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AN AVERAGING FORMULA FOR REIDEMEISTER TRACES

Jiyou Liu — Xuezhi Zhao

Abstract. In this note, we shall give an averaging formula for Reidemeis-

ter traces, which is a simple relation among Reidemeister traces of a self-
map and those of its liftings with respect to a finite-fold regular covering.

1. Introduction

Let f : X → X be a self-map on a connected compact polyhedron. Assume

that f admits a lifting with respect to an n-fold regular covering q : X → X.

It is well-known (cf. [2, Chapter II, 5.4 Theorem]) that there is an averaging

formula

L(f) =
1

n

∑
f∈lift(f,q)

L(f)

for Lefschetz numbers. Here, lift(f, q) stands for the set of all liftings of f with

respect to the covering q : X → X. Moreover, an averaging formula

N(f) =
1

n

∑
f∈lift(f,q)

N(f)

for Nielsen numbers was obtained in [4] under some assumptions on the given

self-map f or the space X. In this note, we shall show that there does exist
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an averaging formula for Reidemeister traces. The Reidemeister trace of a self-

map is also a classical invariant containing the information of both the Lefschetz

number and the Nielsen number.

Our approach follows the idea in [4] and [3]. We study the relations between

invariants in Nielsen fixed point theory of a self-map and those of its liftings with

respect to a finite-fold covering. We focus on the deck transformation group other

than fundamental group. The action of deck transformation group on the set of

lifting conjugacy classes are also addressed.

Throughout this note, we always assume that

(1) X is a connected compact polyhedron,

(2) p : X̃ → X is the universal covering with deck transformation group

D(X̃),

(3) q : X → X is an n-fold regular covering which is determined by a normal

subgroup H of D(X̃), i.e. X = X̃/H, having deck transformation group

D(X) = D(X̃)/H,

(4) f : X → X is a self-map admitting a lifting with respect to the covering

q : X → X.

We write lift(f, p) and lift(f, q) respectively for the sets of lifting of f with

respect to the coverings p and q. See [2] or [3] for related notations.

2. Fixed point classes between a finite-fold covering

In this section, we shall study the relation between the fixed point classes of

a self-map and those of its liftings with respect to a finite-fold regular covering.

Let us review some basic definitions and facts in Nielsen fixed point theory,

see [2] for more details. For the given self-map f : X → X, two liftings f̃1
and f̃2 of f in the set lift(f, p) are said to be conjugate if there is an element

γ ∈ D(X̃) such that f̃2 = γf̃1γ
−1. We write [f̃ ]f for the lifting conjugacy class of

f containing the lifting f̃ . The set of all lifting conjugacy classes of f is written

as FPC(f), which was called fixed point classes data of f (see [2, Chapter III,

1.10]). If f̃1 and f̃2 are conjugate, then p(Fix f̃1) = p(Fix f̃2). For a given lifting

f̃ of f , the subset p(Fix f̃) of fixed point set of f is said to be the fixed point

class of f determined by the lifting conjugacy class [f̃ ] (or say by the lifting f̃)

if such a subset is non-empty. Here, we do distinguish lifting conjugacy classes

and fixed point classes. A fixed point class of a self-map is always assumed to

be a non-empty subset of the fixed point set of the given self-map.

If we choose a lifting f̃ as a reference, then any lifting of f can be writ-

ten uniquely as γf̃ for some γ ∈ D(X̃). Hence, f̃ induces an endomorphism

f̃D : D(X̃) → D(X̃) which is defined by f̃γ = f̃D(γ)f̃ . By definition of f̃D,

we know that γ1f̃ and γ2f̃ are conjugate, i.e. γ2f̃ = γγ1f̃γ
−1, if and only



An Averaging Formula for Reidemeister Traces 19

if γ2 = γγ1f̃D(γ−1). We say that two elements γ1 and γ2 in D(X̃) are f̃D-

conjugate if γ2 = γγ1f̃D(γ−1) for some γ ∈ D(X̃). Write D(X̃)f̃D for the set of

all f̃D-conjugacy classes. Thus, there is a well-defined one-to-one correspondence

(2.1) ρf̃ : D(X̃)f̃D → FPC(f), ρf̃ ([α]f̃D ) = [αf̃ ]f .

Let f ∈ lift(f, q). Then we have the following commutative diagram:

X
f
//

q

��

X

q

��

X
f
// X

Since X and X share the same universal covering space X̃, any lifting of f is

also a lifting of f . (But, the converse is not true.) By [2, Chapter III, 1.4], we

have

Proposition 2.1. If the given self-map f admits a lifting with respect to

the finite-fold covering q : X → X, then the formula qFPC([f̃ ]f ) = [f̃ ]f gives

a natural map qFPC : FPC(f)→ FPC(f).

Let us consider the union of the sets of lifting conjugacy classes of all self-

maps in lift(f, q).

Proposition 2.2. If the given self-map f admits a lifting with respect to the

finite-fold covering q : X → X, then the map

(2.2) qtFPC :
⊔

f∈lift(f,q)

FPC(f)→ FPC(f)

is surjective.

Proof. Given a lifting f̃ in the set lift(f, p). Let H be the subgroup of D(X̃)

corresponding to the covering q, i.e. X = X̃/H. For any α ∈ H and any point

x̃0 ∈ X̃, we have f̃(αx̃0) = f̃D(α)f̃(x̃0). Since f admits a lifting with respect

to the covering q : X → X, we know that f̃D(α) ∈ H. It follows that f̃ induces

a self-map f on X, which is obviously a lifting of f with respect to q : X → X.

Note that f̃ is also a lifting of f with respect to the universal covering p : X̃ → X.

We obtain that qtFPC([f̃ ]f ) = [f̃ ]f . �

From the proof of this proposition, we know that a lifting of f with respect to

the universal covering induces a unique self-map on X. In other words, a lifting

of f is a lifting of a unique self-map in lift(f, q). Thus, the union
⊔

f∈lift(f,q)
FPC(f)

is really a disjoint union, i.e. any two elements, regarded as two subsets of all

self-maps on X̃, in
⊔

f∈lift(f,q)
FPC(f) have no intersection.
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Recall that the Reidemeister number of a self-map is defined to be the number

of lifting conjugacy classes. Thus, we have

Corollary 2.3. R(f) = ∞ if and only if R(f) = ∞ for some lifting f ∈
lift(f, q).

Definition 2.4. Let f ∈ lift(f, q). A fixed point class F of f is said to be

covered by a fixed point class F of f if F and F are determined by the same

lifting.

Next lemma gives some geometric meaning of above definition and the map

qtFPC.

Lemma 2.5. Let f ∈ lift(f, q), and let F and F be respectively fixed point

classes of f and f . Then the following statements are equivalent:

(a) F is covered by F ,

(b) q(F ) = F ,

(c) q(F ) ∩ F 6= ∅.

Proof. Note that X and its finite-fold covering space X share the same

universal covering space X̃. Write p : X̃ → X for the universal covering of X.

From (a) to (b). Since F is covered by F , by definition, there is a lifting

f̃ : X̃ → X̃ of both f and f such that F = p(Fix f̃) and F = p(Fix f̃). Note that

q ◦ p = p : X̃ → X. We obtain (b).

From (b) to (c). This is trivial, because F and F are both non-empty sets.

From (c) to (a). Let x0 ∈ q(F ) ∩ F . We can find a point x0 ∈ F ∩ q−1(x0).

Let f̃ be a lifting of f determining F . Thus, there is a point x̃0 ∈ p−1(x0) such

that f̃(x̃0) = x̃0. Note that x̃0 ∈ p−1(x0), and that f(x0) = x0. We have that

x0 ∈ p(Fix f̃). It follows that F = p(Fix f̃), i.e. F is also determined by f̃ . �

Now, we illustrate an example. Let X be the unite circle S1. Then its

universal covering map p : X̃ = R → X is given by p(t) = e2πti. The deck

transformation group D(X̃) ∼= Z is generated by γ, where γ(t) = t+ 1.

A self-map f : X → X is defined by f(eθi) = e4θi. There is a lifting f̃ given

by f̃(t) = 4t. Then lift(f, p) = {γkf̃ | k ∈ Z}. Since t
γ−1

7−→ t − 1
f̃7−→ 4t − 4

γ7−→
4t− 3, i.e. γf̃γ−1 = γ−3f̃ , we obtain that FPC(f) = {[f̃ ]f , [γf̃ ]f , [γ

2f̃ ]f}, where

[γj f̃ ]f = {γj+3lf̃ | l ∈ Z} for j = 0, 1, 2.

A two-fold covering q : X = S1 → X is defined by q(eθi) = e2θi. Thus,

lift(f, q) = {f, τf}, where f(eθi) = e4θi and τ(eθi) = e(θ+π)i(= −eθi). Note

that q is determined by the subgroup {γ2l | l ∈ Z} of D(X̃). The universal

covering p : X̃ → X is given by p(t) = eπti, which is also implied by the relation

p = q ◦ p. Thus, lift(f, p) = {γ2lf̃ | l ∈ Z}, while lift(τf, p) = {γ2l+1f̃ | l ∈ Z}.
We obtain that FPC(f) = {[f̃ ]f , [γ

2f̃ ]f , [γ
4f̃ ]f}, where [γj f̃ ]f = {γj+6lf̃ | l ∈ Z}
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for j = 0, 2, 4. We also obtain that FPC(τf) = {[γf̃ ]τf , [γ
3f̃ ]τf , [γ

5f̃ ]τf}, where

[γj f̃ ]τf = {γj+6lf̃ | l ∈ Z} for j = 1, 3, 5.

It is obvious that

[f̃ ]f = [f̃ ]f t [γ3f̃ ]τf , [γf̃ ]f = [γ4f̃ ]f t [γf̃ ]τf , [γ2f̃ ]f = [γ2f̃ ]f t [γ5f̃ ]τf .

Thus, we have

(qtFPC)−1([f̃ ]f ) = {[f̃ ]f , [γ
3f̃ ]τf},

(qtFPC)−1([γf̃ ]f )−1 = {[γ4f̃ ]f , [γf̃ ]τf},

(qtFPC)−1([γ2f̃ ]f )−1 = {[γ2f̃ ]f , [γ
5f̃ ]τf}.

It is easy to check that

p(Fix γlf̃) = {e−2πli/3}, l = 0, 1, 2;

p(Fix γmf̃) = {e−πmi/3}, m = 0, . . . , 5.

Thus, each lifting conjugacy class determines a fixed point class. Each fixed

point class of f is covered by two fixed point classes: one is that of f , the other

is that of τf . Clearly, the fixed point class {e0} is covered by {e0} and {e−πi},
{e−2πi/3} is covered by {e−πi/3} and {e−4πi/3}, and {e−4πi/3} is covered by

{e−2πi/3} and {e−5πi/3}. Moreover, q−1({e0}) = {e0, e−πi}, q−1({e−2πi/3}) =

{e−πi/3, e−4πi/3}, and q−1({e−4πi/3}) = {e−2πi/3, e−5πi/3}.
We would like to mention that the number of the fixed point classes covering

a given fixed point class maybe smaller than the fold number of q (see the example

in the final section of this note). A general result will be given in Lemma 3.3.

Finally, we make some remarks about the relations of our definition and

existed invariants. Let F be a fixed point class of f determined by a lifting f̃ .

There are two subgroups qD(Fix f̃D) and Fix f̃D of D(X). Here, qD : D(X̃) →
D(X) = D(X̃)/H is the quotient homomorphism, and f̃D : D(X) → D(X) is

the endomorphism induced by f̃D : D(X̃)→ D(X̃). Their orders are written as

JF and IF , respectively (see [3, Corollary 3.11]). Since qD(Fix f̃D) is a subgroup

of Fix f̃D, JF is a factor of IF . The two numbers are both independent of the

choice of liftings, and totally determined by the fixed point class F itself. They

count the fold numbers between the given fixed point class F and those covering

it. More precisely,

Proposition 2.6 (cf. [3, Lemma 3.4]). Let F be a fixed point class of f ,

admitting a lifting with respect to a finite-fold regular covering q : X → X. Then

(a) q| : F → F is a JF -fold covering for any fixed point class F covering F ;

(b) q| : Fix f ∩ q−1(F )→ F is an IF -fold covering for any f ∈ lift(f, q) with

Fix f ∩ q−1(F ) 6= ∅.
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3. Actions of deck transformation groups

In this section, we shall discuss the actions of deck transformation groups on

lifting conjugacy classes.

Theorem 3.1. Let f : X → X be a self-map, admitting a lifting with respect

to a finite-fold regular covering q : X → X which is determined by a normal

subgroup H of D(X̃). Define a natural action of D(X̃) on
⊔

f∈lift(f,q)
FPC(f) by

(η, [f̃ ]) 7→ [ηf̃η−1].

Then

(a) such an action induces an action of D(X) = D(X̃)/H on
⊔

f∈lift(f,q)
FPC(f);

(b) the isotropy group of the D(X)-action at the lifting conjugacy class [f̃ ]

is qD(Fix f̃D), where qD : D(X̃) → D(X) = D(X̃)/H is the quotient

homomorphism;

(c) two elements in
⊔

f∈lift(f,q)
FPC(f) lie in the same D(X)-action orbit if

and only if they have the same image of

qtFPC :
⊔

f∈lift(f,q)

FPC(f)→ FPC(f).

Proof. Let η be an element in D(X̃). If [ηf̃η−1] and [f̃ ] are the same lifting

conjugacy class of some f ∈ lift(f, q), then there is an element α ∈ H such that

ηf̃η−1 = αf̃α−1. This is equivalent to say that ηf̃D(η−1) = αf̃D(α−1), i.e.

η−1α ∈ Fix f̃D. Thus, isotropy group of D(X̃)-action at the lifting conjugacy

class [f̃ ] is H (Fix f̃D) = {αβ | α ∈ H, β ∈ Fix f̃D}. It is really a subgroup of

D(X̃) because H is a normal subgroup of D(X̃). Since H (Fix f̃D) contains H as

a subgroup for any lifting f̃ , H acts trivially on
⊔

f∈lift(f,q)
FPC(f). Hence, there

must be an induced D(X)-action. We proved (a).

Project the isotropy group of D(X̃)-action by qD : D(X̃)→ D(X). We know

that the isotropy group of D(X)-action at [f̃ ] is qD(H (Fix f̃D)) = qD(Fix f̃D).

Thus, we obtain (b).

The conclusion (c) is obvious by definition of D(X)-action and qtFPC. �

Corollary 3.2. The set FPC(f) is just the orbit set
⊔

f∈lift(f,q)
FPC(f)/D(X̃),

or
⊔

f∈lift(f,q)
FPC(f)/D(X), and hence qtFPC can be regarded as a quotient map.

It should be mentioned that the D(X)-action on the union of all fixed point

classes of all self-maps in lift(f, q) is exactly its usual action (being considered

as homeomorphisms) on X.
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Lemma 3.3. Let q : X → X be an n-fold regular covering. Let F be a fixed

point class of f : X → X, where f admits a lifting with respect to q. Then the

number of the fixed point classes of self-maps in lift(f, q) covering F is n/JF .

Proof. Let F be a fixed point class of f determined by a lifting f̃ , i.e.

p(Fix f̃) = F , which is a non-empty subset of X̃. For any [f̃ ′] ∈ (qtFPC)−1([f̃ ]f ),

we have f̃ ′ = γf̃γ−1 for some γ ∈ D(X̃) by (c) of Theorem 3.1. Note that

Fix γf̃γ−1 = γ(Fix f̃) 6= ∅. The lifting conjugacy class [f̃ ′] determines a fixed

point class of a self-map in lift(f, q). Thus, the number of the fixed point classes

covering F is equal to ](qtFPC)−1([f̃ ]f ), which is just ]D(X)/]qD(Fix f̃D) = n/JF
by (b) and (c) of Theorem 3.1. �

Proposition 3.4. Let f : X → X be a self-map admitting a lifting with

respect to an n-fold regular covering q : X → X. Then

(3.1)
∑

F∈N (f)

n

JF
=

∑
f∈lift(f,q)

N(f),

where N (f) is the set of all essential fixed point classes of f .

Proof. By [4, Lemma 2.5] or [3, Lemma 3.4], if a fixed point class F cov-

ers a fixed point class F of f , then F and F has the same essentiality. From

Proposition 2.2, we know that each essential fixed point class of some self-map

in lift(f, q) cover an essential fixed point class of f . It follows that∑
f∈lift(f,q)

N(f) =
∑

F∈N (f)

]{fixed point classes covering F} =
∑

F∈N (f)

n

JF
,

by Lemma 3.3. �

Since 1 ≤ JF ≤ n = ]D(X), we have

Corollary 3.5.

1

n

∑
f∈lift(f,q)

N(f) ≤ N(f) ≤
∑

f∈lift(f,q)

N(f).

By results above, we have the following:

Proposition 3.6. Let q : X → X be an n-fold regular covering. A self-map

f : X → X admits a lifting with respect to q. Then the following statements are

equivalentrom:

(a) N(f) =
∑

f∈lift(f,q)
N(f);

(b) JF = n for any essential fixed point class F of f ;

(c) D(X) acts trivially at each lifting conjugacy class which determines an

essential fixed point class of some self-map in lift(f, q);
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(d) each essential fixed point class of f is covered by unique fixed point class

of self-maps in lift(f, q), i.e. ](qtFPC)−1([f̃ ]f ) = 1 if the lifting conjugacy

class [f̃ ]f determines an essential fixed point class of f ;

(e) ind(f, F ) = n ind(f, F ) for any essential fixed point class F of f and any

fixed point class F of any self-map in lift(f, q) covering F .

Proof. By Proposition 3.4,∑
F∈N (f)

n

JF
=

∑
f∈lift(f,q)

N(f).

The number of summands in left side of this equality is N(f), which is the

number of essential fixed point classes of f . Hence, (a) holds if and only if

n/JF = 1, i.e. n = JF for all essential fixed point class of f . We obtain the

equivalence between (a) and (b).

The Definition 2.4 and the item (b) and (c) of Theorem 3.1 imply that (b) and

(c) are equivalent. The equivalence between (b) and (d) is given by Lemma 3.3.

By the homotopy invariance of indices of fixed point classes, we may assume

that each fixed point class is a finite set. Thus, equivalence between (d) and (e)

follows directly from the definition of fixed point index. �

Similarly, we can prove

Proposition 3.7 (cf. [4, Theorem 3.1]). Let q : X → X be an n-fold regular

covering. A self-map f : X → X admits a lifting with respect to q. Then the

following statements are equivalent:

(a) N(f) = (1/n)
∑

f∈lift(f,q)
N(f);

(b) JF = 1 for any essential fixed point class F of f ;

(c) D(X) acts freely on lifting conjugacy classes which determine essential

fixed point classes of self-maps in lift(f, q);

(d) each essential fixed point class of f is covered by n fixed point classes of

self-maps in lift(f, q), i.e. ](qtFPC)−1([f̃ ]f ) = n if the lifting conjugacy

class [f̃ ]f determines an essential fixed point class of f ;

(e) ind(f, F ) = ind(f, F ) for any essential fixed point class F of f and any

fixed point class F of any self-map in lift(f, q) covering F .

4. An averaging formula

The so-called Reidemaister trace of a self-map was introduced by Reidemais-

ter in [5]. In this note, we use a modernized treatment given in [1].

Choose a lifting f̃ of f with respect to the universal covering p : X̃ → X.

Recall that if {[γj f̃ ]f | j = 1, . . . , k} is the set of all lifting conjugacy classes of

f determining essential fixed point classes, where each γj lies in D(X̃), then the
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Reidemeister trace RT (f, f̃) of f is defined to be

k∑
j=1

ind(f, p(Fix γj f̃))ρ−1
f̃

([γj f̃ ]f ) =

k∑
j=1

ind(f, p(Fix γj f̃))[γj ]f̃D ,

which is an element in the free Z-module generated by the set D(X̃)f̃D of f̃D-

conjugacy classes ([1, Theorem 1.13]). Here, ρf̃ is the one-to-one correspondence

from D(X̃)f̃D to the set FPC(f), as in (2.1).

Since γj f̃ = γjα
−1αf̃ for any α ∈ D(X̃), we have that ρ−1

αf̃
([γj f̃ ]f ) =

[γjα
−1](αf̃)D . It follows that

RT (f, αf̃) =

k∑
j=1

ind(f, p(Fix γj f̃))[γjα
−1](αf̃)D ,

meaning that the Reidemeister trace does depend on the choice of reference

lifting. Nevertheless, the endomorphisms f̃D and (αf̃)D induced by different

reference lifting is different generally, because (αf̃)D(γ) = αf̃D(γ)α−1 for all

γ ∈ D(X̃).

Theorem 4.1. Let q : X → X be an n-fold regular covering which is deter-

mined by a normal subgroup H of D(X̃), and let βj, j = 1, . . . , n be elements in

D(X̃) representing all elements in D(X) = D(X̃)/H. Then

(4.1) RT (f, f̃) =
1

n

n∑
j=1

ρ−1
f̃
◦ qtFPC ◦ ρβj f̃

(RT (fβj
, βj f̃)),

where f̃ is a chosen lifting of f , fβj
is the self-map on X induced by βj f̃ , and

the correspondence

ρ−1
f̃
◦ qtFPC ◦ ρβj f̃

: D(X̃, p)(βj f̃)D
→ D(X̃)f̃D

is extended into the homomorphism of Z-modules by identifying their coefficients.

Proof. Let F be an essential fixed point class of f determined by [γf̃ ]f . By

Lemma 3.3, there are n/JF fixed point classes covering F . By [4, Lemma 2.5] or

[3, Lemma 3.4], each fixed point class covering F has index JF ind(f, F ). Thus,

the sum of indices of fixed point classes covering F is n · ind(f, F ). This implies

that in the summation

n∑
j=1

ρ−1
f̃
◦ qtFPC ◦ ρβj f̃

(RT (fβj
, βj f̃)),

the coefficient of the item [γ]f̃D is n · ind(f, F ). Hence, this summation is exactly

nRT (f, f̃). This is what we want to prove. �
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Actually, the correspondence ρ−1
f̃
◦ qtFPC ◦ ρβj f̃

is given by

ρ−1
f̃
◦ qtFPC ◦ ρβj f̃

([γ](βj f̃)D
) = [γβj ]f̃D ,

for any γ ∈ H ⊆ D(X̃) and any j with 1 ≤ j ≤ n. The set {fβj
| 1 ≤ j ≤ n} is

just the set lift(f, q) of all liftings of f with respect to the covering q : X → X.

Finally, we shall give an example illustrating these Reidemeister traces in our

averaging formula.

Let f : RP 2 → RP 2 be the identity map. Consider the universal covering

p : S2 → RP 2 with the deck transformation group D(S2) = {idS2 , α}, where

α is the antipole map. Clearly, f has two liftings f̃ = idS2 and f̃ ′ = αf̃ .

Since α idS2 α−1 = idS2 , there are two lifting conjugcy classes, i.e. FPC(f) =

{[f̃ ]f , [αf̃ ]f}. Because χ(RP 2) = 1, we have that ind(f, p(Fix f̃)) = 1. Since

α is fixed point free, the fixed point class p(Fixαf̃) has zero index. Hence,

RT (f, f̃) = [1]f̃D .

Consider the map q = p : S2 → RP 2 as a 2-fold regular covering. Then

lift(f, q) = {idS2 , α}. Since S2 is simply-connected, as self-maps on S2, either

idS2 or α has a unique lifting, which are respectively f̃ = idS2 and αf̃ = α, and

hence has a unique lifting conjugacy class. Since χ(S2) = 2, the unique fixed

point class of idS2 has index 2. Hence, we have that RT (idS2 , f̃) = 2[1]f̃D . We

have that

2[1]f̃D
� ρ

f̃
// 2[f̃ ]idS2

� qFPC=pFPC
// 2[f̃ ]f

�
ρ−1

f̃
// 2[1]f̃D .

Since α has no fixed point, we have that RT (α, αf̃) = 0, which is sent obviously

to the zero element in ZD(S2)f̃D . Thus, we verify our averaging formula for

Reidemeister traces:

RT (f, f̃) = [1]f̃D =
1

2
([1]f̃D + 0) =

1

2

(
ρ−1
f̃
◦ qtFPC ◦ ρf̃ (RT (idS2 , f̃)) + 0

)
.

By [4, Example 3.3], we know that the averaging formula does not hold for

Nielsen numbers. Especially, in our example,

N(f) = 1 6= 1

2
(1 + 0) =

1

2
(N(idS2) +N(α)).

From Proposition 3.7, the reason is that the number of fixed point classes of

self-maps in lift(f, q) covering the unique essential fixed point class of f is 1,

which is smaller than the fold number n = 2 of q.
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