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SOME MIXED-TYPE REVERSE-ORDER LAWS
FOR THE MOORE-PENROSE INVERSE OF A

TRIPLE MATRIX PRODUCT

YONGGE TIAN

ABSTRACT. Using some rank formulas for partitioned
matrices and outer inverses of a matrix, we derive necessary
and sufficient conditions for a group of mixed-type reverse-
order laws to hold for the Moore-Penrose inverse of a triple
matrix product.

1. Introduction. Throughout this paper, A∗, r(A) and R(A)
denote the conjugate transpose, rank and range (column space) of a
complex matrix A, respectively; [ A, B ] denotes a row block matrix
consisting of A and B.

Suppose A and B are two nonsingular matrices of the same size. Then
the product AB is nonsingular, too, and the inverse of AB satisfies
the ordinary reverse-order law (AB)−1 = B−1A−1. This law can be
used to simplify various matrix expressions that involve inverses of
matrix products. This formula, however, cannot trivially be extended
to generalized inverses of matrix products. For an m×n matrix A, the
Moore-Penrose inverse A† of A is defined to be the unique solution of
the following four Penrose equations

(i) AXA = A,

(ii) XAX = X,

(iii) (AX)∗ = AX,

(iv) (XA)∗ = XA.

For simplicity, let EA = I − AA† and FA = I − A†A, which are two
orthogonal projectors induced by A. A matrix X is called a generalized
inverse of A, denoted by A−, if it satisfies AXA = A, an outer inverse
of A if it satisfies XAX = X, and a reflexive generalized inverse of A,
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denoted by A−
r , if it satisfies both AXA = A and XAX = X. General

properties of the Moore-Penrose inverse can be found in [1 3, 7].

Let A, B and C be three matrices such that ABC is defined.
One of the basic topics in the theory of generalized inverses is to
investigate various reverse-order laws related to generalized inverses
matrix products. Because both AA† and A†A are not necessarily
identity matrices, the reverse-order laws (AB)† = B†A† and (ABC)† =
C†B†A† do not always hold. In other words, they hold for some A, B
and C, and for others they do not. Hence, it is of interest to seek
necessary and sufficient conditions for

(AB)† = B†A† and (ABC)† = C†B†A†

to hold. In addition to these two reverse-order laws, (AB)† and (ABC)†

may be expressed as

(AB)† = B†A† + X1, (AB)† = B†X2A
†,

(ABC)† = C†B†A† + Y1, (ABC)† = C†Y1B
†Y2A

†,

or other forms, for example,

(AB)† = (A†AB)†(ABB†)†, (AB)† = B†(A†ABB†)†A†,
(ABC)† = C†(A†ABCC†)†A†, (ABC)† = (BC)†B(AB)†.

Due to the importance of reverse-order laws in dealing with generalized
inverses of matrix products, various reverse-order laws have been widely
investigated in the literature since 1960s. Some previous work on the
reverse-order laws

(ABC)† = C†B†A†, (ABC)† = (BC)†B(AB)†

for a triple matrix product can be found in [4, 5, 8, 9]. The law
(ABC)† = (BC)†B(AB)† arises from rewriting

ABC = ABB†BC = (AB)B†(BC) def= PNQ

and considering the reverse-order law

(PNQ)† = Q†N†P †.
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In this paper, we consider the following mixed-type reverse-order laws
for (ABC)†:

(1.1) (ABC)† = C†(A†ABCC†)†A†,
(1.2) (ABC)† = C∗(A∗ABCC∗)†A∗,
(1.3) (ABC)† = (C∗C)†[ (C†B∗A†)† ]∗(AA∗)†,
(1.4) (ABC)† = C∗C(AA∗ABCC∗C)†AA∗,
(1.5) (ABC)† = (BC)†[ (AB)†ABC(BC)† ]†(AB)†,
(1.6) (ABC)† = (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗,

(ABC)† = [ (BC)∗(BC) ]†{[ (BC)†(B∗)†(AB)† ]†}∗[ (AB)(AB)∗]†,
(1.7)

(ABC)† = [ Iq−(C†FB)(C†FB)† ]C†B†A†[ Im−(EBA†)†(EBA†) ].
(1.8)

These mixed-type reverse-order laws in fact are all reasonable expres-
sions of (ABC)† under different decompositions of ABC. It is easy to
verify that

(1.9)
A = AA†A = AA∗(A†)∗ = (A†)∗A∗A = (AA∗A)(A∗A)†

= (AA∗)†(AA∗A).

From (1.9), ABC can be written as

ABC = AA†ABCC†C = A(A†ABCC†)C def= P1N1Q1.

Then, (1.1) arises from considering the reverse-order law (P1N1Q1)† =
Q†

1N
†
1P †

1 . Write

ABC = (A†)∗A∗ABCC∗(C†)∗ = (A†)∗(A∗ABCC∗)(C†)∗ def= P2N2Q2.

Then, (1.2) is from (P2N2Q2)† = Q†
2N

†
2P †

2 . Write

ABC = AA∗(A†)∗B(C†)∗C∗C = AA∗[ (A†)∗B(C†)∗ ]C∗C def= P3N3Q3.

Then, (P3N3Q3)† = Q†
3N

†
3P †

3 is (1.3). Write

ABC = (AA∗)†AA∗ABCC∗C(C∗C)†= (AA∗)†(AA∗ABCC∗C)(C∗C)†

def= P4N4Q4.
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Then, (P4N4Q4)† = Q†
4N

†
4P †

4 is (1.4). Write

ABC = AB(AB)†ABC(BC)†BC = AB[ (AB)†ABC(BC)† ]BC

def= P5N5Q5.

Then, (P5N5Q5)† = Q†
5N

†
5P †

5 is (1.5). Write

ABC = [ (AB)† ]∗(AB)∗ABC(BC)[ (BC)† ]∗

= [ (AB)† ]∗[ (AB)∗ABC(BC)∗ ][ (BC)† ]∗ def= P6N6Q6.

Then, (P6N6Q6)† = Q†
6N

†
6P †

6 becomes (1.6). Write

ABC = AB(AB)∗[ (AB)† ]∗B†[ (BC)† ]∗(BC)∗BC

= [ AB(AB)∗ ]{[ (AB)† ]∗B†[ (BC)† ]∗}[ (BC)∗BC ] def= P7N7Q7.

Then, (P7N7Q7)† = Q†
7N

†
7P †

7 becomes (1.7).

It has been shown that the rank of matrix is a simple and powerful
method for investigating the relations between any two matrix expres-
sions involving generalized inverses. In fact, any two matrices A and
B of the same size are equal if and only if r( A − B ) = 0. If one can
find some nontrivial formulas for the rank of A−B, then necessary and
sufficient conditions for A = B to hold can be derived from these rank
formulas. As examples, several simple rank formulas for the differences
of matrices found by the present author are given below

r( AkA† − A†Ak ) = r

[
Ak

A∗

]
+ r[ Ak, A∗ ] − 2r(A),

r( A∗A† − A†A∗ ) = r( AA∗A2 − A2A∗A ),
r( AB − ABB†A†AB ) = r[ A∗, B ] + r(AB) − r(A) − r(B),

r

(
[ A, B ]† −

[
A†

B†

])
= r[ AA∗B, BB∗A ],

r

(
[ A, B ]†[ A, B ] −

[
A†A 0

0 B†B

])
= r(A) + r(B) − r[ A, B ],

min
A−,B−

r( A− − B− ) = r( A − B ) − r

[
A
B

]
− r[ A, B ] + r(A) + r(B),



SOME MIXED-TYPE REVERSE-ORDER LAWS 1331

see Tian [10 14]. For (AB)†, it is shown in Tian [14, 15] that

(1.10)
r[ (AB)†−B†(A†ABB†)†A† ]

= r

[
M

MB∗B

]
+ r[ M, AA∗M ] − 2r(M),

(1.11)
r[ (AB)†−B∗(A∗ABB∗)†A∗ ]

= r

[
M

MB∗B

]
+ r[ M, AA∗M ] − 2r(M),

(1.12)
r[ (AB)†−B†A† − B†(EBFA)†A† ]

= r

[
M

MB∗B

]
+ r[ M, AA∗M ] − 2r(M),

where M = AB. Many consequences can be derived from these rank
equalities. For instance, letting the right-hand sides of these rank
equalities be zero and simplifying by some elementary methods, one can
immediately obtain necessary and sufficient conditions for the matrices
on the left-hand sides to be zero.

In order to simplify ranks of block matrices, we need to use the
following formulas due to Marsaglia and Styan [6]:

r[ A, B ] = r(A) + r( B − AA†B ),
(1.13)

r

[
A B
C 0

]
= r(B) + r(C) + r[ (I − BB†)A(I − C†C) ];

(1.14)

if R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), then

(1.15) r

[
A B
C D

]
= r(A) + r( D − CA†B ).

In general, the rank of the Schur complement D − CA†B is

(1.16) r( D − CA†B ) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A),
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which is derived from (1.15) and A∗(A∗AA∗)†A∗ = A†, see [17].
Another rank formula widely used in this paper is given below.

Lemma 1.1 [11, 15]. Suppose X1, X2 ∈ Cm×n. Then they are
two outer inverses of some n×m matrix, i.e., there is an M such that
X1MX1 = X1 and X2MX2 = X2, if and only if

(1.17) r( X1 − X2 ) = r

[
X1

X2

]
+ r[ X1, X2 ] − r(X1) − r(X2).

The “only if” part is proved in [11]; the “if” part is given in [15]. In
addition, we use the following properties, see [1, 3, 7] when simplifying
various rank equalities:

(1.18) R(B) ⊆ R(A) ⇐⇒ r[ A, B ] = r(A),

(1.19) R(A) ⊆ R(B) and r(A) = r(B) =⇒ R(A) = R(B),

(1.20) R(A) = R(AA∗) = R(AA∗A) = R(AA†) = R[ (A†)∗ ],

(1.21) R(A∗) = R(A∗A) = R(A∗AA∗) = R(A†) = R(A†A),

(1.22) r(AB†) = r(AB∗), R(AB†) = R(AB∗),

(1.23) R(A1) = R(A2)
and R(B1) = R(B2) =⇒ r[ A1, B1 ] = r[ A2, B2 ].

2. Main results. In this section, we shall establish a set of rank
formulas associated with (1.1) (1.8), and then derive from these rank
formulas necessary and sufficient conditions for (1.1) (1.8) to hold.

Theorem 2.1. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q and let
M = ABC. Then
(2.1)

r[ M† − C†(A†MC†)†A† ] = r

[
M

MC∗C

]
+ r[ M, AA∗M ] − 2r(M).

In particular, the reverse-order law (1.1) holds if and only if M satisfies
the following two range equalities

(2.2) R(AA∗M) = R(M) and R(C∗CM∗) = R(M∗).
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Proof. Let X1 = C†(A†MC†)†A†. It is easy to verify that

MX1M = M [ C†(A†MC†)†A† ]M
= A(A†MC†)(A†MC†)†(A†MC†)C
= A(A†MC†)C = M

and

X1MX1 = [ C†(A†MC†)†A† ]M [ C†(A†MC†)†A† ]
= C†(A†MC†)†(A†MC†)(A†MC†)†A†

= C†(A†MC†)†A† = X1.

Hence, the matrix X1 is a reflexive generalized inverse of M with
r(X1) = r(M). Applying (1.17) to M† − X1 gives

(2.3) r( M† − X1 ) = r

[
M†

X1

]
+ r[ M†, X1 ] − 2r(M).

Note that

R(X1) ⊆ R[ C†(A†MC†)† ] = R[ C†(A†MC†)∗ ] = R[ C†B∗A∗(A†)∗ ]
⊆ R(C†B∗A∗),

and also note that r(X1) = r(C†B∗A∗) = r(M). Hence, R(X1) =
R(C†B∗A∗) by (1.19). Then we see by (1.23) that

r[ M†, X1 ] = r[ M∗, C†B∗A∗ ].

From the following two equalities

C∗C[ M∗, C†B∗A∗ ] = [ C∗CM∗, C∗CC†B∗A∗ ] = [ C∗CM∗, M∗ ]

and

C†(C†)∗[ C∗CM∗, M∗ ] = [ C†(C†)∗C∗CC∗B∗A∗, C†(C†)∗C∗B∗A∗ ]
= [ M∗, C†B∗A∗ ],

we also obtain r[ M∗, C†B∗A∗ ] = r[ C∗CM∗, M∗ ]. Hence,

r[ M†, X1 ] = r[ C∗CM∗, M∗ ] = r

[
M

MC∗C

]
.
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Similarly, we obtain

r

[
M†

X1

]
= r

[
M∗

M∗AA∗

]
= r[ M, AA∗M ].

Thus, (2.3) is reduced to (2.1). Letting the right-hand side of (2.1) be
zero, we obtain (2.2) by (1.18) and (1.19).

As a special case, if R(B) ⊆ R(A∗) and R(B∗) ⊆ R(C), then (2.1)
becomes

(2.4) r( M† − C†B†A† ) = r

[
M

MC∗C

]
+ r[ M, AA∗M ] − 2r(M).

In particular, the reverse-order law (ABC)† = C†B†A† holds if and
only if ABC satisfies (2.2). Moreover, if both A and C are nonsingular,
then

(2.5) r( M† − C−1B†A−1 ) = r

[
M

MC∗C

]
+ r[ M, AA∗M ] − 2r(M),

and the reverse-order law (ABC)† = C−1B†A−1 holds if and only if
ABC satisfies (2.2). Results (2.4) and (2.5) were given in Tian [11].

Theorem 2.2. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q and let
M = ABC. Then
(2.6)

r[ M† − C∗(A∗MC∗)†A∗ ] = r

[
M

MC∗C

]
+ r[ M, AA∗M ] − 2r(M).

In particular, the reverse-order law (1.2) holds if and only if M satisfies
(2.2).

Proof. Let X2 = C∗(A∗MC∗)†A∗. Then it is easy to verify that

MX2M = MC∗(A∗MC∗)†A∗M
= (A†)∗(A∗MC∗)(A∗MC∗)†(A∗MC∗)(C†)∗

= (A†)∗A∗MC∗(C†)∗ = M
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and

X2MX2 = C∗(A∗MC∗)†A∗MC∗(A∗MC∗)†A∗

= C∗(A∗MC∗)†(A∗MC∗)(A∗MC∗)†A∗

= C∗(A∗MC∗)†A∗ = X2.

These two results imply that C∗(A∗MC∗)†A∗ is a reflexive generalized
inverse of M . Hence by (1.17)

(2.7) r( M† − X2 ) = r

[
M†

X2

]
+ r[ M†, X2 ] − 2r(M).

From (1.18) (1.23) we also find that

r

[
M†

X2

]
= r

[
M∗

M∗AA∗

]
= r[ M, AA∗M ]

and

r[ M†, X2 ] = r[ M∗, C∗CM∗ ] = r

[
M

MC∗C

]
.

Thus, (2.6) follows from (2.7).

Theorem 2.3. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q and let
M = ABC. Then

(2.8) r{M† − (C∗C)†[ (C†B∗A†)† ]∗(AA∗)† }
= r

[
M

M(C∗C)2

]
+ r[ M, (AA∗)2M ] − 2r(M).

In particular, the reverse-order law (1.3) holds if and only if

(2.9) R[ (AA∗)2M ] = R(M) and R[ (C∗C)2M∗ ] = R(M∗).

Proof. Let X3 = (C∗C)†[ (C†B∗A†)† ]∗(AA∗)†. Then it is easy to
verify that

MX3M = ABC(C∗C)†[ (C†B∗A†)† ]∗(AA∗)†ABC

= AB(C†)∗[ (C†B∗A†)† ]∗(A†)∗BC

= AA∗[ (A†)∗B(C†)∗ ][ (C†B∗A†)† ]∗[ (A†)∗B(C†)∗ ]C∗C
= AA∗[ (A†)∗B(C†)∗ ]C∗C = M
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and

X3MX3 = [ (C†B∗A†)† ]∗(AA∗)†ABC(C∗C)†[ (C†B∗A†)† ]∗(AA∗)†

= [ (C†B∗A†)† ]∗(A†)∗B(C†)∗[ (C†B∗A†)† ]∗(AA∗)† = X3.

Hence, X3 is a reflexive generalized inverse of M , and r(X3) = r(M).
Applying (1.17) (1.23) to M† − X3 gives

(2.10) r( M† − X3 ) = r

[
M†

X3

]
+ r[ M†, X3 ] − 2r(M),

where

r

[
M†

X3

]
= r

[
M∗

M∗(AA∗)2

]
= r[ M, (AA∗)2M ]

and

r[ M†, X3 ] = r[ M∗, (C∗C)2M∗ ] = r

[
M

M(C∗C)2

]
.

Hence, (2.10) is reduced to (2.8). Let the right-hand side of (2.8) be
zero, and notice r[ (AA∗)2M ] = r[ M(C∗C)2 ] = r(M). Then we obtain
(2.9) by (1.18) and (1.19).

Moreover, the right-hand sides of (1.4) (1.7) are all reflexive general-
ized inverses of ABC. We leave the verification of these results for the
reader. In these cases, we are able to find by (1.17) (1.23) the following
three theorems.

Theorem 2.4. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then

(2.11)
r[ M†−C∗C(AA∗MC∗C)†AA∗ ]

= r

[
M

M(C∗C)2

]
+ r[ M, (AA∗)2M ] − 2r(M).

In particular, the reverse-order law (1.4) holds if and only if M satisfies
(2.9); i.e., (1.3) and (1.4) are equivalent.
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Theorem 2.5. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then

(2.12)
r{M† − (BC)†[ (AB)†ABC(BC)† ]†(AB)† }

= r

[
M

M(BC)∗(BC)

]
+ r[ M, (AB)(AB)∗M ] − 2r(M)

(2.13)
r{M†− (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗ }

= r

[
M

M(BC)∗(BC)

]
+ r[ M, (AB)(AB)∗M ] − 2r(M).

Hence, the reverse-order laws in (1.5) and (1.6) are equivalent, and
they hold if and only if M satisfies
(2.14)

R[ (AB)(AB)∗M ] = R(M) and R[ (BC)∗(BC)M∗ ] = R(M∗).

If r(ABC) = r(B), then r(AB) = r(BC) = r(B), and then
(AB)†AB = B†B and BC(BC)† = BB†. Hence, (2.14) is satisfied
and (1.5) is reduced to (ABC)† = (BC)†B(AB)†. This was proved in
Tian [8].

Theorem 2.6. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then

(2.15)

r{M† − [ (BC)∗(BC) ]†{[ (BC)†(B∗)†(AB)† ]†}∗[ (AB)(AB)∗ ]† }
= r

[
M

M [(BC)∗(BC)]2
]

+ r[ M, [(AB)(AB)∗]2 M ] − 2r(M).

In particular, the reverse-order law (7) holds if and only if M satisfies

R{ [ (AB)(AB)∗]2M } = R(M)

and

R{[ (BC)∗(BC) ]2M∗} = R(M∗).(2.16)
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Note that the right-hand sides of (1.1) (1.7) are all outer inverses of
ABC. Some rank equalities for the differences of these outer inverses
can also be derived from by (1.17).

Theorem 2.7. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then

(2.17)
r[ C†(A†MC†)†A† − C∗(A∗MC∗)†A∗ ]

= r

[
M

M(C∗C)2

]
+ r[ M, (AA∗)2M ] − 2r(M),

(2.18)
r{C†(A†MC†)†A† − (C∗C)†[ (C†B∗A†)† ]∗(AA∗)† }

= r

[
M

MC∗C

]
+ r[ M, Å∗M ] − 2r(M),

(2.19)
r[ C∗(A∗MC∗)†A∗ − C∗C(AA∗ABCC∗C)†AA∗ ]

= r

[
M

MC∗C

]
+ r[ M, Å∗M ] − 2r(M).

Observe that the right-hand sides of (2.1), (2.6), (2.18) and (2.19) are
all identical. We obtain the following theorem.

Theorem 2.8. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then the following statements are equivalent:

(a) (ABC)† = C†(A†ABCC†)†A†.

(b) (ABC)† = C∗(A∗ABCC∗)†A∗.

(c) C†(A†ABCC†)†A† = (C∗C)†[ (C†B∗A†)† ]∗(AA∗)†.

(d) A(CC†B∗A†A)†C = AA∗[ (ABC)† ]∗C∗C.

(e) C∗(A∗ABCC∗)†A∗ = C∗C(AA∗ABCC∗C)†AA∗.

(f) R(AA∗M) = R(M) and R(C∗CM∗) = R(M∗).

From (2.8), (2.11) and (2.17) we obtain the following result.
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Theorem 2.9. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then the following statements are equivalent:

(a) (ABC)† = (C∗C)†[ (C†B∗A†)† ]∗(AA∗)†.

(b) (ABC)† = C∗C(AA∗ABCC∗C)†AA∗.

(c) C†(A†MC†)†A† = C∗(A∗MC∗)†A∗.

(d) R[ (AA∗)2M ] = R(M) and R[ (C∗C)2M∗ ] = R(M∗).

In addition, we are also able to establish by (1.17) the following rank
equalities

(2.20)
r{M† − (CC∗C)†[ (A∗A)†B(CC∗)† ]†(AA∗A)† ] }

= r

[
M

M(C∗C)3

]
+ r[ M, (AA∗)3M ] − 2r(M),

(2.21)
r{M† − C∗CC∗[ (A∗A)2B(CC∗)2 ]†A∗AA∗}

= r

[
M

M(C∗C)3

]
+ r[ M, (AA∗)3M ] − 2r(M),

(2.22)
r{M† − [ (C∗C)† ]2[ (A∗AA∗)†B(C∗CC∗)† ]†[ (AA∗)† ]2}

= r

[
M

M(C∗C)4

]
+ r[ M, (AA∗)4M ] − 2r(M),

(2.23)
r{M† − (B∗B)2[ (AA∗)2M(C∗C)2 ]†(AA∗)2}

= r

[
M

M(C∗C)4

]
+ r[ M, (AA∗)4M ] − 2r(M),

(2.24)
r[ C†(A†MC†)†A† − C∗C(AA∗MC∗C)†AA∗ ]

= r

[
M

M(C∗C)3

]
+ r[ M, (AA∗)3M ] − 2r(M).
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Equalities (2.20), (2.21) and (2.24) imply the following result.

Theorem 2.10. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cp×q, and let
M = ABC. Then the following statements are equivalent:

(a) (ABC)† = (CC∗C)†[ (A∗A)†B(CC∗)† ]†(AA∗A)†.

(b) (ABC)† = C∗CC∗[ (A∗A)2B(CC∗)2 ]†A∗AA∗.

(c) C†(A†MC†)†A† = C∗C(AA∗MC∗C)†AA∗.

(d) (A†MC†)† = CC∗C(AA∗MC∗C)†AA∗A.

(e) R[ (AA∗)3M ] = R(M) and R[ (C∗C)3M∗ ] = R(M∗).

The following consequence is derived from the two formulas in (2.22)
and (2.23).

Theorem 2.11. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then the following statements are equivalent:

(a) (ABC)† = [ (C∗C)† ]2[ (A∗AA∗)†B(C∗CC∗)† ]†[ (AA∗)† ]2.

(b) (ABC)† = (B∗B)2[ (AA∗)2M(C∗C)2 ]†(AA∗)2.

(c) R[ (AA∗)4M ] = R(M) and R[ (C∗C)4M∗ ] = R(M∗).

Some more rank equalities related to the right-hand sides of (1.5),
(1.6) and (1.7) can also be established. For instance,

(2.25)

r{ (BC)†[ (AB)†M(BC)† ]†(AB)† − (BC)∗[ (AB)∗M(BC)∗ ]†(AB)∗ }

= r

[
M

M [ (BC)∗(BC) ]2
]

+ r[ M, [ (AB)(AB)∗ ]2M ] − 2r(M),

(2.26)

r{ (BC)†[ (AB)†M(BC)† ]†(AB)†

− [ (BC)∗(BC) ]†{[ (BC)†(B∗)†(AB)† ]†}∗[ (AB)(AB)∗ ]† }

= r

[
M

M(BC)∗BC

]
+ r[ M, AB(AB)∗M ] − 2r(M),
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(2.27)

r{ (ABC)† − (BC)∗(BC)[ (AB)(AB)∗M(BC)∗(BC) ]†(AB)(AB)∗ }
= r

[
M

M [ (BC)∗(BC) ]2
]

+ r[ M, [ (AB)(AB)∗ ]2M ] − 2r(M).

The following consequence is derived from (2.12), (2.13) and (2.26).

Theorem 2.12. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cp×q, and let
M = ABC. Then the following statements are equivalent:

(a) (ABC)† = (BC)†[ (AB)†ABC(BC)† ]†(AB)†.

(b) (ABC)† = (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗.

(c) M†
2 (M†

1MM†
2 )†M†

1 = (M∗
2 M2)†{[ M†

2 (B∗)†M†
1 ]†}∗( M1M

∗
1 )†,

where M1 = AB and M2 = BC.

(d) R[ (AB)(AB)∗M ] = R(M) and R[ (BC)∗(BC)M∗ ] = R(M∗).

It can also be derived from (2.15), (2.25) and (2.27) that

Theorem 2.13. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let
M = ABC. Then the following four statements are equivalent:

(a) (ABC)† = [ (BC)∗(BC) ]†{[ (BC)†(B∗)†(AB)† ]†}∗[ (AB)(AB)∗ ]†.

(b) (ABC)† = (BC)∗(BC)[ (AB)(AB)∗M(BC)∗(BC) ]†(AB)(AB)∗.

(c) (BC)†[ (AB)†M(BC)† ]†(AB)† = (BC)∗[ (AB)∗M(BC)∗ ]†(AB)∗.

(d) R[ ((AB)(AB)∗)2M ] = R(M) and R[ ((BC)∗(BC))2M∗ ] =
R(M∗).

Some other rank equalities derived from the right-hand sides of
(1.1) (1.7) are given below

(2.28) r{C†(A†ABCC†)†A†− (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗ }
= r

[
M

M(BC)∗(BC)C∗C

]
+ r[ M, AA∗(AB)(AB)∗M ]− 2r(M),
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(2.29) r{C∗(A∗ABCC∗)†A∗ − (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗ }
= r

[
MC∗C

M(BC)∗BC

]
+ r[ AA∗M, AB(AB)∗M ] − 2r(M),

(2.30)

r{ (C∗C)†[ (C†B∗A†)† ]∗(AA∗)†− (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗ }
= r

[
M

M(BC)∗(BC)(C∗C)2

]
+ r[ M, (AA∗)2(AB)(AB)∗M ]− 2r(M).

From (2.28), (2.29) and (2.30), we see that

C†(A†MC†)†A† = (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗

holds if and only if

R[ AA∗(AB)(AB)∗M ] = R(M)

and

R[ C∗C(BC)∗(BC)M∗ ] = R(M∗);

the equality

C∗(A∗ABCC∗)†A∗ = (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗

holds if and only if

R(AA∗M) = R[ (AB)(AB)∗M ]

and

R(C∗CM∗) = R[ (BC)∗(BC)M∗ ];

the equality

(C∗C)†[ (C†B∗A†)† ]∗(AA∗)† = (BC)∗[ (AB)∗ABC(BC)∗ ]†(AB)∗

holds if and only if

R[ (AA∗)2(AB)(AB)∗M ] = R(M)
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and
R[ (C∗C)2(BC)∗(BC)M∗ ] = R(M∗).

Moreover, some mixed forms of the reverse-order laws in (1.1) (1.7) can
be derived. For example, applying (1.5) to the product A†ABCC† =
(A†A)B(CC†) in (1.1) gives the following reverse-order law for (ABC)†:

(2.31) (ABC)† = C†(BCC†)†[ (AB)†ABC(BC)† ]†(A†AB)†A†.

It is easy to verify that the right-hand side of (2.31) is a reflexive
generalized inverse of M = ABC. Hence, we can find by (1.16) (1.23)
the following rank equality

(2.32) r{ (ABC)† − C†(BCC†)†[ (AB)†M(BC)† ]†(A†AB)†A† }

= r

⎡
⎣ M 0

0 BC
M(BC)∗BC MC∗C

⎤
⎦ + r

[
M 0 AB(AB)∗M
0 AB AA∗M

]

− r(AB) − r(BC) − 2r(M).

In particular, (2.31) holds if and only if A, B and C satisfy the following
four conditions

R[ (AB)(AB)∗M ] = R(M), R(AA∗M) ⊆ R(AB),
R[ (BC)∗(BC)M∗ ] = R(M∗), R(C∗CM∗) ⊆ R[ (BC)∗ ].

Applying (1.5) to the product A∗ABCC∗ = (A∗A)B(CC∗) in (1.2)
gives the following reverse-order law for (ABC)†:

(2.33) (ABC)† = C∗(BCC∗)†[ (AB)†ABC(BC)† ]†(A∗AB)†A∗.

It is easy to verify that the right-hand side of (2.33) is a reflexive
generalized inverse of M = ABC. In this case, the following rank
equality

(2.34) r{ (ABC)†− C∗(BCC∗)†[ (AB)†M(BC)† ]†(A∗AB)†A∗ }

= r

⎡
⎣ M 0

0 BCC∗C
M(BC)∗BC M

⎤
⎦+ r

[
M 0 AB(AB)∗M
0 AA∗AB M

]

− r(AB) − r(BC) − 2r(M)
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is derived from (1.16) (1.23). In particular, (2.33) holds if and only if
A, B and C satisfy the following four conditions

R[ (AB)(AB)∗M ] = R(M), R(M) ⊆ R(AA∗AB),
R[ (BC)∗(BC)M∗ ] = R(M∗), R(M∗) ⊆ R[ C∗C(BC)∗ ].

Finally, we show a rank equality related to the reverse-order law in
(1.8).

Theorem 2.14. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and suppose
that R(B) ⊆ R(A∗) and R(B∗) ⊆ R(C). Then

(2.35)

r[ (ABC)†− ( Iq− (C†FB)(C†FB)† )C†B†A†( Im− (EBA†)†(EBA†) ) ]

= m + q − r(A) − r(C).

Hence, the equality in (1.8) holds if and only if r(A) = m and r(C) = q.
In particular, if both A and C are nonsingular matrices, then ABC
satisfies the identity

(ABC)†

= [ Iq− (C−1FB)(C−1FB)† ]C−1B†A−1[ Im− (EBA−1)†(EBA−1) ].

Proof. Let M = ABC and

N = [ Iq − (C†FB)(C†FB)† ]C†B†A†[ Im − (EBA†)†(EBA†) ].

It is easy to verify that under R(B) ⊆ R(A∗) and R(B∗) ⊆ R(C), the
matrix N is an outer inverse of M . Hence by (1.17)

(2.36) r( M† − N ) = r

[
M†

N

]
+ r[ M†, N ] − r(M) − r(N).

Simplifying the ranks of the matrices in this expression by (1.13) (1.16)
gives r(M) = r(B), r(N) = r(B) and

r

[
M†

N

]
= m + r(B) − r(C), r[ M†, N ] = q + r(A) − r(C).
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The process is tedious and therefore is omitted here. Substituting these
results into (2.36) yields (2.35).

Remark 2.15. It can be seen from (1.10) (1.12) that the following
three reverse-order laws

(AB)† = B†A† − B†(EBFA)†A†,(2.37)
(AB)† = B†(A†ABB†)†A†,(2.38)
(AB)† = B∗(A∗ABB∗)†A∗(2.39)

are equivalent. Equality (2.37) is noticed by the author when comparing
different reflexive generalized inverses of the block matrix W =

[
In B

A 0

]
.

Two reasonable extensions of (2.37) to a triple matrix product ABC
are given as follows

(2.40) (ABC)† = (BC)†B(AB)† − (BC)†B(EBCBFAB)†B(AB)†,
(2.41) (ABC)† = C†B†A† − C†(EBCBFAB)†A†,

both of which are derived from decompositions of the block matrix

(2.42) W =
[

B BC
AB 0

]

and its reflexive generalized inverses. In fact, W can be decomposed as

W =
[

In 0
A Im

] [
B 0
0 −ABC

] [
Ip C
0 Iq

]
def= U1J1V1

and

W =
[

In

[
In − (BC)(BC)†

]
B(AB)†

0 Im

] [
T BC

AB 0

] [
Ip 0

(BC)†B Iq

]

def= U2J2V2,

where T = [ In − (BC)(BC)† ]B[ Iq − (AB)†(AB) ]. From these two
decompositions of W , we obtain two reflexive generalized inverses of
W as follows
(2.43)

W−
r = V −1

1 J†
1U−1

1 =
[

Ip −C
0 Iq

] [
B† 0
0 −(ABC)†

] [
In 0
−A Im

]

=
[

B† − C(ABC)†A C(ABC)†

(ABC)†A −(ABC)†

]
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and
(2.44)

W−
r = V −1

2 J†
2U−1

2

=
[

Ip 0
−(BC)†B Iq

] [
T † (AB)†

(BC)† 0

]

×
[

In − [
In − (BC)(BC)†

]
B(AB)†

0 Im

]

=
[

T † (AB)† − T †B(AB)†

(BC)† − (BC)†BT † (BC)†BT †B(AB)† − (BC)†B(AB)†

]
.

Comparing the lower-right blocks of (2.43) and (2.44) leads to the
mixed-type reverse-order law (2.40). Letting the upper left blocks of
(2.43) and (2.44) be equal gives

(2.45) B† − C(ABC)†A = [ ( In − PBC )B( Ip − P(AB)∗ ) ]†,

which suggests the reverse-order law for (ABC)† in (2.41). As of
this writing, the author has not yet found satisfactory necessary and
sufficient conditions for (2.40), (2.41) and (2.45) to hold.

Remark 2.16. In addition to the reverse-order laws investigated in the
paper, the Moore-Penrose inverses of AB and ABC may satisfy some
identities. The following identities are shown in Tian and Cheng [16]

(AB)† = (A†AB)†(ABB†)†,
(AB)† = [ (A†)∗B ]†(B†A†)∗[ A(B†)∗ ]†,

(ABC)† = (A†ABC)†B(ABCC†)†,
(ABC)† = [ (AB)†ABC ]†B†[ ABC(BC)† ]†,
(ABC)† = [ (ABB†)†ABC ]†B[ ABC(B†BC)† ]†,
(ABC)† = [ (A†)∗BC ]†(A†)∗B(C†)∗[ AB(C†)∗ ]†,
(ABC)† = { [ A(B†)∗ ]†ABC }†B{ABC[ (B†)∗C ]† }†,
(ABC)† = { [ (AB)† ]∗C }†[ (AB)† ]∗B†[ (BC)† ]∗{A[ (BC)† ]∗ }†.

It is expected that more reverse-order laws for the triple product ABC
can be constructed, and necessary and sufficient conditions for them to
hold can be determined by the matrix rank method.
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