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SOME EXTENSIONS OF THE MARKOV
INEQUALITY FOR POLYNOMIALS

D. DRYANOV, R. FOURNIER AND S. RUSCHEWEYH

ABSTRACT. Let D denote the unit disc of the complex
plane and Pn the class of polynomials of degree at most n
with complex coefficients. We prove that

max
z∈∂D

∣∣∣pk(z) − pk(z̄)

z − z̄

∣∣∣ ≤ n1+k max
0≤j≤n

∣∣∣∣p(eijπ/n) + p(e−ijπ/n)

2

∣∣∣∣ ,

where p0 := p belongs to Pn and for k ≥ 0, pk+1(z) := zp′k(z).
We also obtain a new proof of a well-known inequality of
Duffin and Schaeffer and sharpenings of some other classical
inequalities.

Introduction. Let Pn be the class of polynomials

p(z) =
n∑

k=0

ak(p)zk

of degree at most n with complex coefficients. We define, together with
D := {z | |z| < 1},

‖p‖D := max
z∈∂D

|p(z)| and ‖p‖[−1,1] := max
−1≤x≤1

|p(x)|.

The famous inequalities of, respectively, Bernstein and Markov state
that for any p ∈ Pn,

‖p′‖D ≤ n‖p‖D(1)

and

‖p′‖[−1,1] ≤ n2‖p‖[−1,1],(2)
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while

(3) ‖p′‖[−1,1] ≤ n2 max
0≤j≤n

∣∣p(
cos(jπ/n)

)∣∣

is a far reaching extension of (2) obtained by Duffin and Schaeffer
[3] in 1941. We refer the reader to the recent book by Rahman and
Schmeisser [4] or to the survey paper by Bojanov [1] for historical
remarks and generalizations of these inequalities.

Let us consider a polynomial p(z) :=
∑n

k=0 ak(p)zk in Pn and an
associated polynomial P (z) :=

∑n
k=0 ak(p)Tk(z) where Tk denotes, for

each integer k ≥ 0, the kth Chebyshev polynomial, i.e., Tk(cos θ) =
cos(kθ) for any real number θ. We have

P (cos θ) =
p(eiθ) + p(e−iθ)

2

and, applying (3) to P , we obtain the inequality

(4)
∣∣∣∣e

iθp′(eiθ) − e−iθp′(e−iθ)
eiθ − e−iθ

∣∣∣∣ ≤ n2 max
0≤k≤n

∣∣∣∣p(eikπ/n) + p(e−ikπ/n)
2

∣∣∣∣
valid for any real θ and equivalent to the Duffin and Schaeffer inequality.

Given a nonnegative number t and a polynomial p(z) :=
∑n

k=0 ak(p)zk

∈ Pn we define

pt(z) :=
n∑

k=0

ktak(p)zk.

Clearly, pt ∈ Pn, p0 = p and pt+1(z) = zp′t(z) for t ≥ 0. Our main
result is the following

Theorem 1. For any integer j ≥ 0 and polynomial p ∈ Pn,

(5)
∣∣∣∣pj(eiθ) − pj(e−iθ)

eiθ − e−iθ

∣∣∣∣ ≤ n1+j max
0≤k≤n

∣∣∣∣p(eikπ/n) + p(e−ikπ/n)
2

∣∣∣∣
for all real θ.
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Our proof of Theorem 1 is completely independent of the known
proofs of (3). This Theorem 1 therefore contains (3) as a special case
(j = 1, compare with (4)). It also follows easily from (5) that

(6) |p′j−1(e
iθ)| ≤ nj max

0≤k≤n

∣∣∣∣p(ei(θ+kπ/n)) + p(ei(θ−kπ/n))
2

∣∣∣∣ , θ real,

for all p ∈ Pn and integer j ≥ 1. It is therefore also clear that our
Theorem 1 contains an improvement of Bernstein’s inequality (1).

Some lemmas. Using the notation
n∑′′

j=0

aj :=
a0

2
+

n−1∑
j=1

aj +
an

2
,

our auxiliary results are as follows:

Lemma 1. For any real ϕ, n ≥ 2 and z ∈ D

z

(1 − zeiϕ)(1 − ze−iϕ)
=

n∑′′

j=0

cn(j, ϕ)
2

(
1

1 − zeijπ/n
+

1
1 − ze−ijπ/n

)

− 2(zn − cos(nϕ))zn+1

(1 − zeiϕ)(1 − ze−iϕ)(1 − z2n)
,

where

cn(j, ϕ) =
(−1)j

n

cos(jπ) − cos(nϕ)
cos(jπ/n) − cos(ϕ)

and
n∑′′

j=0

|cn(j, ϕ)| ≤ n.

Lemma 2. For any real ϕ, n ≥ 2 and z ∈ D,

2(1 − z cos ϕ)
(1 − zeiϕ)(1 − ze−iϕ)

=
n∑′′

j=0

dn(j, ϕ)
2

(
1

1 − zeijπ/n
+

1
1 − ze−ijπ/n

)

+
2zn+1(cos(n + 1)ϕ − cos(n − 1)ϕ)

(1 − zeiϕ)(1 − ze−iϕ)(1 − z2n)
,
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where

dn(j, ϕ) =
(−1)j−1

n

cos(n + 1)ϕ − cos(n − 1)ϕ
cos(jπ/n) − cos(ϕ)

and
n∑′′

j=0

|dn(j, ϕ)| ≤ 2
∣∣∣∣ n sin ϕ

sin(nϕ)

∣∣∣∣.

We only prove Lemma 2 in details. Let us fix ϕ ∈ R and consider

Lϕ(z) :=
(1 − z cos ϕ)(1 − z2n) − zn+1(cos(n + 1)ϕ − cos(n − 1)ϕ)

(1 − zeiϕ)(1 − ze−iϕ)

together with

Rϕ(z) :=
1
4n

n∑
j=−n+1

(−1)j−1 cos(n + 1)ϕ − cos(n − 1)ϕ
cos(jπ/n) − cos(ϕ)

1 − z2n

1 − zeijπ/n
.

It is readily seen that Lϕ and Rϕ are polynomials in P2n−1. A simple
computation gives

Rϕ(e−ijπ/n) = Lϕ(e−ijπ/n) = (−1)j sin(nϕ) sin(ϕ)
cos(jπ/n) − cos(ϕ)

at the 2n distinct points e−ijπ/n, j = −n + 1, . . . , n. Clearly then the
polynomials Lϕ and Rϕ must coincide on the whole complex plane and
the identity of Lemma 2 follows. We further have with Z = eiϕ

n∑′′

j=0

1
| cos jπ/n − cos ϕ|

=
n∑′′

j=0

2
|1 − Zeijπ/n||1 − Ze−ijπ/n|

=
1

|1 − Z|2 +
n−1∑
j=1

2
|1 − Zeijπ/n||1 − Ze−ijπ/n| +

1
|1 + Z|2

≤ 1
|1 − Z|2 +

n−1∑
j=1

1
|1 − Zeijπ/n|2 +

1
|1 − Ze−ijπ/n|2 +

1
|1 + Z|2
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=
2n−1∑
j=0

1
|1 − wjZ|2 =

2n−1∑
j=0

−wjZ

(1 − wjZ)2
=

n2

sin2(nϕ)

where {wj}2n−1
j=0 is the set of distinct 2nth roots of unity. It follows

that
n∑′′

j=0

|dn(j, ϕ)| =
n∑′′

j=0

2| sin(nϕ)|| sin(ϕ)|
n| cos jπ/n − cos ϕ| ≤

2n| sin ϕ|
| sin nϕ| .

This completes the proof of Lemma 2.

A similar proof holds for Lemma 1. It is based on the fact that the
polynomials (in P2n−1)

�ϕ(z) := z
1 − einϕzn

1 − eiϕz

1 − e−inϕzn

1 − e−iϕz

and

rϕ(z) :=
1
2n

n∑
j=−n+1

(−1)j cos(jπ) − cos(nϕ)
cos(jπ/n) − cos(ϕ)

1 − z2n

1 − eijπ/nz

also satisfy rϕ(e−ijπ/n) = �ϕ(e−ijπ/n), j = −n+1, . . . , n. A proof that

n∑′′

j=0

|cn(j, ϕ)| ≤ n

can be found in [2].

We end this section by an application of Lemma 2.

Corollary 1. Let p ∈ Pn and ϕ ∈ R. Then

|p(eiϕ) + p(e−iϕ)|

≤

⎧⎪⎨
⎪⎩

n
∣∣∣ sin(ϕ)
sin(nϕ)

∣∣∣ max0≤j≤n |p(eijπ/n) + p(e−ijπ/n)| if e2inϕ �= 1,

max0≤j≤n |p(eijπ/n) + p(e−ijπ/n)| if e2inϕ = 1.
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We first define the Hadamard product of two analytic functions
f(z) :=

∑∞
n=0 an(f)zn and g(z) :=

∑∞
n=0 an(g)zn by

f � g(z) :=
∞∑

n=0

an(f)an(g)zn.

Then for any p ∈ Pn and ϕ ∈ R, we obtain from Lemma 2,

(7)

p(zeiϕ) + p(ze−iϕ) =
(

1
1 − zeiϕ

+
1

1 − ze−iϕ

)
� p(z)

=
2(1 − z cos(ϕ))

(1 − zeiϕ)(1 − ze−iϕ)
� p(z)

=
n∑′′

j=0

dn(j, ϕ)
p(zeijπ/n) + p(ze−ijπ/n)

2
.

Therefore,

|p(eiϕ) + p(e−iϕ)| ≤ 1
2

n∑′′

j=0

|dn(j, ϕ)| |p(eijπ/n) + p(e−ijπ/n)|

≤
∣∣∣∣n sin(ϕ)
sin(nϕ)

∣∣∣∣ max
0≤j≤n

|p(eijπ/n) + p(e−ijπ/n)|,

and the result follows. It can also be checked that the above inequality
is strict when p ∈ Pn, n ≥ 2, p �≡ 0, eiϕ /∈ {wj}2n−1

j=0 .

Proof of Theorem 1. Let q ∈ Pn and ϕ ∈ [0, π]. By Lemma 1, we
have

q(zeiϕ) − q(ze−iϕ)
eiϕ − e−iϕ

=
z

(1 − zeiϕ)(1 − ze−iϕ)
� q(z)

=
n∑′′

j=0

cn(j, ϕ)
2

(
q(zeijπ/n) + q(ze−ijπ/n)

)

and in particular for z = 1,

(8)
q(eiϕ) − q(e−iϕ)

eiϕ − e−iϕ
=

n∑′′

j=0

cn(j, ϕ)
q(eijπ/n) + q(e−ijπ/n)

2
.
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Letting now ϕ = 0 in (8) we obtain

q′(1) =
n∑′′

j=0

cn(j, 0)
q(eijπ/n) + q(e−ijπ/n)

2
.

and more generally

(9) eiϕq′(eiϕ) =
n∑′′

j=0

cn(j, 0)
q(ei(ϕ+jπ/n)) + q(ei(ϕ−jπ/n))

2
.

We shall prove the following statement by induction on k ≥ 0: there
exist real numbers αj,k(θ), j = 0, 1, . . . , n, such that for any p ∈ Pn

and n ≥ 1,

(10)
pk(eiθ) − pk(e−iθ)

eiθ − e−iθ
=

n∑
j=0

αj,k(θ)
p(eijπ/n) + p(e−ijπ/n)

2
, θ ∈ R

and
∑n

j=0 |αj,k(θ)| ≤ n1+k, θ ∈ R. The truth of Theorem 1 is clearly a
consequence of (10). A proof of (10) for k = 0, 1 has been given in [2];
clearly such a proof also follows from (8) and Lemma 1. Let us now
assume that (10) is valid for a certain integer k and any polynomial
q ∈ Pn. By (9), we obtain

(11) e±iθp′k(e±iθ) =
n∑′′

j=0

cn(j, 0)
pk(ei(±θ+jπ/n)) + pk(ei(±θ−jπ/n))

2
.

Now, since

pk+1(eiθ) − pk+1(e−iθ)
eiθ − e−iθ

=
eiθp′k(eiθ) − e−iθp′k(e−iθ)

eiθ − e−iθ
,

it follows from (11) that

pk+1(eiθ) − pk+1(e−iθ)
eiθ − e−iθ

=
n∑′′

j=0

cn(j, 0)
pk(eijπ/neiθ) − pk(eijπ/ne−iθ)

2(eiθ − e−iθ)

+
n∑′′

j=0

cn(j, 0)
pk(e−ijπ/neiθ) − pk(e−ijπ/ne−iθ)

2(eiθ − e−iθ)
.
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Applying the induction hypothesis, we get

pk(e±ijπ/neiθ) − pk(e±ijπ/ne−iθ)
eiθ − e−iθ

=
n∑

l=0

α�,k(θ)
p(ei(±jπ/n+�π/n)) + p(ei(±jπ/n−�π/n))

2

with
∑n

�=0 |α�,k(θ)| ≤ n1+k. Finally, we have

pk+1(eiθ) − pk+1(e−iθ)
eiθ − e−iθ

=
1
2

n∑′′

j=0

cn(j, 0)
n∑

�=0

α�,k(θ)
p(ei(j+�)π/n) + p(e−i(j+�)π/n)

2

+
1
2

n∑′′

j=0

cn(j, 0)
n∑

�=0

α�,k(θ)
p(ei(j−�)π/n) + p(e−i(j−�)π/n)

2
.

Clearly, the right-hand side of the above is a sum of the type

n∑
j=0

αj,k+1(θ)
p(eijπ/n) + p(e−ijπ/n)

2
, αj,k+1(θ) real,

and obviously, since

n∑
j=0

|aj,k+1(θ)| ≤
n∑′′

j=0

|cn(j, 0)|
n∑

�=0

|α�,k(θ)| ≤ n · nk+1 = nk+2,

the final result follows.

We shall end this section with some remarks concerning the sharpness
of Theorem 1. Let us first point out that the inequality (5) becomes
an equality for certain choices of polynomials p; indeed

∣∣∣∣pj(eiθ) − pj(e−iθ)
eiθ − e−iθ

∣∣∣∣ = n1+j max
0≤k≤n

∣∣∣∣p(eikπ/n) + p(e−ikπ/n)
2

∣∣∣∣
for any j = 0, 1, 2, . . . , θ = 0 or θ = π and p(z) ≡ Kzn for some
complex constant K. As shown in [2], there are no other cases of
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equality if j = 1 but there are many other cases of equality if j = 0.
To discuss the cases of equality for j > 1 seems to be beyond the scope
of our method. It is not, however, difficult to establish that (compare
with (10)) for k = 0, 1, 2, . . . ,

n∑
j=0

|αj,k(θ)| = n1+k ⇐⇒ θ = 0 or θ = π

i.e., the inequality (5) is always strict if θ �= 0, π and the polynomial p
does not vanish identically. We also remark that the statement∣∣∣∣pj(z) − pj(z̄)

z − z̄

∣∣∣∣ ≤ n

∣∣∣∣pj−1(z) − pj−1(z̄)
z − z̄

∣∣∣∣, z ∈ ∂D, j ≥ 1, p ∈ Pn,

can be seen numerically to be false and therefore cannot yield a simpler
inductive proof of Theorem 1.

Let us notice that the definition of pj(z) :=
∑∞

k=0 kjak(p)zk extends
to positive but not necessarily integer values of j and it is therefore
a legitimate (but apparently hard) question to ask whether or not
Theorem 1 holds for these values of j. In this context, let us mention
that the slightly weaker inequality

|pt|D ≤ nt|p|D, p ∈ Pn

holds for all real t ≥ 1 but does not hold in general for 0 < t < 1. This
unpublished result is due to Mohopatra, Qazi, and Rahman [4, Section
14.5].

Concluding remarks. It is possible to apply the identity of
Lemma 1 to Hadamard products of polynomials of degree greater than
n. For example, for p ∈ Pn+1, we have

(12)
p(eiϕ) − p(e−iϕ)

eiϕ − e−iϕ
=

n∑′′

j=0

cn(j, ϕ)
p(eijπ/n) + p(e−ijπ/n)

2

+ 2an+1(p) cos(nϕ)

and (9) gets transformed into

(13)
eiϕp′(eiϕ) =

n∑′′

j=0

cn(j, 0)
p(ei(ϕ+jπ/n) + p(ei(ϕ−jπ/n))

2

+ 2an+1(p)ei(n+1)ϕ.
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Therefore,

eiϕp′(eiϕ) − e−iϕp′(e−iϕ)
eiϕ − e−iϕ

=
1
2

n∑′′

j=0

cn(j, 0)

×
(

p(eijπ/neiϕ) − p(eijπ/ne−iϕ)
eiϕ − e−iϕ

+
p(e−ijπ/neiϕ) − p(e−ijπ/ne−iϕ)

eiϕ − e−iϕ

)

+ 2an+1(p)
sin(n + 1)ϕ

sin(ϕ)

and applying (12) to the polynomials p(e±ijπ/nz),

eiϕp′(eiϕ) − e−iϕp′(e−iϕ)
eiϕ − e−iϕ

=
1
2

n∑′′

j,�=0

cn(j, 0)cn(�, ϕ)
(

p(ei(j+�)π/n) + p(e−i(j+�)π/n)
2

+
p(ei(j−�)π/n) + p(e−i(j−�)π/n)

2

)

+ 2an+1(p) cos(nϕ)
n∑

j=0

cn(j, 0)(−1)j cos(jπ/n) +2an+1(p)
sin(n+1)ϕ

sin(ϕ)
.

We now use (13) with ϕ = 0 and p(z) ≡ zn+1 and get

(n − 1) =
n∑

j=0

cn(j, 0)(−1)j cos(jπ/n)

and finally, as in the proof of Theorem 1,∣∣∣∣e
iϕp′(eiϕ)− e−iϕp′(e−iϕ)

eiϕ− e−iϕ
− 2an+1(p)

(
sin(n+1)ϕ

sin(ϕ)
+(n−1) cos(nϕ)

)∣∣∣∣
≤ n2 max

0≤j≤n

∣∣∣∣p(eijπ/n) + p(e−ijπ/n)
2

∣∣∣∣ .

Some more of our results can be similarly generalized. For example we
have, given p ∈ Pn+1, ϕ ∈ [0, π],∣∣∣∣p(eiϕ) − p(e−iϕ)

eiϕ − e−iϕ
− 2an+1(p) cos(nϕ)

∣∣∣∣
≤ n max

0≤j≤n

∣∣∣∣p(eijπ/n) + p(e−ijπ/n)
2

∣∣∣∣ .
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