 0 of {A.}.¢cjo,1) and we have the following result:

THEOREM 5.3. The family {Ac}.cpoq1] is upper semicontinuous in € = 0.
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With the upper semicontinuity of the family {A.}.cjo,1) at ¢ = 0 we are one
step away to prove the upper semicontinuity of the family of global attractors
{Ac}ocpo,1) at € = 0. All we need is the following proposition:

PROPOSITION 5.4. If s € [0,1] and x € D(A*/2) then
(7 +eA)™ 20 — | x < O/ A% 22| x.

PROOF OF THEOREM 1.9. Just note that

L]

’XXX

-1

for any [%j] € C.. Now the result follows Proposition 5.4 and Theorem 5.3. [

<Norigovme) - 3]
X1/2xX (I+5A)_1/2Z£ 20

< +eA) ™2z — zllx + ‘

)
’XXX

5.2. Lower semicontinuity of attractors. The study of lower semicon-
tinuity of attractors is a harder deal than the upper semicontinuity and requires
a fine study of the local structures in the global attractors; that is, we need to
study the continuity of the local unstable manifolds of the linearized problems
around each equilibrium point [g] € & (recall Section 4), which is given by

o Al ()

Acp = As — DFE<[§D,
re([2]) =272 -2 (D 2= (ED )

From now on we will make the following assumption:
(LS1) ¢ is an non-degenerate equilibrium for A%y = f¢ o A='/2(u); that is
1€ p(A~Y2D(f° 0 A=Y/?)(¢)) and hence I — A=Y2D(f° 0 A=1/2)(¢) is
invertible.

It is easy to see that

o ({ﬁ]) - uHszD?fe 0 A=1/2)(¢) 8} ’

We now will study the convergence of the linear local unstable manifolds of

the problems (P.), and to begin we discuss the generation of analytic semigroups
by —.A57¢.

PROPOSITION 5.5. Using the notations of Lemma 4.2, D(f¢ o A=Y/?)(¢) is
a bounded linear operator in X if ¢ € &1.
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ProOOF. We know that, for each ¢ € £ and n € X,
(D(f€ 0 AV2)(@)n)(x) = f' (A~ 2p(2)) A~ 2 (x),

and hence
D70 A2l = [ 1747 2 0()A™ (o) da.
Since A=Y2¢ € L>®(Q) (by Lemma 4.2) and | f'(s)| < ¢(1+]s|P~1), f/(A=124(-))
in L*°(Q), thus
ID(f¢ 0 A72)(¢)nlx < K|lnl|x- 0

CoroLLARY 5.6. {DF.([¢])}
of operators in X x X.

celo.1] is an uniformly bounded linear family

COROLLARY 5.7. {Ac ¢}eejo,1) 5 an uniformly sectorial family of operators
in X x X, hence each —A. 4 generates an analytic semigroup {e~4=¢ : ¢ > 0}
and there exist constants M > 1, w € R such that

He_Af"i’tHL(Xxx) < Me ' forallt >0 and all £ € [0,1],

also there exists a ¢ € (0,7/2) such that

M
(A= Acg) M < Dowl’ orall A € S, and all € € [0,1].

It is by a simple calculation, and recalling that 0 € p(A.) for all € € [0,1],
that we can see that
Acg = A (I - AZ'DF.([2])) = A.B,
where B is the invertible linear bounded operator given by

_[1=a12D(fe0 a12)(9) 0

B .
0 I

Therefore, using the assumption (LS1), we have that 0 € p(A. ) and A;; =
Bt AZ! which gives

1Az — Ag sl < IB e llAZ — At < Ce.

Now let K C C be a compact set and assume that K C p(Agg4). Since
Ao s(A—Ag») ' and (A — Ag 4)Ao,» are in £(X) and they are inverse with each
other, we have that )‘A(I; — 1 = (A— Aye)Ao,s is an invertible operator and
since

Mg =D = WAy = 1) = MAL, = Agg),
we have that, for ¢ sufficiently small, (AA;; — I is invertible and

_1 £(X)

MAZL =D = (M4 = 1) 0,
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as € — 01, uniformly for A € K. Thus (A — A, 4) is invertible for A € K and ¢
sufficiently small, and

A= Aog) ™t = (A= Ay )t Z5g,
as € — 0T, and we have proved the following result:

PROPOSITION 5.8. Given K C C a compact set such that K C p(Ap ), there
exists g9 € [0,1] such that K C p(Ag,g) for all e € [0,¢0] and

fug (A= Acg) ™ = (A= »AO,¢)71”L(X><X) =0, ase—0".
S

This lead us to the following result:

PRrROPOSITION 5.9. If [‘é’] € & is a hyperbolic equilibrium point for the prob-
lem (Po) then there exists eg € (0,1] such that [ ] it is a hyperbolic equilibrium
point for the problems (P.), for each € € [0, ).

PROOF. Since [ff] is a hyperbolic equilibrium point for (Fp), o(Ag,s) is sep-

arated from the imaginary axis; hence there exists a rectangle K = {\ € C :
Re\ € [—a,a] and ImA € [—b,b]} with a,b > 0 such that 0(A4y4) N K = 0, and
by Corollary 5.7, we can choose K such that it split C\ S, , into two sepa-
rated sets. Then Proposition 5.8 implies that there exists g9 € (0, 1] such that
0(Ae,p) N K =0 for all € € [0,£] and therefore [¢] is a hyperbolic equilibrium
point for (P.). O

Now let 07 = o(—A. ) N {ReX > 0} and '} be a closed simple curve in
p(—A: ) enclosing 0. We know that the associated linear unstable manifold
U. of problem (P.) is given as the image of the projection II} defined by

1
= — A ~Ldx
(S 27TZ 1“+( +A57¢) ?

and Proposition 5.8 implies that
HH: - H(THE(XxX) —0, ase—0T.

Now we have that the convergence of the linear unstable manifolds, we study
unstable manifolds of problem (P.), and to this end we begin with the following
lemma.

LEMMA 5.10. If f: R = R is a C? function with f, f' and f” bounded in R,
there exists ¢ € (0,1) such that, for all u,v € X,

1 £9(A72u) — (AT 20) — fAT20) A2 (u—0)||x < eflu— ol
PRrROOF. First we set

g(u,v) = (AT 2u) — fE(A720) — f/(A7V20) A2 (u — ),
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and we can see that
g, v)] = [F2 (A~ 2u) = F(A720) = F/(A20) A2 (u = v)|
= [[f"(0A7u+ (1 - 0)A™Y20) — f/(A720)]| A7 (u — )|
= [ ((OA™ Pu+ (1= 0)A™20) + (1 =) A7V 20) 0] A72(u — v) ?,
and it is easy to see that there exist constants c1,ce > 0 such that
g, )l ) < et A2 = 0)|Eann s
llg(u, U)HLQ"/("—Q)(Q) < 62||A71/2(u - v)||L2n/<n—2)(Q).
In this way there exists ¢ € (0,1) such that 1/2 =+ (1 —{)(n —2)/(2n) and
g, 0)lx < g, o)1 oy N9t 0) 1S o e
<A ST )

which concludes the proof, since H{(Q) «— L>*/("=2)(Q). O
COROLLARY 5.11. If f: R — R is a C? function with f, f' and f" bounded
in R, there exists a ¢ € (0,1) such that
o) -7 (D=l Bl - 2]
z1 zZ9 XxX (% (%]
PROPOSITION 5.12. In the conditions above, for each € € [0,¢e¢] there exists

for each ¢ € [0,1].
a local unstable manifold Wug([ |) which is a graph over a ball B,(0) of U..

1+¢

)

XxX

loc

Moreover, the family of local unstable manifolds {Wu 5([ ])}ae[o o] s continu-

loc
ous at € = 0.

ProoF. This is a consequence of Corollary 5.11 and the results reported
in [18]. (]

THEOREM 5.13. Suppose that all the conditions above are satisfied and as-
sume also that the set of equilibrium points £ and each [‘g] € & is a hyperbolic
equilibrium point for (Po), then family of global attractors {A.}ccpo,1] s lower
semicontinuous at € = 0.

PROOF. Proposition 5.9 implies that £ consists of hyperbolic points of (P.)
for each € € [0, eg] and by Proposition 5.12, the family of local unstable manifolds
{Wu E([ ])}se[o o] is continuous at ¢ = 0. Finally, Proposition 4.4 implies, in

u ()

and the result follows from the results reported in [2], [16]. O

particular, that
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PrOOF OF THEOREM 1.10. It is analogous to the proof of Theorem 1.9,
using Theorem 5.13 instead of Theorem 5.3. (]

6. Fractal dimension of attractors and entropy numbers

In this section, we are interested in giving uniform bounds for the fractal
dimension of the global attractors A, of the semigroups {7T.(¢) : t > 0} generated
by equation (1.7). To begin, let us recall the definitions of fractal dimension and
entropy numbers.

DEFINITION 6.1. Let Z be a metric space and K a compact subset of Z. For
each r > 0 let Nz(r,K) be the minimum number of balls of radius r necessary
to cover K. The fractal dimension of K is defined by

) InNz(r, K)
K) <1 up —————-—2
o) < limswp =4 73

DEFINITION 6.2. Let Z and W two Banach spaces such that Z is compactly
embedded in W. We define the entropy numbers e; of Z in W by

21@71
ek :inf{n >0:BF(0) C U B:?/V(wj)7 w; e Wior1<j< le}'

j=1
Roughly speaking, ey, is the solution of the equation Ny (n, BZ(0)) = 2F—1.

Firstly, using Theorem 4 of [10], we are able to estimate the fractal dimension
of the global attractors of (1.7). To this end, we prove two auxiliary lemmas.

LEMMA 6.3. For any vy € (0,1), there exists a continuous function h: R — R
such that, for all [%0],[%] € X x X,
wWo w1
20 Z1

o] -ro[]

20 21
ProoF. Using the variation of constants formula, we have that

s ] - 2]
aelrfra2])-w a2,

<o)

’HWXHW ’HWXHW

Wo

ZJ ~1L(1) m

t
+/M67w(t78) (tis)foz
0

S Mefwt

.|

‘H’YXH’Y

<[] 2]
- 20 RN xH-~
t
+ M, / e (=9 (¢ — 5)=o|T(s) {wo} ~Tu(s) {“’1} ’ ds,
0 20 Rl H-7xH-~

for a € (1/2,1), and the result follows from a singular version of Grownwall’s
Lemma (Lemma 7.1.1 in [17]). O
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LEMMA 6.4. There exists v € (0,1) and a continuous function k: R — R
such that, for all [%0],[%] € X x X,

[zo[] - o]

20 21

eox
-1 -1

PROOF. We can write T;(t) = L.(t) + U.(t) where

S Me—wt

+ k(t)‘

XxX ’H’YxH“f

t
Lo(t)- =e At . and U.(t)- :/ e~ A=) F(T.(s) ) ds.
0
It is easy to see that

o] -2o[:] o)1)

Z0 Z1
Also, if we choose a € (1/2,1) and « € (0,1), we have that

oo ] - v [

20 z

g Mefwt

‘XXX ‘XXX

‘XXX

1
t
< M/ e (1 — )T AZ N F(Te(9) [ 5 ]) = FolTe(s) [ D] llxxx ds
0
t
<M, [ L[5 ] ~ Tolo) [ i s,
0
and by Lemma 6.3, there exists a function k: R — R such that

o] -vof2] o)=L

Z0 21
THEOREM 6.5. Let tg > 0 such that A = Me % < 1/2 and define K =
k(to), where k is the continuous function given in Lemma 6.4. Then, for any
v € (0,1/2 — X), we have that

O

’ < k(t)‘

XxX

‘HWXHW

lnNH*“fo*“f (V/K7 Bf(XX(O))
c(he) < n(1/0\ + 1))

PROOF. Is a direct consequence of Theorem 4 of [10]. O

Now, using the results of Section 3.3.2 in [13], we can see that there exists
a constant ¢ > 0 such that, for the spaces X = L2(2) and H~?, we have
er < ck~7/" and therefore, taking ko sufficiently large so that ck=7/" < v/K,
for k > kg, we have that
v

Nyt (Kva(xX(O)) < 221c—27
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which implies that

(v/cK)™™/7 -1
—In(2\+v)) -~

Defining g(v) = ((v/cK)™™"7 —1)/(=In(2(A + v))) we can see that

v

K,foxan><<2m2

log Ngr—v x 5~ <

li = d li = +oo,
Jiug o) = oo and -t | g(v) = +o0

which means that ¢g(v) has a minimum vy in the interval (0,1/2 — X\) and hence
¢(A:) < 21In2¢(vy), which proves the following result:
THEOREM 6.6. For any ¢ € [0,1] we have that c(A.) < 21n2g(vp).

As a direct consequence, we have:

PROOF OF THEOREM 1.11. The result follows noting that ®.: X'/? x
X2/? = X x X is an isometric isomorphism and A, = LA, thus c(A.) = c¢(A.)
and taking 79 = 21n2g(vp). O

REMARK 6.7. It is worthwhile to point out that is this last result, the fractal
dimension must be rightly interpreted. The fractal dimension c(z&a) is obtained
using X1/2 x )?3/2 as the metric base space while ¢(A.) is obtained using X x X.

Appendix A. Results on functional analysis

In this appendix we prove the basic results of functional analysis we used
throughout our work.

PRrROOF OF PROPOSITION 2.2. By Proposition 2.13 we have that, for g €
(0,1),

zw:mw/sﬂmem
0

™

and hence

i * 5P inmB[ 1 1
AP <1 sm7r5/ s ds < (1 sinm
1A leco < 1+ C0)— 571 s<(1+0) ;

- _|_ —
1-p B
and the cases § = 0,1 are trivial. Iin particular, there exists a constant p > 0
such that

(APz,x) = (NP2, AP/%) > pl|x||%, foralle €[0,1] and S €[0,1]. O
PROOF OF PROPOSITION 2.13. Let s € [0,00). We have that

s+A.=s +A(I+5A)_1 =[sI+ (es+ 1)A](I+5A)_1

S

:@s+n<%+1+A>U+a®1,
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thus s + A, is invertible and

(3 + AE)_I

(I+5A)<S +A>1

es+1 es+1

-1
€ 1 s
es+1 +(ss—|—1)2 (&:s+1+ )

Therefore (1+ s)||(s +Ac) | zx) <1+ C, for all s € [0,00) and € € [0,1]. O

PROOF OF PROPOSITION 2.27. By Theorem 2.14 we have that

A2 (1 + Ae)tallx K[ Ac(p+Ad) " a5l (n+ Ad) " ta)lx
K(1+C)PCct=+

(p+1)1=F
PROOF OF PROPOSITION 2.22. We know that, for any given a € [0,1/2),

1 o0
f/ s7U2(5 4 M)~ (Ag — M) (s + Ag) L ds
0

[l x- O

Aa_l/2 _ A81/2 _

™

1 o0
= - / sTUPAL (s + A)TTALT(AZT — Ag ) Ao (s + Ag) T ds,
0
therefore
_ Ce® [ s71/2

ATV A2 < / d

A2 o e = —  Grie ™
and the integral above is convergent for « € [0,1/2). O

REMARK A.1. In the general case of a positive type operator, we cannot
obtain the decay rate of /2 with the technique of the last proposition. However,
when we work with specific properties of a given operator, we may be able to
obtain such rate. For instance, if A is the negative Laplacian with Dirichlet
boundary conditions, we are able to prove the previous result with o = 1/2 as
follows: let v, € X an unitary eigenvector of A associated with A, then

14+el, 1/2 1 5)\&/2
- Up = ———————75 U
a AL T (L ea)t2

(A2 =A%), =
Therefore ||(A;1/2 - Agl/z)vnﬂx < /2, and since the eigenfunctions constitute
an orthonormal basis of X, we obtain the desired result.

PROOF OF PROPOSITION 4.11. Let s > 0 and € € [0,1]. If € = 0 then
(s+I+ecA) =6+t =(+1)""1,

and, if € € (0, 1], we have

-1
(s+I+sA)l=i<si_1+A> .
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which proves in both cases that (0,00) C p(—(I 4+ ¢A)). Also, it is now easy to
see that

(s+Dl(s+T+eA) Hzx) <C,

and this proves that I 4+ ¢A is a positive type operator with constant C. For the
last statement, we know that

(I+cA)~F = sin w8 sP(s+T+eA) " ds,
™ 0

and thus

-B
s
ds

_ C [
(T +A) Pl oy < = /
™ Jo

s+1

. 1 .
< Csinnf [/ S_Bds—i-/oos_ﬁ_ldS} _ Csmwﬁ[ 1 +1}
@ 0 1 @ 1-5 B
which proves the result. O
PROOF OF PROPOSITION 5.4. We have that
(I+eA) V2 -z
L[ 1) —1 L[ i) -1
=— | t7YV2t+T4+eA) wdt—= [ V24D x-dt
™ Jo ™ Jo
1 oo
:7/ V2t T+ eA) L=+ D) o dt
™ Jo
1 [ et /2
=—= A(t+1+eA) 'z -dt
7r/0 1 (t+1+ecA)" 'z
1 [ 12 (41 !
:—7/ A<++A) z - dt
T Jo t+1 €
1 [ ¢ 1/2 t4+1 -t
- ,/ 1418/2<+ +A> A2 dt,
™)y t+1 €
and therefore, by Proposition 2.27, we have
I+eA) 12 <L [Tgen i)
(I +cA) x—x\leg e WH || x di
< Ce®/?|| A% 2| dt. O
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