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ON THE NUMBER OF SUBSEQUENCES
WITH GIVEN SUM OF SEQUENCES
OVER FINITE ABELIAN p-GROUPS

WEIDONG GAO AND ALFRED GEROLDINGER

ABSTRACT. Let G be an additive finite abelian p-group.
For a given (long) sequence S over G and some element g € G,
we investigate the number of subsequences of S which have
sum g. This refines some classical results of J.E. Olson and
recent results of I. Koutis.

1. Introduction and main result. Let G be an additively written
finite abelian group. The enumeration of subsequences of a given
(long) sequence over G, which have some prescribed properties, is a
classical topic in combinatorial number theory going back to P. Erdéds,
J.E. Olson, et al. In the meantime there is a huge variety of results
achieved by many authors, see [1-6, 8-11, 14-16] and the literature
cited therein, for an overview of the various types of results.

In this note we concentrate on finite abelian p-groups. In order to
state our main result, we need some notations, for details see Section 2.
Suppose that G = Cp,, & --- @ C,,,., where 1 < ny | --- | n, and set
d*(G) = >°I_,(n; —1). For a sequence S over G, an element g € G and
some k € Ny, let Ng(S) (N (S), N7 (S), respectively N%(S)) denote
the number of subsequences T of S having sum g (and even length, odd
length respectively, length k).

Theorem 1.1. Let G be a finite abelian p-group, g € G, k € Ng and
S € F(G) a sequence of length |S| > kexp(G) + d*(G).

1. Nf(S) =N, (S) mod p*+t.
2. If p=2, then N,(S) =0 mod 2~ +1.

3. If j € [0,exp(G) — 1] and m* = k — 1+ [(1+d*(Q))/exp(G)],

then the numbers N;neXp(G)H(S) for all m > m* are modulo mod p*

uniquely determined by N7(S), NePOF gy . Nm ep(@F gy,
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For k = 0, the first statement was proved by Olson [13, Theorem 1].
For elementary p-groups, slightly weaker results were recently obtained
by Koutis, see [12, Theorems 7, 8, 9, 10], who used representation
theory. We work with group algebras which have turned out to be
a powerful tool in this area. However, up to now, mainly group
algebras over finite fields or over the field of complex numbers were
used. We work over the group algebra Z[G], and this is the reason
why in the above theorem we obtain congruences not only modulo p
but also modulo higher powers of p. As a further consequence of our
main proposition on group algebras, we get the following result on
representation numbers of sumsets.

For subsets A;,...,A; C G and some element g € G, let

ra,,...4(9) = H(al,... ,a;) € Ay X -+ X A |g:a1+---+al}‘

denote the number of representations of g as a sum of elements of
Aq,...,A;. These numbers play a crucial role in the investigation
of sumsets, e.g., a theorem of Kneser-Kemperman states that for
A,BC G and g € A+ B we have |A+ B| > |A| + |B| —ra,s(9).

Theorem 1.2. Let G be a finite abelian p-group, g € G, k,l € N
and Ai,...,A; subsets of G such that |A1| =---=|4;| =0 mod p. If
| > kexp(G) + d*(G), thenta,.. a,(9) =0 mod p*+i.

2. Preliminaries. Let N denote the set of integers, and let
No = NU{0}. For a,b € Z, we set [a,b] = {z € Z | a < z < b}
All abelian groups will be written additively, and for n € N, let C,
denote a cyclic group with n elements. If A and B are sets, then
A C B means that A is contained in B but may be equal to B.

Let G be a finite abelian group. By the fundamental theorem on finite

abelian groups, there exist uniquely determined integers ni,... ,n, €
N such that G = C,, @ --- & C,,, where either r = ny = 1 or
1 <mny|---|n. Then n, = exp(G) is the ezponent of G, and we

set d*(G) = Yi_;(n; — 1). G is a p-group if exp(G) is a power of p,
and it is an elementary p-group if exp(G) = p for some prime p € N.
An s-tuple (ey,... ,es) of elements of G \ {0} is called a basis of G, if
G={(e1)®- - ® (es). For every g € G, ord (g) € N denotes the order

of g.
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Let F(G) denote the free abelian monoid with basis G, and let
S € F(G). Then S is called a sequence over G, and it will be written
in the form

!
S = Hgi =01-... Q1 = H g"99) where all v,(S) € N.
i=1 geG

A sequence T' € F(G) is called a subsequence of S, if v,(T) < v4(S) for
every g € G. The unit element 1 € F(G) is called the empty sequence.
We denote by

o [S|=1=3,c5Vy(S) € No the length of S,

ea(S)=" 9= > gec Ve(S)g € G the sum of S, and by

o X(S)={>;c;9i | @#1I C[1,l]} C G the set of subsums of S.
For g € G and k € Ny,

NE(S) = HIC [1,1]‘ S gi=gand |I] = k }‘
i€l

denotes the number of subsequences T' of S having sum o(T) = g and
length |T'| = k (counted with the multiplicity of their appearance in
S). Then

Ng(8) =) NE(S), and NF(S)=) NZ¥(J)

k20 k>0
respectively N;(S’) — ZNng(S)
k>0
denote the number of subsequences 7' of S having sum o(7) = ¢

and even, respectively odd, length. Since, in our convention, the
empty sequence is a zero-sum sequence of length zero, we always have
No(S) > N (S) > 1.

Let R be a commutative ring (by a ring, we always mean a ring with
unit element). The group algebra R[G] of the group G over the ring R
is a free R-module with basis {X9 | g € G} (built with a symbol X),
where multiplication is defined by

( > ang> (Z ng9> =Y ( > ahbgh>X9.

geG geG geG “heG
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We view R as a subset of R[G] by means of a = aX" for all a € R. The
augmentation map

e:R[G] = R, defined by 5( Z ang) = Z ag

geCG geG

is an epimorphism of R-algebras. Its kernel Ker (¢) = I is called the
augmentation ideal, and {1 — X9 | 0 # g € G} is an R-basis of I.

3. Proof of the main results.

Lemma 3.1. Let G be a finite abelian p-group, R a commutative
ring and k € Njy.

1. If g € G, then

(1 — x9)kord(9) ¢ p*R[@).

2. If (e1,...,e.) is a basis of G and my,--- ,m, € Ng with m; +
-+ m, > kexp(G) + d*(G), then

ﬁ(l - Xei)mi c pk+1R[G].

i=1

Proof. 1. Let g € G, m € Ny and ord(g) = p™. If m = 0, then
g=0,X%=1and 1 - X9 =0 € p*R[G]. Suppose that m € N. Since
the binomial coefficient (” zm) is divisible by p for every i € [1,p™ — 1],
we obtain that

(1-X9)" = Zm (”m) (~1)ix's
=0 .
RISV (pm > (~1)’X* € pRIG]

i=1

whence

(1 - X9)*" ¢ p*R[q).
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2. Let (eq1,... ,e,) be abasis of G with ord (e;) = n; for every i € [1,7]
and suppose that n; < --- < n,.. Furthermore, let my,... ,m, € Np
be such that my + ... +m, > kexp(G) + d*(G). For every i € [1,r],
we set m; = k;n; + t; with ¢; € [0,n; — 1]. Then we infer that

r

Z(kmi +t;) > kexp(G) + d*(G) = kn, + 271:(71Z - 1),

i=1
whence
> king > ki >kn,+1 and Y ki >k+1.
i=1 i=1 i=1
By step 1, we have (1 — X¢)™i = (1 — X¢)kinitti ¢ pki R[G], and thus

T

H(l — Xxeymi ¢ phittheRIG) c pPHLR[G]. O
i=1

We continue with two propositions which may be of independent
interest.

Proposition 3.2. Let G be a finite abelian p-group, R a commutative
ring, I¢ C RG] the augmentation ideal and k,l € Ny such that
I > kexp(G) +d*(G). Then

<IG + pR[G])l c "M R[G].

In particular, if g1,... ,91 € G, then

l
[[ - x) e p**'RIG].

i=1

Proof. We proceed in two steps. First we settle the indicated special
case.



1546 WEIDONG GAO AND ALFRED GEROLDINGER

1. For every i € [L,1], let g; € G and f; = 1 — X9 . We assert that
fr-...- fi € PPTIRIG).

Let (e1,... ,er) be a basis of G with ord (e;) = n; for every i € [1,7].
For every i € [1,1], we set g; = ZV 1 live, where l; , € [0,n, — 1] for
every v € [1,7]. Then, for every i € [1, l] we have

T

1-X9 = 1-X 2o lver = 1 TT (1-(1-X*)) " = S (1-X*)fi
v=1

v=1

with f;1,..., fir € R|G]. Therefore, we obtain that

l
[Tt = T[>0 - X1,
=1

i=1v=1

= ) fw@-XE)me (1= X))
me[0,l]”
mi+-...+m.=l

where all fy, € R[G] and m = (my,...,m,). Since my +---+m, =
I > kexp(G) + d*(G), the assertion follows from Lemma 3.1.2.

2. Let s € [0, k] and recall that {1 — X9 | g € G\ {0}} is an R-basis
of Ig. Thenl—s > (k— s) exp(G) +d*(G), whence step 1 implies that

(Te)'™* € 1R[],

Therefore, we obtain that

l
(I +pRIG) € Y () *(RIG))* < p**'RIG]. o
s=0

Proposition 3.3. Let G be an elementary 2-group and S € F(G).
Then
No(S) =Nyg(S) for every g€ X(S).

Proof. Let S=g;-...-g1 € F(G), g € ¥(S) \ {0},

{L,...,I}= {Ic [1,1] | Zg,-:o}

el
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and

{Ji,...,Js} = {Jc [1,1] | Zgj:g}.

jeg

Let I, J,J' C [1,1] be subsets, and let IAJ = (I\J)U(J\I) denote the
symmetric difference. Since (P([1,1]), A), that is, the family of subsets
of [1,1] with the symmetric difference as the law of composition, is an
elementary 2-group, IAJ = IAJ' implies that J = J’. Since G is an
elementary 2-group, we infer that

Z gi =g forall vel[l,t
i€J1AIu

and

Z g; =0 forall pell,s].
JENAT,

This implies that

No(S) =t = {J1AL | v € [L,t]}| < Ny(S)
—s=[{iAJ, | el s} <No(S). o

Proof of Theorem 1.1. Suppose that S =g¢; -...-g; € F(G).
1. By Proposition 3.2, with R = Z, we obtain that

l

[T0-x7) = X (N5(5) - N;(5) ) x7 € #4120,
i=1 geG

whence the assertion follows.

2. If p = 2, then again by Proposition 3.2 we get

l
D ONG(8)X7 =T+ x%)
l
= H(—(l - X9%)+2) € (Ic + 2R[G])l € 2F1Z[q).
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3. Let C be a cyclic group of order exp(G), and suppose that
C = (e) C G®C such that every h € G®C has a unique representation
h = g+je where g € G and j € [0,exp(G)—1]. By [7, Theorem 7.1], the
polynomial ring in the indeterminate T" over the group ring Z[G @ C] is
(isomorphic to) the group ring of G @® C' over the polynomial ring Z[T],
0

Z|Go C|[T) = Z[T)|G & C].
We consider the element
!
(%) [[+x9T - x°T) = > pX" € Z[T)[G o C]
=1 heGaC

where all pj, € Z[T], and start with the following assertion:

Assertion. For every h € G & C and every m > kexp(G) + d*(G),
the coefficient of T™ in py, is divisible by p*.

Proof of the Assertion. We have

ﬁ(l—i—X’“T—X"’T) - ﬁ(l—i—(Xgi—l)T—(X"’—l)T) - zl: b T™

i=1 i=
where every b, € Z[G @ C] is a sum of elements of the form
(X9 —1)-... - (X9 —1)(X°=1)""" withce Z.

If m>kexp(G)+d*(G) =1+ (k—1)exp(G® C) + d*(G & C), then
Proposition 3.2 implies that elements of this form lie in p*Z[G & C)].
Therefore, for every m > k exp(G) + d*(G), we have b, € p*Z[G & C],
whence the assertion follows.

Let now g € G, j € [0,exp(G) — 1], w = [(1 + d*(G))/exp(G)] and
m > k + w. Then

mexp(G) + j > (k + w) exp(G) > kexp(G) + d*(G) + 1,
whence the coefficient of T™e*P(G)+i in pg is divisible by p*. On the

other hand, (%) shows that this coefficient is equal to

iN!(]m—i) exp(G)+j(S)(_1)iexp(G) <l - ((m — i) exp(G) + J)>

P iexp(Q)
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Therefore, we finally obtain that

= (i) exp(G) i ey qriexp(@) (L~ ((m —9) exp(G) + j)
2N sy (0 )

=0 mod pF.

Since the coefficient of Ny exp(G)+ (S) in this congruence equals 1, the
assertion follows by induction on m (starting with m = m*+1 = k+w).
]

Proof of Theorem 1.2. Let k,l € N with | > kexp(G) + d*(G) and
Ay, ..., A; subsets of G such that |4;1| = --- = |4;] =0 mod p. For
every i € [L,1], we set f; = > _, XY € Z[G], whence £(f;) € pR.
Thus, Proposition 3.2 implies that

f=fi...  fiepZ[Gl.

If we set f =5 geG Cg XY, then clearly c, equals the representation
number ra, . 4,(g), whence the assertion follows. O
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