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K-THEORY AND K-HOMOLOGY OF C*-ALGEBRAS
FOR ROW-FINITE GRAPHS

INHYEOP YI

ABSTRACT. We compute the K-groups and K-homology
groups of C*-algebras of row-finite graphs using the univer-
sal covering trees of graphs and Pimsner’s six-term exact se-
quences for K K-groups of crossed products by groups acting
on trees.

1. Introduction. Since Cuntz and Krieger introduced a class of C*-
algebras related to subshifts of finite type ([1]), these algebras have been
generalized in many ways: C*-algebras of Smale spaces ([8, 9, 18-20,
23, 26]) from the viewpoint of hyperbolic dynamics, C*-algebras of
row-finite graphs ([11-15, 21]|) and C*-algebras of countably infinite
graphs ([5, 6, 21]) from the viewpoint of graph representations of
subshifts of finite type, and C*-algebras of continuous graphs and
Cuntz-Pimsner algebras ([2, 10, 17]) from the viewpoint of Hilbert-
bimodules. Many of these algebras with appropriate conditions are
contained in the bootstrap category of Rosenberg and Schochet [22] so
that it is possible to classify these algebras by computing K-groups.

In this paper, we compute the K-groups and K-homology groups of
row-finite graph C*-algebras. Firstly, we remark that Pask, Raeburn
and Szymanski [14, 21] computed the K-groups of C*-algebras of
row-finite graphs using the canonical gauge action of S', Pimsner-
Voiculescu six-term exact sequence for crossed products by Z and Takai
duality. And Drinen and Tomforde [4, 25] computed Ext-groups of
C*-algebras of row-finite graphs with no sinks extending Cuntz and
Krieger’s method.

We approach the computations of K-groups and K-homology groups
from a different direction. The origin of this paper is the author’s
attempt to understand the works of Kumjian and Pask [11] and
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Pimsner [16]. By adapting Serre’s argument [3, 24| for interactions
between graphs of groups and their fundamental groups and universal
covering trees, we are able to give a new description of K-groups of
row-finite graph C*-algebras. For a row-finite graph E, we follow
Kumjian and Pask [11] to construct the universal covering tree T.
The graph algebra C*(E) is strongly Morita equivalent to C*(T) x G
where G is the fundamental group of F [11, 4.14]. We remark that our
situation, G-action on T" and 7'/G 2 E, is the case Pimsner mentioned
at [16, page 633]. Then we use Pimsner’s six-term exact sequence
for crossed products by groups acting on trees [16, Theorem 18] to
compute K-groups and K-homology groups of C*(T') x G. Since C*-
algebras of trees are AF-algebras, the Pimsner sequence folds into a
four-term exact sequence. Therefore K-groups and K-homology groups
of C*(T') x G are given by cokernel and kernel of vertex matrix of E as
in the case of Cuntz-Krieger algebras.

2. Graphs and their universal covering trees. We review
the definitions and properties of row-finite graphs, their universal
covering trees and fundamental transversals which will be used in the
later section. As general references for the notions of graphs and
fundamental transversals we refer to [3, 11, 13].

2.1 Graphs and their universal covering trees. The materials in this
section are taken from [11-14].

A directed graph E consists of countable sets E° of vertices and E*
of edges together with maps r,s: E' — E describing the range and
source of edges. A graph is called row-finite if every vertex emits only
finitely many edges. A vertex is called a sink if it does not emit any
edge.

Suppose that E and F' are directed graphs. Then a graph morphism
a: E — F is a pair of maps a = (a°, ') where a': E* — F* for i = 0,1
satisfies

a®(s(e)) = s(a'(e)) and a’(r(e)) = r(a'(e)) for every e € E*.

There is a natural notion of isomorphisms of directed graphs. The
group of automorphisms of a graph F is denoted Aut (E).

Let E be a directed graph. For every e € E', we denote the reverse
edge by € where s(€) = r(e) and r(€) = s(e). The set of reverse edges
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is denoted E'. It is natural to define & = e for every e € E'. A walk
in E is a product a = ay - - - a,, where a; € E! UEI and r(a;) = s(ait1)
for i = 1,...,n — 1; we write s(a) = s(a1) and r(a) = r(a,). A
walk a = ay---a, is called reduced if it does not contain a subwalk
a;a;;; = e€ for an e € E' U E'. The set of reduced walks in E is
denoted E™. For a = ay---a, € E™, the reverse walk is written
@ = Gy, - -+ a7 so that, for a,b € E™ with r(a) = s(b), ab is understood
to be the reduced walk obtained by concatenation and cancelation.

A directed graph E is called connected if there is a reduced walk
between every two distinct vertices of E. A connected directed graph
T is a tree if there is precisely one reduced walk between every two
distinct vertices of E.

Standing assumption. In this paper every graph is a connected
directed row-finite graph.

Definition 2.1 [11, 4.4]. Suppose that E is a graph. Fix a vertex
x € E° and let E™ (x) denote the set of all reduced walks in E whose
source is *. Define a graph T = T(E, *) as follows:

T° =E™(x), T'={(a,e) € E™(x)x E':r(a) = s(e)},

s(a,e) = a and r(a,e) = ae.

For (a,e) € T, we identify (a,e) = (ae, ).

Theorem 2.2 [11, 4.5]. Let E be a graph. Then T = T(E,*) is a
tree, and the isomorphism class of T is independent of the choice of the
base point x € E°,

Definition 2.3 [11, 4.7]. Let E, F be graphs and p: E — F a graph
morphism. Then p is a covering map if

(1) p is onto, that is, p° and p' are surjective;

(2) for every v € E°, pl:s™H(u) = s7'(p%(u)) and p':r(u) —
r~1(p®(u)) are bijections.

Theorem 2.4 [11, 4.8]. Suppose that E is a graph and that T the
corresponding tree as above. Let a graph morphism p: T — E be defined
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by
p°(a) =r(a) and p'(a,e) =e.

Then p is a covering map, and (T,p) is a universal covering space of
E in the sense that if (U, q) is another covering space, then there is a
graph morphism ¢: T — U such that p = qo ¢.

Definition 2.5 [11-14]. Let E be a graph. The graph algebra
C*(FE) is the universal C*-algebra generated by a family of mutually
orthogonal projections {P, | v € E°} and a family of partial isometries
{S. | e € E'} satisfying

(1) SiSe = Py(c) for every e € E*

(2) Py = 3 _5-1(y) SeSZ for every v € s(EY).

Theorem 2.6 [12, 2.4]. If E is a tree, then the graph C*-algebra
C*(E) is an AF -algebra.

Remark 2.7. Suppose that E is a tree. Then, by [11, Proposition
4.3], C*(E) is strongly Morita equivalent to Co(0FE) where OF is a
certain locally compact zero-dimensional space canonically attached to
the tree. Therefore Ko(C*(E)) is a torsion-free group.

Group actions on graphs. Suppose that F is a graph and G is a group.
Let us denote (left) actions of G on E° and E' by

(g,v) — gv and (g,e) — ge forv e E” and e € E*.
We say that G acts on F if there is a group homomorphism G — Aut E
that satisfies
s(ge) = gs(e) and r(ge) = gr(e).
The action of G on FE is said to be free if it is free on E°, that is,
gv = v for every v € E° implies g = 1g. Given a free action of a group
G on a graph E, we form the quotient E/G by the equivalence relation

e1 ~ ey if e; = gey for some g € G. The quotient E/G is a graph where
(E/G)° = (E°)/G, (E/G)'=(E")/G,

r(le]) = [r(e)] and  s([e]) = [s(e)].

See [11, Section 3] for more details.
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Lemma 2.8 [11, 4.10]. Suppose that E is a graph, (T,p) =
(T(E,*),p) is its universal covering tree, and G = {a € E™ (%):r(a) =
*x}. Then G is a group under concatenation with cancelation. Let G
act onT by

(g,a) — ga and (g, (a,e)) — (ga,e).

Then G is a free group, the action of G on T is a free action, and T /G
s 1somorphic to E.

Theorem 2.9 [11, 4.13 and 4.14]. Suppose that E, T = (T,p) and G
are as above. Then C*(E) is strongly Morita equivalent to C*(T) x G.

Remark 2.10. By Corollary 3.1 of [15], C*(T) x G is equal to
C*(T) %, G, the reduced crossed product.

Fundamental transversals. The material in this subsection is taken
from [3]. For more details, see [3, Chapter I] and [24, Chapter I].

Definition and Theorem 2.11 [3,1.1.3 and 1.2.6]. Suppose that a group
G acts on a set X and S is a subset of X. We call S a G-transversal if
S meets each G-orbit once.

If X is a graph and X/G is connected, then there exist subsets
Yy CY C X such that

(1) Y is a G-transversal,

(2) Y is bijective to X/G,

(3) (Yon X% Yy N XY r,s)is a subtree of X,
(4) Y NX°=YyN X" and

(5) s(e) € Y N X" for every edge e € Y N X1.

The subset Y is called a fundamental G-transversal in X.

Suppose that E, G and (T,p) are as in Lemma 2.8. Then there is a
fundamental G-transversal € in T such that p|¢: € — T'/G is a bijection.
By abuse of notation, when we say £° and &', respectively, we mean
p~' ((T/G)°) and p~* ((T/G)*'), respectively.
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Let r and 7 be the range maps of T and T'/G, respectively. For every
edge e € &, p1(7(p(e))) is the G-orbit of r(e) in 7. Since € is a
G-transversal, there is a unique element p(e) € £° such that p(e) is
contained in the G-orbit of r(e). As G-action on T is a free action, for
each e € £, there is a unique element 7, of G such that v.p(e) = r(e).
Because source of each e € £! is already contained in £°, we have
1gs(e) = s(e). Then we define homomorphisms

0e:Ge — Gyey and 0e:Ge — Gy

by
g— .97 and gr——g

where G, is the stabilizer of *.

Remarks 2.12. (1) By [24, Proposition 1.17], the fundamental G-
transversal £ in 7' is not a subgraph of 7. But E is a graph isomorphic
to T/G = F, and its range map and source map are p and slg,
respectively.

(2) Since the G-action on T is a free action by Lemma 2.8, it is
obvious that G, = G. = {1g}. We keep G, and G, terms to represent
index.

3. K-theory and K-homology. In this section, we use The-
orem 2.9 and Pimsner’s six-term exact sequences for K K-groups of
crossed products by groups acting on trees to compute K-groups and
K-homology groups of row-finite graph C*-algebras.

Pimsner’s exact sequences. Suppose that E, G and (T,p) are as
in Lemma 2.8 and that £ is a fundamental G-transversal in T. We
consider the action of G on C*(T"). Let c and a be automorphisms
of C*(T) induced from the group actions

a— ’ye_la and a——a= 151(1, respectively, for every a € T.

Then there are *-homomorphisms on crossed products ([16, Section 4]):

e X 0:C*(T) X Ge — C*(T) x Gp(e),
Ide = ae X 06: C*(T) X Ge — C*(T') 1 Gye)
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and

af,1d: @ ¢ (T) x Ge — K(2(£Y)) ® €P C*(T)

ec&lt veEL

defined by

EBeEé'lxe de e ae X Je) (we)
Id (Becerxe) Zse e @ Id o (ze).

Here KC(1%(E")) is the set of compact operators on [2(£1), and {e.,q} ¢ acer
is a system of matrix units in K(I2(€')). Let of and Id. denote the
induced maps on K-groups, and o”* and Id* the induced maps on
K-homology groups.

Theorem 3.1 [16, Theorems 16 and 18]. Suppose that E, G and
T = (T,p) are as in Lemma 2.8 and that & is a fundamental G-
transversal in T'. Then there are exact sequences

P Ko(CH(T) x Go) =2 @D Ko(C*(T) % G)

e€lt veEL

| |

K,(C*(T) x G) Ky(C*(T) x G)

| |

P Ki(C*(T) x Gy) «—— @ K1 (C*(T) % Ge)
vEED ecé&l
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and

K0< P c* (1) x Ge) o K0< @ c* (1) x Gu)
ec&l veEO

| |

K'(C*(T) x G) K°(C*(T) x G)

| |

K1< @ o (1) » Gu) —>K1< P (1) » Ge)

veEL ecg!l

where G, and G, are stabilizers of v and e, respectively, at the fun-
damental G-transversal £ in T and K'(x) = KK;(x,C) the Kasparov
KK -theory.

Recall that C*(T) is an AF-algebra and Ky(C*(T)) is a torsion-
free group by Theorem 2.6 and Remark 2.7. Thus the above six-term
sequences become

0 — K1(C*(T) x G) — P Ko(C*(T) x Ge)
ec&t

L P Ko(CH(T) % Gy) — Ko(CH(T) % G) = 0
veEl

and
0 — K%(C*(T) x G) — K°(@ypeeoC*(T) x Gy)
A KO(@,ce1CH(T) 1 Ge) — KLH(CH(T) % G) — 0.
And we have the following from Theorem 2.9:
Ko(C*(E)) 2 Ko(C*(T) x G) = Coker (of — 1Id.)
K1 (C*(E)) 2 K1(C*(T) x G) 2 Ker (af — Id,)

wnd K°(C*(E)) = K°(C*(T) x G) = Ker (a* — 1d*)

K'(C*(B)) = K*(C*(T) x G) = Coker (a”* — 1d*).
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K -theory. In this subsection, we show
Coker (a? —1d,) = Coker (M* —1I) and Ker (af —1Id,) = Ker (M" 1)

where M is the vertex matrix of E.

We learned the following lemma from [6]:

Lemma 3.2 [6, 4.9]. Let

G, L}GQ

¢ s

H1 —>H2

L
be a commuting diagram of abelian groups in which
(1) the vertical arrows are injective,
(2) L(z) € Im (¢) implies € Im (¢) for every x € Hy, and
(3) every x € Hy is equivalent to an element of ¢(G2) modulo L(Hy).
Then Ker M =2 Ker L and Coker M =2 Coker L.

Suppose that F, G and T are as in Lemma 2.8 and that £ is a
fundamental G-transversal in 7. Let M be the vertex matrix of F,
that is, M is an E° x E%-matrix such that

M(u,v) = { 1 if there is an e € E! such that s(e) = v and r(e) = v
’ 0 otherwise.

Since the graph E is isomorphic to £, M is the vertex matrix of €.

Notation 3.3. Suppose v € T° v € £° and e € E'. By z,, we
mean the canonical unit vector in @,cg0Z with 1 at the vth-term
and O elsewhere. We denote P,, and P, . as the equivalence class
of the projection P, of C*(T') in Ko(C*(T) X G,) and Ko(C*(T) x Ge),
respectively. Then it is not difficult to obtain af(Py,e) = P -1, e
and Id*(Pu,e) = Pu,s(e)-
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We define maps

¢ Dypegol — Beegr Ko(C™(T) @ Ge) by
Ty — Dees—1(v)Prie),e and

V: Bycgod — @UegoKo(C*(T) X GU) by
Ty > Py 4.

Then % is a monomorphism.

When E has no sinks. Recall that a vertex is a sink if it does not
emit any edge. Then it is straightforward that ¢ is a monomorphism,
for every vertex is a source of at least one edge.

Lemma 3.4. Suppose that the graph E has no sinks and that M is
the vertex matriz of E. Then the following diagram commutes:

@z— M= Pz

veEo vEED

! |

D Ko(C*(1) % Ge) ——— D Ko(C*(T) % G.)

-
ecé&l Cx d*UEEO

Proof. For a v € &Y let {e1,...,en} = s 1(v) NEL and p(e;) = u;.
Then

’(»ZJ(Mt —I)Q?v = 1/1(2%, _'Z'v) = Pul,ul +"'+Pun,un _Pv,v-

And

(Olf: - Id*)¢($v) = (Olf: - Id*)(PT(61) e1 + 4+ Pr(en),en)
=P trenoen Tt Pyitrten) pten)

1
(1) - (Pr(e1),v et Pr(en),v)
= Pper)pler) T+ Polen)nlen)

- (Pr(el),v +-+ Pr(en),v)'

)
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Since P, =), S.,S;, and P,(.,) = S Se,, we have
Pv,v = Pr(el),'u + e+ Pr(en),v'

Therefore the diagram is commuting. i

When E has sinks. Suppose that J is the set of sinks of the graph
E, and F is the maximal subgraph of E that has no sinks. Then the

adjacency matrix of F is
A B
(5 0)

where A is the vertex matrix of F' and that B is the matrix for the
edges whose sources are in F? and ranges are in J.

Let 7 =p~1(J)NE® and F° = p~1(F) N EY where p is the covering
map. Then, for every v € J, there is no edge whose source is p(v).
So ¢(z,) = 0 and Ker ¢ = @,c7Z. Hence, instead of ¢: D,eg0Z —
Decer Ko(C*(T) 1 Ge), we use the monomorphism ¢|g, __,z. And

the homomorphism (M? — I) | D z is given by (A — I B)". Then the

veF0
following lemma is straightforward from the proof of Lemma 3.4.

AB
00
matriz of E, and F is the mazimal subgraph of E that has no sinks.

Let F° = p~Y(F) N E°. Then the following diagram commutes:

Dz = Dz

vEFO veEo

g ‘|

@ K()(C*(T) X Ge) m @ Ko(o*(T) el Gv)
ecé&l * *vego

Lemma 3.5. Suppose that E has sinks, M = ( ) is the vertex

where N = (A-I B).

Lemma 3.6. For an © € @.ece1Ko(C*(T) x G,), if (af —1d,)(z) €
Im, then z € Im ¢.
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Proof. Because C*(T) is generated by S,S: and S’S, for every
a € T, it suffices to prove the statement for P, [S Sa] = [SaSE]
in KO(C*( ) x G,,) for any v € £°.

Recall that, for © = (P, ) € @ece: Ko(C*(T) x G),

(07 =1d.) (Poe) = 3 (Pt o) = Poste))

and

Im ¢ = (Py,0)veeo-
Now suppose (o —Id,)(Py,e) € Im. It is clear that v has to be r(e)
or s(e) so that

(Poe) = (Pr(a),a) @ (Psv),p)

— P ra ra sa+ P sb,sb'
Z ):p(a (a) Z 5(b),p(b) — I s(b),s(b)
€lmy €Imy

v=r(a): Y Pra)s@ € (Pvy) and 7(a) # s(a) mean that every
P, s(a) such that u = r(e) and s(e) = s(a) is contained in {P,.} so

that
> Pus(@) = Pa(a),s(a):

Hence, as in (1) of Lemma 3.4,
(Pr(a),a) = ¢ ((xs(a))) .

v =s(b): Firstly, note that =, 'y is an edge whose source and
range are v, 's(b) and p(b), respectively. Let {7, 'b,e1,...,e,} =
s7H (7 's(b))- Then Poo1,q) .y = Pow)er) + Prienor) + 00 F
Pr(en),p(v) and

D Pty o) — Pe)sv)
= Poyov +Pr(e1>,p<b) ot Prien),ov) = Pow),sv) € (Po)-

Hence it is straightforward that P.(c,) o) = **+ = Pr(e,n),p) = 0, and
Y b is the unique edge whose source is Y 5(b), equivalently b is the
unique edge whose source is s(b). Thus we have Py, = ¢(25)) and

(Poe) = (Pria),a) @ (Psn)p) = d((Zs(a)) © (Tp)))- D
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Lemma 3.7. For every © € @,ceoKo(C*(T) x Gy), there is an
element y in @yceoZ such that

z—P(y) € (af —Ids) (Becer Ko(C(T') @ Ge)) -

Proof. For P, = S§*S, € C*(T) x G, for some a € T* with u = r(a)
and v € £, let e € E' be such that s(e) = v. Then

af —1d.: Ko(C*(T) % Ge) — Ko(C*(T) % Gpe)) & Ko(C*(T) % Gryes(ey)

is given by
Pye Pvglu,p(e) = Pu,
and
Puw = Poovypie) = Boitupre) = Pun) -

€lm (af-1d,)

We recall that there is a unique reduced walk w = fi---f, from
r(e) to r(a) where f; € T1 U T' as T is a tree. For brevity, let us
consider the case that fi,...,fm € T, fumit, - fmik € T and
frakits---sfn €T for some m, k > 1.

Because £ is a fundamental G-transversal, there is a unique element
e; € &' such that e; is contained in the orbit of f;. Then s(f) =
r(e) = Yep(e) and p(e) is the unique element of the orbit of s(f;) in £°
imply

e1 =7 'fi and s(er) = p(e).
So
af —1d.: Ko(C*(T) % Gey) — Ko(C*(T) % G pey))
@ Ko(C™(T) x Gy(ey))
P ) — P

TR oty tupler) B tas(en)=p(e)

and that v, 'y. ! (f2 - - - fs) is the reduced walk from p(e;) to r(yz, 'y, *a).
Hence

Puy=P 1,0 (P

_ — P,
e ve tu,p(e) u0)

=P . _
vetve tu,p(er)

P10 pe) ~ Pu) + (P

vty tupler) T P"re_lu,S(el))}’

€lm (af—1d.)
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and, by induction, we have

Pu,=P 1

-1 -1
Yem " Vey Ve

+Im (af — 1d,)

u,p(em)

and v y7! (fms1 -+ fn) is the reduced walk from p(e,,) to ;! - -
7o tu. Let

-1 -1 1 5 -1 -1z
em =Vep_, Ve Jm €E and Emii=1c Ve fmi1

Then there is a g,, 11 € G such that g, 41611 = €my1 € EL. Since
r(em) = 7(€m+1),

plem) =2 r(em) = 72 r(Ems1) € E° and
Vergmiar(em+1) = Vo tgm i1 Gm417(Emi1) = 7, 7 (Em+1) = plem).

Hence, for Ye,.,, = gm+1Vems P(€mt1) = p(em) € E? and

-1 —-1_-—1 :P —1 —-1_-1
Yem Vey Ve wsp(em) Yem Ve Ve W;p(€m+1)

1 1 -1
Yemt1Yem " Yer Ve u7s(em+1)

+(af —1d,) (P

-1 —-1_-1 .
Vema1 Yom Yoy Ve u,emﬂ)
Thus we have

P,, = )+ Im (a? —1d,).

-1 —1_-1
Yemi1Yem Ve Ve u,S(€m+1
We repeat the above process up to e, r € &£! corresponding to
=1
fm+x €T so that
Pu,v =P

—1 —-1_-1
Yemar " Vemp1Vem ~"Yey Ve u,s(emtk

) +Im (af —1d,)

and Ve, Yemir Yoo - Ve - (fmtkt1 - fn) is the reduced walk from
s(em-‘rk:) to Yemir =" 'Yem+17e_,,1 e ’Ye_lu' Then7 for Cm+k+1 = VYemir " "
Yemir Yoo+ Vo k1 and e, .., € G such that 7;i+k+1r(em+k+1)
— plemins1) € E9, we get

—1 -1_-1
Yemar " Vemp1Vem "Yey Ve u,8(em+k)

=P

-1 1 -1
Yemtkt+1Yemtr " Yemt1Yem " TYey Ve U p(€mt k1)

— (af — 1d,) P,

1 1 -1
Yemir " Yemp1Yem "Yey Ve UHEmtk+1
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and
P :P -1 -1 —1 —-1_-—1 Im o/’—Id
v Ven " Vempnpr Yemik " Vems1 Yem Yey Ve up(€n) +Im (o )
with

_ -1 -1 -1 —1,-1
plen) =1 (%n  Veminir Yemin " YemsiYem " Ver Ve a)
-1 -1 -1 -1, -1
- Wen e 7€m+k+1 ’yeerk o ’YEerl ’Yem e 751 Ve Uu.
Therefore, we have

2) P

Vem Ve prir Yemar ™ Vemp1 Yom Yoy Yo -wp(en) — (@ p(en))
and Py, = ¢(,(c,)) + Im(af —Id,).
. . ]
In general, when some f; is contained in 17", we change the corre-
sponding group element -y, Lin the equation (2) to e, ]

The previous five lemmas give us the following proposition:

Proposition 3.8 [14, 21]. Suppose that E, G and (T,p) are as in
Lemma 2.8 and that M is the vertex matriz of E.

(1) If E has no sinks, then
Ko(C*(E))
K1(C*(E))

1%

Ko(C*(T) x G) = Coker (M* — 1)
K (C*(T) x G) = Ker (M" —I).

I

(2) If E has sinks and M = (‘3 JS’), then

Ko(C*(E)) = Coker (AtB‘tI ) and Ky (C*(E)) = Ker (AtB‘tI )

K-homology. We deduce the following exact sequence from Theo-
rem 3.1:

0= K%C*(T) 0 G) — K°(@yeeoC*(T) x Gy)
A K01 CF(T) % Ge) — KXH(C*(T) % G) — 0
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so that

K°(C*(B)) = K°(C*(T) x G) = Ker (a”* — 1d¥)
KY(C*(E)) = K'(C*(T) x G) = Coker (a”* —1d*).

Lemma 3.9 [22, 1.12 and 1.17]. (1) K°(@C*(T)) 2 [[ K°(C*(T)).
(2) There is a short exact sequence

0 — Exty (K (C*(T)),Z) — K°(C*(T))
— Hom (Ko (C*(T)),8Z) — 0

As C*(T) is an AF-algebra, we infer
Y(@C*(1)) = [[ K°(C*(T)) = [ [ Hom(Ko(C*(T)), Z)
from the above lemma. Hence the kernel and cokernel of
a?* —1d*: K°(@,cg0C*(T) x Gy) = K°(@ecer C*(T) x G.)
are isomorphic to the kernel and cokernel of

Hom (af — Id,): [] Hom (Ko(C*(T) % Gy), Z)
veEl
— [[ Hom (Ko(C*(T) x Ge), Z),
ecgt

respectively.

Now we apply the Hom functor to the following commuting diagram
with exact rows:

t_
Ker (Lt — [) —2ueone , o7 L1 0z — OO, Coker (Lt — I)

N

K1 (C7(F)) —sneone” ©Ko(C™(T)) 5 g7 ©Ko(CT(T)) —5— Ko(C™(E))
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Here L — I is the matrix M — I in Lemma 3.4 when the graph E has
no sinks and the matrix N in Lemma 3.5 when E has sinks. Then we
obtain the following exact sequences:

0 — Hom (Ko(C*(E)), Z)

— [ Hom (Ko(C* (1)), 2) "™ 5 ] Hom (Ko (C*(T), 2)
gO gl
s Hom (K, (C*(E)), Z) —s Ext (Ko(C*(E)), Z) — 0

and
0 — Hom (Coker (L' — 1),Z) — [[2 "= [[ 2
— Hom (Ker (L* — I),Z) — Ext (Coker (L' — I),Z) — 0.
Lemma 3.10. Ker (a”*—1d*) = Ker (Hom (of —1d.)) = Ker (L—1I).

Proof.

Ker (Hom (o —1Id,)) & Hom (K((C*(E)), Z) = Hom (Coker (L' — I), Z)
=~ Ker (L — I). O

Lemma 3.11.  Coker (a?* — Id*) = Coker (Hom (af — Id,)) &
Coker (L —I).



1740 INHYEOP YI
Proof. We have the following commuting diagram from the above
exact sequences:
0 ——— Coker (Hom (af — Id,)) ——— Hom (K (C*(E)), Z)

= 1o g

0 ——— Coker (L — I) ———— Hom (K (C*(E)), Z)

Ext (Ko(C*(E)), Z)V

Jg

Ext (Ko(C"(E)), Z)

Then the induced quotient map [Hom (¢)]: Coker (Hom (o —Id,)) —
Coker (L — I) is an isomorphism by the Four lemma ([7, 5.11]). O

Therefore we have the following proposition:

Proposition 3.12 [25, 5.16]. Suppose that E, G and (T,p) are as
in Lemma 2.8 and that M is the vertex matriz of E.

(1) If E has no sinks, then

g
2
5
I

K°%(C*(T) x G) = Ker (M —I)
K'(C*(E)) = K'(C*(T) x G) = Coker (M — I).

1%

. AB
(2) If E has sinks and M = (0 o ), then
K°(C*(E))=Ker (A—1 B)
and

K'(C*(E)) = Coker (A—I1 B).
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