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CONTROLLING FORMAL FIBERS
OF PRINCIPAL PRIME IDEALS

A. DUNDON, D. JENSEN, S. LOEPP, J. PROVINE AND J. RODU

ABSTRACT. Let (T, m) be a complete local (Noetherian)
ring, So the prime subring of T" and p # 0 a regular and prime
element of T". Given a finite set of incomparable prime ideals
C ={Q1,...,Qn} of T such that either Q;NSy = (0) for all
or @; NSy = pSo for all 7, we provide necessary and sufficient
conditions for 7' to be the completion of a local domain A
such that p € A and the formal fiber of pA is semi-local with
maximal ideals the elements of C. We also show that in a
special case the domain A we construct is excellent.

1. Introduction. Much research has been devoted to understanding
the relationship between a local (Noetherian) ring and its completion.
In these efforts, an important question to address has been the follow-
ing: given a complete local ring 7" with maximal ideal m, when is it the
completion of a ring A with certain properties? One major result of
this type comes from Lech. Specifically, in [5], Lech shows that a com-
plete local (Noetherian) ring 7" is the completion of a local (Noetherian)
domain if and only if the following conditions hold.

(1) The prime ring of T is a domain that acts on T without torsion;

(2) Unless equal to (0), the maximal ideal of T' does not belong to
(0) as an associated prime ideal.

To understand the relationship between a local ring and its comple-
tion it is often useful to consider the formal fibers of the ring. If A is
a local (Noetherian) ring with maximal ideal m and P a prime ideal
of A, we define the formal fiber of A at P to be Spec(A ®4 k(P))
where A is the m-adic completion of A and k(P) = Ap/PAp. It is
important to note that there is a one-to-one correspondence between
the formal fiber of A at P and the inverse image of P under the map
Spec A — Spec A. If A is an integral domain, we call the formal fiber
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of A at the zero ideal the generic formal fiber of A. If Q € SpecA\
and @ N A = P we will say that () is in the formal fiber of A at P.
If the ring A ® 4 k(P) is semi-local with maximal ideals Q1 ® 4 k(P),
Q2®4 k(P),...,Q,®4k(P), we will say that the formal fiber of A at
P is semi-local with maximal ideals @1, Q2, ... ,Qx-

In [1], it is shown that semi-local generic formal fibers are more
common than one might think. In particular, the authors present
necessary and sufficient conditions on a complete local ring T and a
finite set of incomparable nonmaximal prime ideals C of T for the
existence of a local domain A which completes to T and has semi-local
generic formal fiber with maximal ideals the elements of C' (the set C
is the set of maximal elements of G in the following theorem):

Theorem 1.1 (Charters and Loepp [1]). Let (T, m) be a complete
local Ting and G C SpecT such that G is nonempty and the number of
mazimal elements of G is finite. Then there exists a local domain A
such that A =T and the generic formal fiber of A is exactly G if and
only if T is a field and G = {(0)} or the following conditions hold:

(1) m ¢ G, and G contains all the associated prime ideals of T
(2) If Q € G and P € SpecT with P C Q, then P € G.
(3) If Q € G, then Q N prime subring of T = (0).

Note that since the ring A in this result is a local domain, it must be
the case that Lech’s conditions are implied by those of Charters and
Loepp. This is not difficult to show.

In this paper we present the following generalizations of Theorem 1.1.
In Section 2, we prove a slightly stronger version of Theorem 1.1. In
Section 3, instead of constructing our integral domain A to have a
specified semi-local generic formal fiber, we construct it so that it
contains a height one principal prime ideal with specified semi-local
formal fiber. Specifically, let T be a complete local ring with maximal
ideal m, prime subring Sy and p a nonzero regular prime element of 7.
Let C ={Q1,Q2,... ,Q,} be a finite set of incomparable prime ideals
of T such that either Sy N Q; = (0) for every i or Sy N Q; = pSy for
every i. We show that there exists a local domain A such that A= T,
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p € A, and the formal fiber of pA is semi-local with maximal ideals the
elements of C' if and only if the following conditions are satisfied.

(1) p € Q; for every i.
(2) If dim T =1, then C = {m}.
3) If dim7T > 1, then m ¢ C.

We then show that under certain conditions the ring A we construct is
excellent.

1.1 Notation. We begin with some remarks about notation and
conventions used in the paper. All rings we consider will be commuta-
tive with identity. A quasi-local ring is a ring with exactly one maximal
ideal. If T is a quasi-local ring with maximal ideal m, we will denote
it (T, m). If a quasi-local ring is Noetherian, then we will call it a local
ring. The (m-adic) completion of a local ring (T, m) will be denoted 7.

2. Generic formal fibers. Let T be a complete local ring and
C' a finite set of incomparable prime ideals of 7. In [1], the authors
provide necessary and sufficient conditions for 7" to be the completion
of a local domain A such that the generic formal fiber of A is semi-local
with maximal elements the elements of C'. In this section we prove a
stronger version of their theorem.

The construction in [1] works only when C is finite solely because of
its dependence on the following lemma:

Lemma 2.1 (Charters and Loepp [1]). Let (T, m) be a complete local
ring such that dimT > 1, C' a finite set of nonmazimal prime ideals
such that no ideal in C is contained in any other ideal of C. Let D be
a subset of T such that |D| < |T|, and let I be an ideal of T such that
IZPforalPeC. Then I LU{r+P|reD,PcC}.

The following lemma can also be found in [1]. The authors of that
paper have recently informed us that there is a problem in part of their
proof, and so we provide an alternate proof here.
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Lemma 2.2. Let (T, M) be a complete local ring of dimension at least
one. Let P be a nonmazimal prime ideal of T. Then, |T/P|=|T| > c
where ¢ denotes the cardinality of the real numbers.

Proof. Let |T /M| = d. We will show that |T'| = d¥° and |T'/P| = d*°.
Since ¢ = 2%0, the result will follow. We start by showing |T'| < d™°.
Defineamap f: T — [[;o, T/M* by f(t) = (t+M,t+M? t+M?3,...).
Suppose f(t) = f(s). Then t — s € M™ for all n € N. By Krull’s
intersection theorem, N5, M™ = (0). It follows that ¢ = s and so f is
injective. This gives us that |T| < |T/M|R0 = d¥o,

We now show that if 7 is a domain, |T| > d®°. Let 0 # y € M.
Let X be a full set of coset representatives for /M. Now we define a
map g: [[;o, X = T by g(a1,as,...) = a1y + asy® + asy® +--- . We
claim that ¢ is injective. Suppose not. Then there exists (a1, as,...)
and (by,bs,...) in [[;2, X such that g(ai,as,...) = g(b1,bs,...) but
(a1,az,...) # (b1,b2,...). Let m be the smallest integer such that
an # b,. Note that we have a,, + M # b, + M since X was a full set
of coset representatives. Now we have

ntl ntl L.

a/nyn + an+1Y = bnyn + bn—l—ly

and so y"((an —bn) + (@nt1 — bnt1)y +---) = 0. Since T is a domain,
we have (a, — by) + (@pnt1 — bpt1)y + - -+ = 0. But this implies that
an, — b, € M, a contradiction. It follows that g is injective and so
|T| > d®. We have shown that if (7', M) is a complete local domain of
dimension at least one, then |T'| = |T/M|Y = d¥o.

In the general case, note that 7/P is a complete local domain of
dimension at least one so using the above fact we have that |T/P| =
(T/P)/(M/P)¥e = |T/M|® = d%. This also gives that |T| >
|T/P| = d¥. So we have |T| = d¥° as desired. O

Armed with Lemma 2.2, we can now prove a variation of Lemma 2.1.

Lemma 2.3. Let (T, m) be a complete local ring such that dimT >
1. Let C be a subset of SpecT such that |C| < |T| and suppose
that there exists a finite set of nonmaximal incomparable prime ideals
{Hy,H,,... ,H,} of T satisfying the property that if P € C, then
P C H; for somei =1,2,... ,n. Let D be a subset of T such that
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|D| < |T|, and let I be an ideal of T such that I ¢ UpccP. Then
IZU{r+P|reD,PeC}.

Proof. Choose an element ¢t € I — UpccP. Now let C; = {P € C |
P C H,;} and consider any P € C;. If r + P € (t + P)(T/P) for some
r € D, then r + P = (¢t + P)(s + P) for some s € T. For each pair
(r,P) with r € D and P € C; that satisfies »r + P € (¢t + P)(T/P),
select a coset representative s from the coset s + P. Call this set of
representatives S;. Note that since |C| < |T| and |D| < |T|, we have
|Si| < |T/H;| =|T| by Lemma 2.2.

We first prove the lemma if n = 1. In this case, we can find an z € T
such that = + H; # s+ H; for all s € S;. Now, suppose tz € r+ P for
somer € Dand Pe C=C,. Thentx+ P =r+P = (t+ P)(s+ P)
for some s € S;. But (¢t + P)(z + P) = (¢t + P)(s + P) implies that
x + P = s+ P, a contradiction, since if x + P = s + P, then clearly
x+Hy =s+ Hy. Thus, te ¢ U{r + P |r € D,P € C}.

If n > 1, then we have that (H; +N7_, ;,,H;)/H; is not the zero

ideal of T'/H; since Hy, Hs, ... , H, are incomparable. It follows that
T | _ [Hi+ 0yt
H;| H; '

So, for every ¢ = 1,2,...,n, there exists an z; € N7_, ; ,,H; such

that z; + H; # s + H; for every s € S;. We claim that ¢(z1 + z2 +
o4 w,) ¢ U{r+ P |re D,P e C}. Suppose on the contrary that
t(xy+x2+---+x,) €Er+ P forsomer € Dand P € C. Then P C H;
for some i =1,2,...,n. Now, r+ P = (t+ P)(s + P) for some s € S;
and so we have that (1 +z2+---+2,)+ P = s+ P. But this implies
that (z1 + 2 + -+ + z,,) + H; = s + H;, which by the choice of the
z’s implies that x; + H; = s + H;, a contradiction. It follows that
t(ry +z2+ - +ax,) ¢ U{r+P|reD,PecC}, and so the lemma
holds. ]

We conclude this section with our variation of Theorem 1.1:

Theorem 2.4. Let (T, m) be a complete local ring and G C SpecT
such that G is nonempty and such that there exists a finite set of non-
mazimal incomparable prime ideals {Hy, Hs, ... ,H,} of T satisfying
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the property that if P € G, then P C H; for some i =1,2,... ,n. Let
C be the set of mazimal elements of G and suppose |C| < |T'|. Then
there exists a local domain A such that A = T and the generic formal
fiber of A is exactly G if and only if T is a field and G = {(0)} or the
following conditions hold:

(1) m ¢ G, and G contains all the associated prime ideals of T.

(2) If @ € G and P € SpecT with P C Q, then P € G.

(3) If Q € G, then Q N prime subring of T = (0).

(4) If I is an ideal of T with I P for all P € C, then I € UpeccP.

Proof. Note that condition (4) is an added condition to the orig-
inal theorem and always holds if C' is finite or infinitely countable.
Condition (4) is sufficient because it allows us to invoke Lemma 2.3.
To show that this condition is necessary, suppose that there does ex-
ist a local domain A such that A = T and the generic formal fiber
of A is exactly G. Suppose it were the case that there exists an
ideal I such that I ¢ P for all P € C but with I C UpccP.
Then TN A = (0). Let Ass(T/I) = {Py,Ps,..., Py}, and suppose
P,NA# (0) for every ¢ = 1,2,...,m. Let z; € P, N A with z; # 0.
Then z =[[",z; € PANP2N---NPpNAand, as A is an integral do-
main, we have z # 0. Now, VI = P,N---NP,,, so we have z € VINA
and it follows that ! € I'N A for some [ > 1. But, 2! # 0 contradicting
that 7N A = (0). Hence, P, N A = (0) for some ¢ = 1,2,... ,m. It fol-
lows that P; is in the generic formal fiber of A and so P; C P for some
P € C. Hence, I C P; C P, a contradiction. Thus, (4) is a necessary
condition. Now, substituting Lemma 2.3 where in [1] the authors used
Lemma 2.1, the result follows and thus the details will not be given
here. O

3. Formal fibers of domains at height one primes. In this
section we address the following question: Given a complete local ring
(T, m), a nonzero regular prime element p of T' and a finite set of
incomparable prime ideals C' = {Q1,... ,Q,} of T, when does there
exist a local domain A such that p € A, the completion of A is T,
and the formal fiber of pA is semi-local with maximal elements the
elements of C? In other words, we want @Q; N A = pA for every
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i€ {1,2,...,n} and, if P € SpecT with PN A = pA, then P C Q;
for some 7 € {1,2,...,n}. We have examined this problem for two
cases: @; N prime subring of 7' = (0) for all ¢ and the case when @Q;N
prime subring of T is generated by p for all i. Specifically, let (T, m)
be a complete local ring, Sy the prime subring of 7" and p a nonzero
regular prime element of T'. Suppose C = {Q1,...,Q,} is a finite set
of incomparable prime ideals of T" such that either @; NSy = (0) for all
ior Q;N SOA: pSy for all i. We show that there exists a local domain A
such that A =T, p € A, and the formal fiber of pA is semi-local with
maximal ideals the elements of C if and only if the following conditions
are satisfied.

(1) p € Q; for every i.
(2) If dim T =1, then C = {m}.
(3) If dim7T > 1, then m ¢ C.

This result is Theorem 3.13 and is the main result of this section. The
techniques we use are similar to those used in [1, 3, 6]. We begin with
some useful definitions.

Definition 3.1. Let (7, m) be a complete local ring, and let p be
a nonzero regular element of 7. Suppose C' = {Q1,Q2,...,Q,} is a
finite set of prime ideals of T all containing p. Suppose that (R, RNm)
is a quasi-local subring of T with the following properties:

(1) [R] <|T].
(2) If P is an associated prime ideal of 7', then RN P = (0).

(3) If P is a prime ideal of T with P C Q; for some i and p ¢ P, then
RN P =(0).

Then we call R a p-including subring of T, and we will denote it by
pin-subring.

The properties of pin-subrings will be essential in the proof of our
major result in this section. To show the existence of our local domain
A, we construct a chain of intermediate pin-subrings and then let A
be the union of these subrings. Ideally, for each Q;, we would like
Q; NS = pS for each of these intermediate subrings S. The following
three lemmas show that, given a pin-subring R, we can find a larger
pin-subring S with the property that p7’' NS = pS. We will see
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in Corollary 3.6 that this property implies Q; NS = pS for every
1=1,2,...,n when pT is a prime ideal of T'.

For the rest of the section, we use the following conventions: Let
(T, m) be a complete local ring with dim 7T > 1 and C' = {Q1,... ,Qxn}
a finite set of incomparable nonmaximal prime ideals of T" all containing
p. Thus, when we say a pin-subring of 7', we shall mean a pin-subring
with respect to the set C. We will also assume for the rest of the section
that p is not a zerodivisor in T'.

Lemma 3.2. Given (R,RNm) a pin-subring of (T,m) with C =
{Q1,Q2,...,Qn} a finite set of prime ideals and ¢ € pT N R, there
exists a pin-subring S of T such that R C S CT and c € pS. Moreover,
|S| < sup(Ro, |R|).

Proof. Since ¢ € pT' N R, ¢ = pu for some element u in T'. We claim
that S = R[u](g[ujnm) is the desired subring. First note that ¢ € pS
and |S| < |T|. Let P € AssT, and let f € PN R[u]. Then f = ru™ +
~dru+rg € Pand p"f = e+ +r1p" " le+rop® € PNR = (0).
Since p is not a zerodivisor, f = 0 and we have that PN .S = 0. Now
suppose that P € SpecT with P C Q; for some i,p ¢ P, and let
f € PNS. Then, by a similar argument, f = r,u” +---+ru+rg € P
and p"f = rpc® + - +rp" le+rgp" € PN R = (0). So f =0 and
we have that P NS = 0. It follows that S is a pin-subring of T'. The
fact that S satisfies the cardinality condition is clear. |

Definition 3.3. Let Q be a well-ordered set and o € Q. We define
v(e) =sup{B € Q| B < a}.

Lemma 3.4. Given (R,RNm) a pin-subring of (T,m) with C a
finite set of prime ideals, there exists a pin-subring S of T such that
RC S CT and pI' N R C pS. Moreover, |S| < sup(Xo, |R|).

Proof. Let Q = pT'N R. We know that |Q] < |R|. Well order
Q, and let 0 denote its first element. If Q is infinite, we will well
order it so that there is no maximal element in the following way. Let
|Q| = k. Then & is an infinite cardinal. (For a discussion of this
see, for example, [2, subsection 3.6].) By [2, Theorem 3.6.1],  is a
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limit ordinal. It follows that x is a well-ordered set with no maximal
element (see the discussion on page 24 in [2]). Also note that this set
has the same cardinality as §2. So, we use this set to well order (.
Define Ry = R and suppose a € Q. If y(a) < a, then construct R,
from R,(q) using Lemma 3.2 with ¢ = y(a). Otherwise, v(a) = «
so define R, = Ug<oRg. We show by transfinite induction that, for
every a € Q, R, is a pin-subring of T and that |R,| < sup(Xo, |R]).
Since Ry satisfies these conditions, the base case holds. Suppose o € 2
and that for every S < a we have that Rg is a pin-subring of 7" and
|Rg| < sup(Ro,|R|). If y(a) < o, then by the way we defined R,,
it is a pin-subring. Moreover, |Ry| < sup(Ro, |Ry(a)|) < sup(Ro, |R|).
On the other hand, suppose v(a«) = «. Then R, clearly satisfies the
last two conditions of being a pin-subring. Now, |[Ra| <375, |Rs| <
|R|supg, |Rg| < |R|sup(Ro,|R|) = sup(Ro,|R|). It follows that R,
is a pin-subring of T'. If Q) is finite, let d denote its maximal element.
In this case, define S to be the pin-subring obtained from Lemma 3.2
using R = Ry and ¢ = d. If Q is infinite let S = UycqRo. Then we
have that [S| < Y cqlRal < |R|-sup(Ro, |R]) = sup(No, |R]). It is
now clear that S is a pin-subring of 7. Additionally, if Q is infinite
and ¢ € pT' N Ry, then ¢ = y(a) for some a in Q with y(a) < . Thus
c € pR, C pS, so pT' N Ry C pS. In the case when () is finite, this
condition is easy to verify. o

Lemma 3.5. Given (R, RN m), a pin-subring of (T,m) with C' a
finite set of prime ideals, there exists a pin-subring S of T such that
RC SCT and pT'NS =pS. Moreover, |S| < sup(Ro, |R|).

Proof. Let Ry = R. We now define R; recursively. For R; 1, we
use Lemma 3.4 to find a pin-subring R; with pT N R; ; C pR; and
|R;| < sup(Ro,|R|). Let S = U2, R;. It is easy to show that S is
a pin-subring and that it satisfies the cardinality condition. Suppose
c € pPI'NS. Then there exists an n € N such that ¢ € pPTN R, C
pR,11 CpS. Thus, pT'NS C pS, so pT' NS =pS. O

Corollary 3.6 will be essential to the proofs of Lemmas 3.9 and 3.10.
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Corollary 3.6. Let (R,RNm) be a pin-subring of (T,m) and
C ={Q1,Q2,...,Qn} a finite set of prime ideals of T where R has
the property that pT N R = pR and pT is a prime ideal of T. Then we
have Q; "R =pR forallt=1,2,... ,n.

Proof. Fix i and suppose f € Q; N R. We know there exists a height 1
prime ideal J in Q; which contains fT. If p ¢ J, then J N R = (0)
since R is a pin-subring, so f = 0 € pR. Otherwise p € J, so J is an
associated prime of pT" and J = pT. Thus, J N R = pT N R = pR, so
f €pR and Q; N R C pR, giving us that Q; N R = pR. i

The following proposition establishes the fact that the conditions in
the hypotheses of later lemmas imply that T is an integral domain.
This fact is useful because then any subring of T is also an integral
domain.

Proposition 3.7. Let T be a complete local ring and let p be a
nonzero element of T that is not a zerodivisor. If pT is a prime ideal
of T, then T 1is an integral domain.

Proof. Suppose pT is a prime ideal of T'. Since p is not a zerodivisor,
ht pT' = 1. So we have a principal prime ideal with height # 0, so by
[7, Theorem 15.33], T' is an integral domain. O

The following is Proposition 1 from [4]. It helps us to ensure that the
final ring we create completes to 7.

Proposition 3.8 (Heitmann [4]). If (R,m N R) is a quasi-local
subring of a complete local ring (T, m), the map R — T/m? is onto and
IT N R for every finitely generated ideal I of R, then R is Noetherian
and the natural homomorphism R — T is an isomorphism.

In light of this proposition, we will construct A so that the map
A — T/m? is onto. Lemma 3.9 allows us to adjoin an element of a
coset of T'/J to a pin-subring R where J € SpecT such that J Z Q;
for every i to get a new pin-subring. Using this lemma with J = m?
will eventually give us that A satisfies this property. We prove this



CONTROL OF FORMAL FIBERS OF PRINCIPAL PRIME IDEALS 1881

lemma for an arbitrary ideal J because it is also used to show that the
formal fiber of the ideal pA is as desired and that in a special case A is
excellent.

Lemma 3.9. Let (T,m) be a complete local ring and C =
{Q1,Q2,... ,Qn} a finite set of incomparable nonmazimal prime ideals
of T. Let R be a pin-subring of T such that pT' N R = pR where pT
is a prime ideal of T, and u+ J € T/J where J is an ideal of T with
J & Q; for all i. Then there exists a pin-subring S of T such that
RCSCT,u+T is in the image of the map S — T/J and S has the
property that pT NS = pS. Moreover, |S| = sup(Ro, |R|) and if u € J
then SN J # (0).

Proof. Fix i and suppose P is a prime ideal contained in @); with
p ¢ P. Suppose that (u + t) + P is algebraic over R/RN P = R
for some t € T. Then there exists a polynomial r,(u + )™ + -+ +
ri(u +t) + ro € P where at least one r; # 0. But P C Q;, so
rn(utt)"+---+ri(utt)+ro € Q;. Ifany r; ¢ RNQ;, then (u+t)+Q;
is algebraic over R/(R N Q;). Suppose then that r; € RN Q; for all
j. Since RN Q; = pR by Corollary 3.6, r; = ps; for some s; € R. So
ra(u+t)"+--+ri(ut+t)+ro =plsp(u+t)"+---+s1(u+t)+sp] € P.
P is prime, and p ¢ P, so sp(u+t)" 4+ - +s1(u+t)+s0 € P C Q.
Again, if any s; ¢ RN Q;, then (u+1t)+ Q; is algebraic over R/RNQ;.
Otherwise, we repeat the process. If, for every j, r; € p"R for all n,
then r; € N2, (PR)™ C No,(pT)™ = (0) by the Krull intersection
theorem. However, this implies that (u + t) + P is not algebraic over
R, a contradiction. Thus (u + ¢) + Q; is algebraic over R/RN Q;. The
contrapositive of this result says that if (u + t) + Q; is transcendental
over R/(RNQ;), then (u+t) + P is transcendental over R.

Now let D(qg,) be a full set of coset representatives of the cosets
t + Q; with ¢ € T that make (u + t) + Q; algebraic over R/R N Q;.
Let D = U?_;D(q,). Since |R| < |T'| and |Dq,)| < |T'| we have that
|D| < |T.

We can now employ Lemma 2.1 with I = J to find an « € J such that
z¢U{r+P|reD,P=Q); for some i} since the set {Q1,...,Q,} is
finite. We claim that S’ = R[u + Z](g[u4+]nm) iS @ pin-subring. Since
u + z is transcendental over R we have |S’| = sup(Rg, |R|) < |T'|. Now
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suppose that f € R[u+ z] N P, where P is a prime ideal of T such that
P CQ;forsomeiandp ¢ P. Then f = r,(u+z)"+- - -+ri(utz)+ry €
P, where r; € R. But we chose  such that (u+z)+Q); is transcendental
over R/RN Q;. Thus (u+ z) + P is transcendental over R/R N P.
Therefore, r; € RNP = (0) for all ¢, and it follows that f = 0. Observe
that since T is a domain, S’ is a domain. Thus S’ is a pin-subring. Note
further that if u € J, then u+z € J. Since (u+x)+ P is transcendental
over R, we have u + z # 0. It follows that S’ N J # (0). Now employ
Lemma 3.5 to find a pin-subring S where S’ C S and pT' NS = pS.
Moreover we get that |S| = sup(Ro, |R]). o

The following lemma will help us ensure that IT'N A = I for every
finitely generated ideal I of A. This is one of the conditions from
Proposition 3.8 needed to show that A = T.

Lemma 3.10. Let R be a pin-subring of (T,m) and C = {Q1, Qa2,

., Qn} a finite set of incomparable nonmazimal prime ideals of T
with the property that pT N R = pR where pT is a prime ideal of T.
Also let I be a finitely generated ideal of R with ¢ € ITNR. Then there
exists a pin-subring S such that RC S CT,ce IS and pT'NS =pS.
Moreover, |S| < sup(Ro, |R|).

Proof. We induct on the number of generators of I. Suppose I = aR.
If a =0, then ¢ = 0 so S = R is the desired pin-subring. If a # 0, then
¢ = au for some u € T. We claim that S = R[u](g[y)nm) is the desired
subring. First note that |S| < sup(Ro,|R|) < |T|. Suppose P C @Q; for
some i and p ¢ P and f € R[u|NP. Then f = r,u™+---+rju+ry € P,
and a"f = r,c”+---+rica” 1 +rga™ € PNR = (0). We know that a
is not a zerodivisor since T is a domain. Thus f = 0 and we have that
S is a pin-subring of T. Now use Lemma 3.5 to get the desired pin-
subring. We have proven our base case, when the number of generators
of I is one.

Now let I be an ideal of R that is generated by m > 1 elements, and
assume that the lemma is true for ideals with m — 1 generators. Let
I = (y1,...,Ym)R. Suppose first that y; ¢ pR for some j. Without
loss of generality, reorder the generators of I so that this element is
y2. We have that ¢ = y1t1 + yots + -+ - + Yty for some t; € T. We
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can add 0 to get that ¢ = y1t1 + y1yat — y1yot + yola + - - + Ymitm =
y1(t1 + yat) + ya(ta — yit) + ysts + -+ + Ymtsy, for any ¢t € T. We
will choose our t shortly. Now let 1y = t; + yot and z3 = ty — y1t.
If (t1 + yot) + Qi = (t1 + yot’) + Q; for any i, then we have that
y2(t — t') € Q;. However, y2 € R and RN Q; = pR. Since y2 ¢ pR,
y2 ¢ Q; and since Q; is prime, we now have that (¢ — ') € Q;, which
means t + Q; = t' + @Q;. The contrapositive of this result says that
if t +Q; # t' + Qy, then (t;, + yot) + Qi # (t1 + yot’) + Q;. Let
D(q,) be a full set of coset representatives of the cosets ¢ + Q; that
make z1 + @Q; algebraic over R/R N Q;. Let D = U7 D q,). Note
that |D| < |T|, so we can use Lemma 2.1 where I = T to find an
element ¢t € T such that t ¢ U{r + P |r € D,P = Q,; for 1 <i < n}.
Thus we have that x; + Q; is transcendental over R/R N Q; for all
i. Tt’s clear that R' = R[z1](g[z,Jnm) 15 a pin-subring of T and
|R'| = sup(Ro, |R|). Let J = (y2,-.. ,ym)R and ¢* = ¢ — yyz;. Then
c¢* € JTN R and so we use the induction assumption to find a pin-
subring S of T such that R C S C T and c¢* € JS. Moreover, we have
|S| S Sup(Nov |Rl|) = Sup(NO’ ‘RD NOW7 ct = Y252 + -+ YmSm for
some s; € .5,80 c=1y1x1+y282+++YmSm € IS, and S is our desired
pin-subring.

Now suppose that y; € p*R for all j, where k is the largest such
integer and k£ > 1. Since ¢ = yit1 + -+ + Ymlm, we now have that
c/p* = (i /p*)ts + -+ (Ym /D). Let I' = (y1 /D%, ..., ym/P*). We
know that y; € pR for all j, so ¢ € pT' N R, which means ¢ € pR
and ¢/p € R. Similarly, we have that y; € p’R, so y;/p € pR and
¢/p € pT N R, which means ¢/p € pR and ¢/p? € R. We can repeat
this process until we get that since y; € pPR for all j, ¢/p* € R. Thus,
c/p® € 'TNR. I'is a finitely generated ideal in R where at least one
of the generators is not a multiple of p, so we can use the induction in
the previous paragraph to get a pin-subring S satisfying the cardinality
condition and such that c¢/p* € I'S = (y1/p*, ... , ym/P"*)S, so we have
c€ (Y1, ,ym)S =18S. o

Lemma 3.11 allows us to create a subring S of T' that satisfies many
of the conditions we want to be true for our final ring A.

Lemma 3.11. Let (T,m) be a complete local ring and p # 0 a
reqular and prime element of T. Let C = {Q1,Qs,...,Q,} be a set
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of incomparable nonmazimal prime ideals such that p € N7—;Q;. Also,
let J be an ideal of T with J € Q; for all i, and let u+ J € T/J.
Suppose R is a pin-subring such that pI' N R = pR. Then there exists
a pin-subring S of T such that

(1) RCSCT.

(2) If u e J, then SN J # (0).

(3) u+ J is in the image of the map S — T/J.

(4) For every finitely generated ideal I of S, we have ITNS =1.
(5) S| = sup(Ro, | R]).

Proof. We first apply Lemma 3.9 to find an infinite pin-subring
R’ of T such that p TN R = pR', R C R C T, u+ J is in the
image of the map R — T/J, and if w € J then R' N J # (0).
Moreover, we have that |R'| = sup(Ny, |R|). We will construct the
desired S such that R C S C T which will ensure that the first
three conditions of the lemma hold true. Now let Q@ = {(I,c) |
I is a finitely generated ideal of R’ and ¢ € IT N R'}. Letting I = R',
we can see that |2 > |R'|. Since R’ is infinite, the number of
finitely generated ideals of R’ is |R'|, and therefore |R'| > |Q|, giving
us the equality |R'| = |Q]. Moreover, as R’ is a pin-subring of T,
we have | = |R'| < |T|. Well order Q so that it does not have
a maximal element (just as in the proof of Lemma 3.4), and let 0
denote its first element. We will now inductively define a family of
pin-subrings of T', one for each element of 2. Let Ry = R’, and let
a € Q. Assume that Rg has been defined for all 8 < a. If y(a) < a
and v(a) = (I,c), then define R, to be the pin-subring obtained
from Lemma 3.10. In this manner, R, will have the properties that
Rya) € Ry €T, and c € IR,. Moreover, |R'| < sup(Ro, |Ry(q)]). If
v(a) = a, define R, = Ug<oRpz. Note that in both cases, R, is a pin-
subring of 1" such that pT'N R, = pR. Also, by transfinite induction,
|Ro| = sup(Ro, |R]|) for every o € Q. Now let Ry = UgpeqRo. Then
|Ry| = sup(Ro, |R|) < |T|. Moreover, as R, N P = (0) for every P such
that P C @; where p ¢ P and every a € Q, we have Ry N P = (0)
for all such P as well. It follows that R; is a pin-subring. Note also
that, because pT' N R, = pR,, for each a € (2, we have pT' N Ry = pR;.
Furthermore, notice that if I is a finitely generated ideal of Ry and
¢ € IT N Ry, then (I,c) = v(a) for some o € Q with v(a) < a. It
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follows from the construction that ¢ € IR, C IR;. Thus ITNRy C IR,
for every finitely generated ideal I of Ry.

Following this same pattern, build a pin-subring Ry of T such that
pT N Ry = pRe, Ry C Ry C T and IT N Ry C IR, for every finitely
generated ideal I of R;. Continue to form a chain Ry C Ry C Ry C - -+
of pin-subrings of T such that IT N R, C IR,4+1 for every finitely
generated ideal I of R,. Also, |R,| = sup(No, |R|).

We now claim that S = U2 R; is the desired pin-subring. To see
this, first note that S is indeed a pin-subring and that R C S C T.
Now set I = (y1,¥2,.-. ,Yk)S, and let ¢ € ITNS. Then there exists an
N € N such that ¢,y1,...,yx € Rn. Thus ¢ € (y1,... ,yx)T N Ry C
(y1,--- ,yx)Rny1 C IS. From this it follows that IT' NS = I, so the
fourth condition of the Lemma holds. Note that the fourth condition
implies pT'N S = pS by setting I = pS. The cardinality condition is
easy to check. O

In Lemma 3.12 we construct a domain A that has the desired
completion and so that the formal fiber of pA is semi-local.

Lemma 3.12. Let (T,m) be a complete local ring, Sy the prime
subring of T and p # 0 a regular and prime element of T. Let
C = {Q1,Q2,...,Qn} be a set of incomparable nonmazimal prime
ideals all containing p and such that either Q; N Sy = (0) for every i
or Q; NSy = pSy for every i. Then there exists a local domain A such
that

(1) p e A.
(2) A=T.

(3) The formal fiber of pA is semi-local with mazimal ideals the
elements of C'.

(4) If J is an ideal of T satisfying J € Q; for every i, then the map
A — T/J is onto.

Proof. Let Q = {u+J € T/J|J is an ideal of T with J Z Q; for all i}.
We claim that |2 < |T'|. Since T is infinite and Noetherian,
[{J is an ideal of T" with J € Q; for all i}| < |T'|. Now, if J is an ideal
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of T, then |T/J| < |T|. It follows that |2] < |T'|. Well order €2 so that
each element has fewer than |Q| predecessors. Let 0 denote the first
element of 2. Define R} to be Sy[p], and let Ry simply denote Rf, lo-
calized at Ry Nm. We claim that Ry is a pin-subring. First note that if
QiNSp = pSy for every ¢, then R = Sp. In this case it is easy to see that
the localization Ry is a pin-subring of 7. On the other hand, suppose
QiNSy = (0) for every 4. Then we have that the first two conditions of
the definition of pin-subring are easily satisfied. Let P be a prime ideal
of T with P C Q; for some i and p ¢ P. Suppose f € Sp[p] N P. Then
f=8mp™ + - +s51p+50 € P CQ; for some s; € Sp. But p € Q;
s0 sp € Q; N Sy = (0). It follows that f = p(s,p™ L+ -+ s1) € P.
Since p ¢ P, we have s,,p™ ! + .-+ s; € P. Repeat this process to
show that s; =0 for all = 0,1,2,... ,m. It follows that f = 0 and so
Ry N P = (0). Hence Ry is a countable pin-subring of T

Now recursively define a family of pin-subrings as follows, starting
with Ry. Let A € Q and assume that Rg has already been defined for
all 8 < A. Then y(X) = u + J for some ideal J of T with J Z Q; for
all 2. If v(A\) < A, use Lemma 3.11 to obtain a pin-subring R, such
that R,(») € Rx €T, u+J is in the image of the map Ry — T'/J and
IT N Ry = I for every finitely generated ideal I of R). Moreover,
this gives us |Rx| = sup(No, |R,n)]), RxNJ # (0) if v € J and
pT' N Ry = pRy. If ’y()\) = ), define Ry = U5<AR}3. We claim R)
is a pin-subring for all A € Q.

We first show that by transfinite induction |Ry| < sup(Ro, |Rol, |{8 €
Q| B < A}|) for all X € Q. The base case is trivial. So assume A\ € Q
and that for all 5 < A we have |Rg| < sup(Ro, |Ro|, |{rx € Q| & < }]).
If v(A) < A, then

|RA| = sup(Ro, [Ry(x)])
< sup(Ro,sup(Ro, [Rol, [{x € Q| |k <v(A)}))
< sup(Ro, |[Rol, {8 € Q| B < A}).

On the other hand, if v(A) = A, then

|RAl <) |Rg|

B<A
<HBeQ|B < A} sup|Rg
B<A
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<SH{Be]B <A} ;g(sup(No, |Rol, {r € 2| r < B}]))

<|{B e Q| B < A} sup(Ro, |[Ro|, {B € Q| B < A})
= sup(Ro, |[Rol,[{B € 2| B < A})).

It follows that |Rx| < sup(No, |Rol, {8 € Q| 8 < A}|) for all A € Q. By
the way we well ordered Q, this implies that |[Ry| < |T| for every A € Q.
The other conditions for pin-subring are easy to check. It follows that
R) is a pin-subring for every A € €.

We claim that A = UycqR, is the desired domain. First note that
by construction condition (4) of the lemma is satisfied. We now show
that the completion of A is T. To do this, we use Proposition 3.8. Note
that as each prime ideal Q; is nonmaximal in T, we have that m? is not
contained in any ;. Thus, by the construction, the map A — T/m? is
onto. Now let I be a finitely generated ideal of A with I = (y1,...,yk)-
Let ¢ € ITN A. Then (¢,y1,-.. ,yx) € Ry for some A € Q with y()) <
A. Again, by the construction, (yi,...,yx)T N Rx = (y1,---,yx)Ra-
Asce (y1,...,yx)TNRy, we have that ¢ € (y1,... ,yx)Rx C I. Hence
ITN A = 1T as desired, and it follows from Proposition 3.8 that A is
Noetherian and its completion is T'.

Now we show that the formal fiber of pA has the desired properties.
As each Ry is a pin-subring, we have Ry NP = (0) for each prime ideal
P C @; such that p ¢ P. Therefore, AN P = (0) for every such P
as well. Now let a € @; N A for some i. Then there exists a height
one prime ideal I of T such that a € [ and I C Q;. If p ¢ I, then
INA = (0), and thus a = 0. Otherwise, p € I, but pT is the only
height one prime containing p. Thus, I = pT, and a € pPTNA =pA. Tt
follows that @Q; N A C pA. Because p € @Q; N A, we have @Q; N A = pA.

Now, let J be an ideal of T' with J € @Q; for all i. By the Prime
Avoidance theorem, we know that J Z U?_,(Q;, so there is an a € J
such that a ¢ Q; for all i. From this, we know that there exists a
height one prime I C J C T such that a € I. Note that 0+ I € Q.
Therefore, v(A) = 041 for some A € Q with v(A) < A. By construction,
RyxN1I # (0). It follows that I N A # (0). Also, because a € I and
a ¢ Q; for all i, we have I Z @Q;, so I # pT. Note that pT is the only
height one prime ideal of T" that contains p, so p ¢ I. Thus INA # pA.
Also, because the zero ideal is the only prime ideal in A contained in
pA and I N A # (0), it follows that TN A € pA. There is therefore
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an element x € AN I with z ¢ pA. So, x ¢ pTN A = pA. Now,
xeINACJNA. It follows that JN A # pA. Hence, the formal fiber
of pA is semi-local with maximal ideals the elements of C. O

Theorem 3.13 is our main result. The previous work in this section
has been devoted to showing sufficiency of the conditions below, so the
majority of Theorem 3.13 demonstrates their necessity.

Theorem 3.13. Let (T, m) be a complete local ring, Sy the prime
subring of T and p # 0 a regular and prime element of T. Let
C={Q1,Q2,...,Qn} be a finite set of incomparable prime ideals of T
such that either Sy N Q; = (0) for every i or Sy N Q; = pSy for every
i. Then there exists a local domain A such that A = T, pe A, and the
formal fiber of pA is semi-local with mazximal ideals the elements of C
if and only if the following conditions are satisfied.

(1) p € Qi for every i.
(2) If dimT =1, then C' = {m}.
(3) If dimT > 1, thenm ¢ C.

Proof. We will first show that the conditions are necessary. The first
condition is clearly necessary. By Lemma 3.7, T" is an integral domain,
so (0) is the only height zero prime ideal of T'. Also, because pT # (0)
is a prime ideal of T', dim T # 0. Suppose that dim 7" > 1, and that
there exists a local domain A such that A = T and the formal fiber
of pA is semi-local with maximal ideals the elements of C. Suppose
that m € C. Then from our assumptions m N A = pA. Because pA
is generated by one element, it must have height less than or equal to
one, and because pA # (0), it cannot be height zero, so pA is height
one. Thus, mN A is height one, but the height of mN A is equal to the
height of m, so dim7 = 1. This is a contradiction, so m ¢ C.

Otherwise, suppose that dim7" = 1. Because pT is generated by one
element, it must have height less than or equal to one, and because
pT # (0), it cannot be height zero, so pT is height one. Thus m = pT.
Because p € Q; for every i, and p # 0, no @Q; can be height zero. It
follows that C = {pT} = {m}.
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Now we will show the sufficiency of the conditions. If dim7T = 1,
setting A = T produces the desired result. Otherwise, dim 7T > 1.
Now, use Lemma 3.12 to construct the desired domain A. ]

We note here that the generic formal fiber of A is easy to describe.
In fact, it is the set {P € SpecT | P C Q; for some ¢ and p ¢ P}. We
also note that {P € SpecT | PN A = pA} = {P € SpecT | P C
Q; for some i and p € P}.

—

Example 3.14. Let T' = Z7)[[z,y]], p= 7 and C = {(z,7),(y,7)}.

Is there a local domain A such that 7 € A, A = T and the formal
fiber of 7A is semi-local with maximal ideals the elements of C? T
is local, with maximal ideal m = (z,y,7), and C is finite. Also note
that the prime subring of 7" is Z and we have (z,7) N Z = 7Z and
(y,7)NZ = 7Z. Thus we may use Theorem 3.13. Certainly m ¢ C.
There therefore exists a domain A such that A = T and the formal
fiber of 7A is semi-local with maximal ideals the elements of C.

We now state the local version of Theorem 3.13.

Corollary 3.15. Let (T,m) be a complete local ring, Sy the prime
subring of T and p # 0 a regular and prime element of T. Let Q be a
prime ideal of T such that either Sy N Q = (0) or Sy N Q = pSy. Then
there exists a local domain A such that A = T, p € A, and the formal
fiber of pA is local with mazimal ideal Q if and only if p € Q and either
Q # m or T is dimension one and @@ = m.

In this paper, we have covered the cases when Q; NSy = (0) for every
1 and Q; NSy = pSp for every i. We note here that we do not know if
similar kinds of results can be obtained in other cases. For example, we
would like to prove similar theorems when p is not a prime element of
T or when the condition that Q; NSy = (0) for every i or Q; NSy = pSp
for every ¢ is not satisfied.

We now show that in a special case we can construct the ring A to
be excellent.
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Lemma 3.16. Let (T, m) be a complete local ring containing the
rationals and p # 0 a regular and prime element of T. Let C =
{Q1,Q2,...,Qn} be a set of incomparable nonmazimal prime ideals
all containing p such that T, and (T/pT)q, are regular local rings for
every i. Then there exists an excellent local domain A such that

(1) p € A.
(2) A=T.

(3) The formal fiber of pA is semi-local with mazimal ideals the
elements of C'.

Proof. First note that since T' contains the rationals, we have that
Q; NSy = (0) for every i. Use Lemma 3.12 to construct the domain
A. Then we must only show that A is excellent. Note that T is a
domain and so A is formally equidimensional. It follows that A is
universally catenary. We have left to show that the formal fibers of A
are geometrically regular.

First let P be a prime ideal of A with P # (0) and P # pA. Define
k(P) to be the field Ap/PAp. Now if PT C @; for some i then
P =PI'nAcC @Q;NA = pA, a contradiction. So we have that
PT ¢ Q; for every i. By condition (4) of Lemma 3.12 we have that the
map A — T/PT is onto. Hence, A/P = T/PT. Now,

T @4 k(P) = (T/PT)4—p = (A/P)x—p = Ap/PAp = k(P),

a field. Also note that if L is a finite field extension of k(P), then we
have that

T®aL=T®ak(P)®kp) L =k(P)kp) L=L,

also a field. It follows that the fiber over P is geometrically regular.

Now we show that the fiber over (0) is geometrically regular. By
construction, the maximal ideals of T ®4 k((0)) are the maximal
elements of the set X = {P € SpecT | P C Q; for some ¢ and p ¢ P}.
Let J be a maximal element of X. Then T'®4 k((0)) localized at .J is
isomorphic to T;. But since Tf, is a regular local ring for every i, we
have that T’ is a regular local ring. Now, since 7" contains the rationals,
k((0)) is a field of characteristic zero. It follows that the formal fiber
of A at (0) is geometrically regular.
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Now let P = pA. We have by construction that T® 4 k(pA) is a semi-
local ring with maximal ideals the elements of C. Since T'®4 k(pA) is
isomorphic to (I'/pI’)z—;z we have that the ring T'® 4 k(pA) localized
at Q; for some ¢ is isomorphic to (T'/pT)g, which is a regular local
ring by assumption. Since T contains the rationals, k(pA) is a field
of characteristic zero, and it follows that the formal fiber of pA is
geometrically regular. Therefore, A is excellent as desired. ]

Example 3.17. Let T = Cl[z,y,z2]], Q1 = (z,y), Q2 = (z,z) and
p = z. Then the conditions of Lemma 3.16 are satisfied so we know

there is an excellent local domain A such that x € A, A = T and the
formal fiber of A is semi-local with maximal ideals @}; and Q.
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