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DENSE PERIODICITY ON GRAPHS
KATSUYA YOKOI

ABSTRACT. We establish a Barge-Martin type theorem for
graph self-maps for which the set of periodic points is dense.

1. Introduction. The purpose of this paper is to describe graph
self-maps for which the set of periodic points is dense. Barge and
Martin [2] established a structure theorem for maps on the interval
with dense periodic points; that is, the twice iterate of such a map is
topologically mixing on some countable subintervals and is identical on
the other. A similar theorem was proved for tree maps in [7].

In this paper, we extend the above to graph self-maps, see Section 3.
A motivation for studying graph maps is that higher-dimensional dy-
namics can often be reduced to a one-dimensional dynamics: this is
the case in the study of the structure of attractors of a diffeomorphism,
the quotient maps generated by maps on manifolds with an invariant
foliation of codimension one and the dynamics of pseudo-Anosov home-
omorphisms on a surface.

Throughout this paper, by a graph, we mean a connected compact
one-dimensional polyhedron, and a tree is a graph which contains no
loops. For a graph GG, we denote the sets of endpoints and of branch
points of G by E (G) and B (G), respectively. A map f is a continuous
function; f° is the identity map, and for every n > 0, f**! = f" o f.
We denote by Fix (f) and Per (f) the sets of fixed points and of periodic
points of f, respectively. A subset K of X is invariant under f : X — X
if f(K)C K, Int K and Cl K denote the interior and closure of K in
X, and the orbit of z € X under f is Orb f(z) = {f"(z) | n > 0}.

For a natural number S, Ng denotes the least common multiple of
the positive integers less than or equal to S.
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2. Preliminaries. An onto map f : X — X is called (topologically)
transitive if any of the following equivalent conditions holds.

(i) There exists a point with dense orbit.

(ii) Whenever U, V are nonempty open sets, there exists an n > 1
such that f~"(U)NV # @.

(iii) The only closed invariant set K with Int K # & is K = X.

We note that if f” is transitive for some n, then so is f.

A map f is totally transitive if f™ is transitive for all n > 1. A
transitive map is not always totally transitive. On the other hand, it
is well known that for a transitive graph map with periodic points, the
set of periodic points is dense. Therefore, for such a map f, the nth
power f™ has dense periodic points for n > 1.

A map f: X — X is called topologically mizing if for every pair
of nonempty open sets U and V, there exists an N > 1 such that
f~(U)NV # @ forn > N. A topological mixing map on a compactum
is in general totally transitive. It is also known that a totally transitive
graph map with periodic points is topologically mixing.

We first recall some basic results for maps with dense periodic points.

Proposition 2.1 [3, Lemma 2.3]. Let f : X — X be a map from a
compactum to itself for which the set of periodic points is dense. Then,
for every connected set E of X with Int E # &, Cl Up>of™(E) has
finitely many components. These components have nonempty interior
and are permuted by f.

Proposition 2.2 (cf. [4, Lemma 1]). Let f : X — X be a map from
a compactum to itself for which the set of periodic points is dense. IfY
is closed in X and invariant under f, then CL(X \Y) is also invariant
under f.

Roe [7] showed a decomposition theorem for tree maps for which the
set of periodic points is dense. It is slightly reworded here. The case
of interval maps was proved earlier by Barge-Martin [2].
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Theorem 2.3 ([7, Theorem 5]). Let f : T — T be a tree
map for which the set of periodic points is dense. Let Ngry =
LCM{2,3,...,#E(T)}. Then there exists a collection (perhaps finite
or empty) {J1,Jo, -} of subtrees of T with disjoint interiors such that

(1) fNE (T)(Ji) =J; fori>1,
(ii) fNe@|y, o J; — J; is totally transitive for i > 1, and
(iii) Ve () =z forz € T\ U;J;.

Remark. His proof of Theorem 5 and Lemma 1 in [7] show totally
transitivity of fVe™|; : J; — J; above.

Let G be a graph, x € G, and U an open connected neighborhood
of z in G whose closure is a tree. The number of components of
U \ {z} is called the valence of z and is denoted by v (x), and we
set v(G) = max{v(z) | z € G}. A point of valence > 3 is a branch
point and of valence 1 is an endpoint.

The following theorem is a direct generalization of [1, Lemma 2] or
[6, Corollary 3.2]; we omit the straightforward proof.

Theorem 2.4 (cf. [6, Corollary 3.2]). Let f : G — G be a graph
map satisfying Fix (f) # @ and C1 Orb f(z) = G for some x € X. Let
Ny (q) = LCM{2,3,...,v(G)}. Then one of the following occurs:

(' Cl Orb v(c)( z) = G, in which case Cl Orb ;:(f*(z)) = G for
and k > 0 i.e., f 1is totally transitive.

)
>1
i) Cl Orb NV(G)( x) # G, in which case there exists a number p,
p <v(QG) such that

a) G = U Cl Orb s (fi(2)),
Cl Orb 4o (fi(z)) is a subgraph of G for 0 <i<p—1,

b)
¢) Int C1 Orb f»(fi(z)) NInt Cl Orb f»(fi(z)) =@ for 0<i<j <
L
)

(
2<

AAA

p
d) f(C1 Orb 4 (fi(z))) = Cl Orb s+ (f“(z)) (mod p), and

(
(€) Cl Orb for(fi(x)) = Cl Orb so(fi(2)) fork >1and0 < i <p-1,
e )

i.e., flo1 orb o (fi(x)) 18 totally transitive for 0 <7 <p—1.
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3. Results. Here is our main theorem.

Theorem 3.1. Let f : G — G be a graph map for which the set
of periodic points is dense. Then there exist a natural number N and
a collection (perhaps finite or empty) {G1,Ga,...} of subgraphs of G
with disjoint interiors such that

(1) fN(G,) = G, fO’I‘i > 1,
(ii) fN|g, : Gi — Gi is totally transitive (i.e., topologically mizing)
fori>1, and
(iii) fN(z) =z forz € G\ U;G;.

Before showing our main theorem, we need lemmas used later.

Lemma 3.2. Let g : G — G be a nontransitive graph map for
which the set of periodic points is dense, and let g(x) = x for some
x € G. Then there exists a proper subgraph K of G such that x € K
and g(K) C K.

Proof. Since g is not transitive, there exists a proper closed set F' of
G such that Int F # @ and g(F) C F.

Let F be a component of F with Int £ # @&. Then it follows
from Proposition 2.1 that E* = ClUp>og™(E) is the direct sum
of nondegenerate subgraphs FEy,...,Ey,_; satisfying g(E;) = E;y;
(mod ¢) for 0 <i<¢—1.

If x € E*, { must be 1, and then put K = E*. On the other side, let
x ¢ E*. By Proposition 2.2, we note that g(Cl(G\E*)) C CL(G\E*) &
G. 1t is clear that Cl(G \ E*) is the direct sum of nondegenerate
subgraphs ENO, e ,/E\;. Here we put K = /EZ, where = € Int E: This
is the set that we required. a

Lemma 3.3. Let G be a graph which includes a loop. Let g: G — G
be a nontransitive map for which the set of periodic points is dense,
and let z1,...,2s € G\ (E(G) UB(Q)) such that g(x;) = z; for
1<i<sand G\ {z1,...,xs} is homotopic to a point. Then there
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exist a natural number L and collections {Geo1, - - -, Goos} and (perhaps
finite or empty) {G1,Ga,...} of subcontinua in G such that

(i) any two sets of {Goo1,...,Guoos} coincide or have disjoint inte-
riors,
(ii) any two sets of {G1,Ga,...} have disjoint interiors,
(iii) Int Gooi NInt G; =@ for 1 <i<s, j>1,
(iv) each of {Gsoi} is invariant under g,
(v) each of {G;} is invariant under g*,
(vi) g%l : Gj — G; is totally transitive for j,
(vii) g¥(z) =z for £ € G\ (Goo1 U+ -+ U Goos UU,;G5), and
(viil) for 1 < i< s, either Goo; = & or
(a) Gooi 1s proper,
(b) Geoi includes a loop having x;, and
(

) 9lG.; : Gooi = Gooi 18 Mot transitive.

Remark. In the Lemma above, the number s must be the rank of the
first homology group of G.

Proof. We have proper subgraphs K;, 1 <1i < s, of G such that

(l) T; € Ki,

(2) 9(K;) € K;, and

(3) K; = Kj or Int K; NInt K; = @ for i # j.
Indeed, it follows from Lemma 3.2 that there exists a proper subgraph
K, of G such that z; € K; and g(K;) C K;. By Proposition 2.2,
we have g(Cl(G \ K1)) C CI(G\ K1) G G. Next, for 2 < i < s, if
x; € Ky, then put K; = K;. If not, choose the connected component
K; of C1(G \ K) satisfying z; € Int K;. Then these K;s are proper
subgraphs with z; € K; and g(K;) C K.

For 1 <i < s, we here put
@ if K; contains no loops having x; or

Gooi = 9|k, : K; — K, is transitive,
K; otherwise.
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We now consider the distinct graphs in the collection {Kj, ..., K¢},
recall (3).

In the case when K; is a tree; since (2) and Cl Per (g|k,) = K;
we have by Theorem 2.3, a collection (perhaps finite or empty)
{5 JE ..} of subtrees of K; with disjoint interiors such that

o gNew (J1) = JK for j > 1,

[ gNE (K3)

o JJK — JJK is totally transitive for j > 1, and
j

° gNE(Kn(m) =z forze Kz\UJ JJKI

In the case when K; includes a loop and g|k, : K; — K; is transitive,
it follows from (1) and Theorem 2.4 that there exist a natural number
pi < v(K;) and subgraphs Kg,..., K, _; with disjoint interiors such
that

eK,=KjU---UK. |,

OIntK;#Qforogjgpi—l,and

o gPi|gi: K;: — K; is totally transitive for 0 < j < p; — 1.

J
Since p; divides Ny (g,), we note that gNv (%)) |ki : K;: — KJ’: is totally
J
transitive for 0 < j < p; — 1.
Let H = C1(G \ Ui_, K;), and assume that the set H is nonempty.

Represent H = @ig)Hk, by connected (free) components Hy. Since

g(H) C H by Proposition 2.2 and Cl Per (g) = G, there exists a natural
number t such that

(4) 9'(Hy) C Hy for 1<k <((H).

Indeed, let
E€ =max{#E(T)| T is a tree in G}.

We note that E® = 2rank [H;(G)] + #E (G), where H;(G) is the first
homology group of G. As ¢(H) < E® — 1, the number

(5) Ngo_; =LCM{2,3,...,E¢ — 1}

is suitable for ¢ in (4) and note that this depends only on G.
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Since (4) and Cl Per (¢*|g, ) = Hy for 1 < k < {(H), it follows from
Theorem 2.3 that for 1 < k < ¢(H), there exists a collection, perhaps
finite or empty, {JF,J¥,...} of subtrees of Hj, with disjoint interiors
such that

o (gH)yNew (JF) = JF for i > 1,

o (g")New| 1 o JF — JF is totally transitive for i > 1, and

o (g")NEt (2) = 2 for x € Hy \ U;JE.

Finally, we represent the collection {JJK}U{K;}U{JZ"} by {G1,G2,. .}
and put

(6) L:NEGflxNEG.

Since the numbers Ng, (k,), Ny (k;) and tx Ng (g, ) divide L, we conclude
our proof. a

Remark. Let H be a subgraph of G, and let L' be the number with
respect to H defined by (6) in the proof of Lemma 3.3. Then we note
that L' divides L.

Proof of Theorem 3.1. We may assume that G includes a loop by
the benefits of Theorem 2.3. It is clear from Cl Per (f) = G that we
have a natural number k and zi,...,2s € G\ (E(G) UB(G)) such
that f*(z;) = z; for 1 <i < sand G\ {z1,...,zs} is homotopic to a
point. If f* : G — G is transitive, then we carry out our purpose by
Theorem 2.4.

We assume that f* : G — G is not transitive and let g = f* below
for simplicity. We note that Cl Per (g9) = G.

Let
L:NEG_I XNEG,

as (6) in the proof of Lemma 3.3.

Using Lemma 3.3 recursively, for any countable ordinal number «,
we shall construct {G& ,G%L,} and (perhaps finite or empty)

ool

{G%,GY,. ..} of subcontinua in G such that

(1) any two sets of {G%;, - .., G, } coincide or have disjoint interiors,

(2) any two sets of UBSQ{Gf, Gg, ... } have disjoint interiors,
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Llga : G¢ — G is totally transitive for j,

Lg)=zforz € G\ (GLU---UGL, UUg<a(GEUGH U---)),

) for 1 <i <s, either G%;, = @ or
a) G G GP. for B < a,
) G, includes a loop having z;, and

¢) glg= . : G%; — G&,; is not transitive.

Our construction is by transfinite induction on a < wi, where w; is
the first uncountable ordinal number.

Let o = 0. ThenweputGgoi:Gforlgigs,andGE?:@for
Jj=1
B

ocolyr:

G2} and {G? G5,...} of subcontinua in G satisfying properties
(W)~(7).

Now let o be a limit ordinal number. Put CNJg‘m = ﬂg<aGgoi for
1 < i < 5. We shall construct G, and G;‘ for 1 < i < s and j.

oot

For 8 < a, suppose that we have constructed collections {G

Consider now the nonempty distinct graphs in {égm | 1<3i<s}, and
in every other graph, let GS; be empty.

In the case when g|5a o égm — G2, is not transitive, put G%;, =

oot
éa»andéfszzfoerL

o0

— G,

In the case when g|z, : G~

0ot

is transitive, put G, = @.

It follows from g(z;) = x; € G%; and Theorem 2.4 that there exist
a natural number p; < v (GS,;) and subgraphs K¢,...,K?, _; with
disjoint interiors such that

(8) égoz =K. -UKF, 1,
(9) Int K; # @ for 0 < j <p; — 1, and

(10) gpi|ng : K3 — K7 is totally transitive for 0 < j <p; — 1.
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Since p; divides L, we note that gL|ng » K — K7 is totally
transitive for 0 < j < p; — 1. Then represent {G7,;} U{K?;} by {G}}.

Let « = o'+ 1 be a rllonlimit ordinal number. Put G ; = & and
G3; = @ for j > 1if GS, = @. Next, represent the nonempty distinct

graphs in {G%, | 1<i< s} by {Goml, .-, G%;, } We note that Goo“c
includes a loop having z;, for 1 <k <gq.

Let 1 <k <gq. Wehaveaset I, C J, ={j €{1,. ..,s}|w]€Ga }

OO’Lk

such that {z; | i € I} N E(Gg‘o%) = @ and Ggmk \{z; | i € I} is
homotopic to a point. We recall that I, N Ik2 = @ for k1 # ky. Then
apply Lemma 3.3 to g|Ga/_ Gg‘mk — Gg‘mk and {z; | i € Iy}. We
note again the Remark following the proof of Lemma 3.3. Then we
have collections {G%,; | i € I} and {Gf, |, G, 5,...} of subcontinua

in G i, Such that
(11) any two sets of {G%; | i € I} coincide or have disjoint interiors,

(12) any two sets of {G§ |, G¢ . } have disjoint interiors,

ik,

)

)

(13) Int G5, NInt G ; = S for i € Iy and j > 1,

(14) g(G%,;) C G, for i € I and g (G¢ ) C G¢ . for j > 1,
)
)
)

1g,29 " "

ik,J iksJ

(15) g |G°‘ ,  GhL = GEj 1s totally transitive for j > 1,

'Lk,]
(16) g% (z) = = for z € G%; \ (Uier, G2 i UU;j>1GY,
(17) for i € I, either G2, = & or

and

00Tk Tk ])

(a) G, is proper,
) G

(b ; includes a loop having x;, and
c) g|Ga ; = G2, is not transitive.
We put Gg; = @ for i € Ji \ I, and enumerate {G7, y [1<k<gq,j>

1}U{G$fj|z¢UJk,y21} as {G§ | j > 1}.

Then, in any case, we are able to go to the next stage. Thus, we have
finished our construction.

Finally, there exists an ordinal number oy < w; such that G;° = @
for 1 <i < s. Indeed, by our construction,

0 1
GooiQGooiQ"'QGgoiQ""a<w1'
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It follows from [5, Theorem 2, page 258] that there exists an ordinal
number oy < wj such that G2, = G2t' = ... for 1 < i < s. Then
G, = 2,1 <i<s, follows from (7). Therefore, we obtain a countable
collection UQSQO{Gf, Gg, ...} and fV, where N = L x k, as required,
and the proof of our main theorem is finally finished. ]

Remark. For simplicity, we used the Roe decomposition theorem
for tree maps (Theorem 2.3) in our proof. We are able to prove
Theorem 3.1 (essentially, Lemma 3.3) by use of the Barge-Martin
decomposition theorem for interval maps [2, 4].

4. Examples.

Example 1. Let f :[0,1] — [0,1] be the map whose graph appears
in Figure 1, where copies of the small square converge to {(0,1)} or
{(1,0)}, f(0) =1, and f(1) = 0. Then the closed intervals J; which are
the projective images of those squares to the first coordinate have that
f2(J;) = J;, f2],, is totally transitive, and f%(z) = z for z € [0, 1]\U; J;.

FIGURE 1.
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Example 2. Let S! be the unit circle on the complex plane. Using
the map f : [0,1] — [0,1] in Example 1, we define the continuous
map g : S' — S' by g(e*™?) = €29 where 0 < § < 1. Put
H; = {¥ | § € J;}. Then we have that g>(H;) = H;, g°|u, is totally
transitive, and g*(z) = x for x € S\ U; H;.

Example 3. Let B3 be the bouquet defined by the one-point union
on the origins of the three copies Sy, S; and Sy of the unit circle S*.
Here we may write any element of Bs by the productive coordinate
(€2 5),0 < 9 < 1,5 = 0,1,2. Using g : S' — S! in Example 2,
define h : By — Bs by h((e*™?, 7)) = (9(e*™),j + 1 (moa 3)), Where
j=0,1,2. Put KZJ = H; x {j}, where H; as in Example 2, i > 1, and
j=0,1,2. Then we see that h%(K7) = K7, hP| i is totally transitive,

and h8(z) =z for z € B3 \ Uj—0,1,2 U; KlJ
The decomposition theorem does not always hold for general spaces.

Example 4. Let B,, be the bouquet with n-petals generated by the
unit circle for n > 1. Define h,, : B, — B,, as h in Example 3. Attach,
for each n > 1, the origin of B, to the point {n} of the half real line
R2° and the one-dimensional locally finite (noncompact) polyhedron
is denoted by B. The map h : B — B is defined by iz\Bn =h,forn>1
and h(z) = z for £ € B\U,>1B,. Then the map has no decomposition
in the conclusion of our theorem.

Example 5. Let h,, : B, — B,, n > 1, be as in Example 3. Attach,
for each n > 1, the origin of B,, to the point {1/n} of the unit interval
[0,1] on the condition that the diameter of B,, is less than or equal to
1/n, and the one-dimensional Peano continuum is denoted by C. The
map h : C — C is defined by Alp, = h, for n > 1 and h(z) = =
for z € C'\ Up>1By,. Then the map also has no decomposition in the
conclusion of our theorem.
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