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ON INFINITE DIMENSIONAL DISCRETE TIME
PERIODICALLY CORRELATED PROCESSES

A.R. SOLTANI AND Z. SHISHEBOR

ABSTRACT. Periodically correlated processes with values
in Hilbert spaces are introduced and studied. The harmoniz-
ability of such a process is discussed. The covariance operator
is characterized. Time-dependent spectra on Hilbert spaces
are introduced and a time-dependent spectral density for a
periodically correlated process is given.

1. Introduction. Periodically correlated, PC in short, sequences,
introduced and studied first by Gladyshev in 1961, have recently
received tremendous attention from different authors. This is due
to a variety of applications of this class of nonstationary processes
in different areas of sciences and engineering. The works of Hurd,
Miamee and Salehi, among others (see the references), have elaborated
the theory of periodically correlated processes. The book of Gardner
[3] provides a good view on the applications of the PC processes in
different branches of engineering and physics. Most of the works on
the PC processes are confined to one-dimensional PC processes. The
multi-dimensional processes, to the best of our knowledge, have not
yet been treated in good detail. This article studies the PC sequences
with values in a Hilbert space. The harmonizability, the structure of
the covariance and the existence of a time-dependent spectral density
are topics which are furnished in this article. The article brings the
authors’ works in [18, 19] to the contents of probability theory, together
with a new perspective on the structure of the covariance function. The
approach to spectral representation, presented in this article, is different
from the one employed by Gladyshev, 1961, which was via forming a
correlation matrix, and also from the one employed by Hurd, 1989,
which was via using a certain root of a unitary operator. For recent
works on PC processes, see [10, 17].
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The paper is organized as follows. Section 2 provides some prelimi-
naries. Harmonizability is discussed in Section 3, where it is proved that
a discrete time PC process is the Fourier transform of a spectral ran-
dom measure, which indeed is an operator-valued measure. The main
results are Theorems 3.5 and 3.9. Section 4 is for the characteriza-
tion of the covariance operator. Necessary and sufficient conditions for
an operator-valued function to be a covariance operator of an infinite-
dimensional discrete time PC process are given. Theorem 4.13 is the
main result. A time-dependent spectral density is derived in Section 5.
The result indicates that, in the Gaussian case, the law of such a process
can be determined by a positive measure and a time dependent kernel,
which are fully specified. Theorems 5.7 and 5.14 give the details.

2. Notations and preliminaries. Let X be a Hilbert space, and
let L(X) stand for the bounded linear operators on X. The inner
product on X is denoted by ( , ). The probability space is denoted
by (Ω,B, P ). A random variable ξ : Ω → X is called second order
if x∗(ξ(ω)) ∈ L2(Ω,B, P ) for all x∗ ∈ X∗, where X∗ stands for the
dual space of X. Since X is a Hilbert space, x∗(ξ(ω)) = (ξ(ω), x)
for some x ∈ X. This leads to a bounded linear transformation
T : X → L2(Ω,B, P ), defined by Tx = (ξ(ω), x); indeed, it follows from
the closed graph theorem that T is bounded. Thus, by letting ξx ≡ Tx,
the mapping T can be identified with the collection of random variables
{ξx, x ∈ X}. Therefore, in order to study a second order stochastic
process with values in a Hilbert space X, one may consider a collection
ξ = {ξn

x , n ∈ Z, x ∈ X}, Z is the set of integers of random variables
for which

E|ξn
x |2 < ∞ and E ξn

x = 0 n ∈ Z, x ∈ X,

and for each n, ξn
x is linear and continuous in x,

(E|ξn
x |2)1/2 ≤ Cn‖x‖, x ∈ X.

We refer to the ξ = {ξn
x , n ∈ Z, x ∈ X} as a second order X-valued

stochastic process. Let H = span closure {ξn
x , n ∈ Z, x ∈ X} denote

the space generated by the process ξ. A process ξ is called PC if there
exist an integer T > 0 such that for every x, y ∈ X and m, n ∈ Z,

(2.1) E ξn
x ξm

y = E ξn+T
x ξm+T

y .
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If ξ is a PC process, then the dimension of H(n) = span closure {ξn
x ,

x ∈ X}, n ∈ Z is periodic in n with period T , and the dimension of
the process is specified by the dimensions of H(n), n = 0, . . . , T − 1.

Note that E ξn+τ
x ξn

y , n, τ ∈ Z, is a bilinear function on X × X and
bounded on the set {(x, y), ‖x‖ = ‖y‖ = 1}, as

|E ξn+τ
x ξn

y | ≤ E|ξn+τ
x ξn

y | ≤ (E|ξn+τ
x |2)1/2(E|ξn

y |2)1/2

≤ Cn+τ ‖x‖Cn ‖y‖.

Therefore it follows from [14, Theorem 12.8] that

(2.2) E ξn+τ
x ξn

y = (x, S(n, τ )y),

where S(n, τ ) ∈ L(X) for each n, τ ∈ Z. We refer to the collection
γ(.) = {S(n, .), n ∈ Z}, or S(., .) if there is no ambiguity, as the
covariance of the process. When T = 1 the process is called stationary .
The theory of stationary processes is very well developed, see [12, 15,
16]. It is well known that for a stationary process {ζn

x , x ∈ X, n ∈ Z}
the spectral representation

(2.3) ζn =
∫ 2π

0

e−inλΦ(dλ),

in the sense that

(2.4) E ζn
x ζm

y =
∫ 2π

0

e−i(n−m)λEΦ(dλ)x Φ(dλ)y

is fulfilled. In (2.3), Φ(dλ) is a spectral random measure with orthogo-
nal increments on X, (RMOI), i.e., Φ is a finitely additive set function
on the Borel sets of [0, 2π) with values in the space of bounded linear
transformations from X into L2(Ω,B, P ). More precisely Φ satisfies
the following.

i) Φ(∪n
j=1Δj) =

∑n
j=1 Φ(Δj), for disjoint sets Δj , j = 1, 2, . . . , n,

ii) EΦ(Δ)x Φ(Δ′)x′ = 0 if Δ ∩ Δ′ = ∅ x, x′ ∈ X,

iii) Φ(∅) = 0,

iv) EΦ(.)xh̄ is a complex measure for each fixed h ∈ H, x ∈ X,
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v) E|Φ(Δ)x| ≤ MΔ‖x‖, x ∈ X, where MΔ is a constant which
depends on Δ.

vi) Φ(.)x is countable additive in H, for every x ∈ X.

The spectral distribution of a stationary process ζ is an L(X)-valued
measure F for which

(x, F (dλ)y) = EΦ(dλ)x Φ(dλ)y,

giving that

(2.5) E ζn
x ζm

y =
∫ 2π

0

e−i(n−m)λ(x, F (dλ)y).

We say a second order process ξ = {ξn
x , x ∈ X, n ∈ Z} admits a

time-dependent spectral representation if

(2.6) ξn =
∫ 2π

0

e−isnΦ(ds)Vn(s),

in the sense that

E ξn
x ξm

y =
∫ 2π

0

e−is(n−m)EΦ(ds)Vn(s)x Φ(ds)Vm(s)y,

where Vn(.) are operator-valued functions, Vn(.) : X → X, and Φ
is an RMOI. The measure Υn(ds) = Φ(ds)Vn(s) is called the time-
dependent random spectral. The corresponding time-dependent spectral
distribution, denoted by Gn(.), is a measure with values in L(X) given
by

(2.7) (x, Gn(ds)y) = EΦ(ds)Vn(s)x Φ(ds)Vn(s)y.

We refer to a matrix which its entries are operators as an operator-
matrix.

3. A spectral characterization. In this section we obtain a
spectral representation for a PC process. It is easy to see that if
ξ = {ξn

x , x ∈ X, n ∈ Z} is a PC process, then the process
ζ = {ζn

x̃ , x̃ ∈ ∏T
i=1 Xi, n ∈ Z}, defined by

(3.1) ζn
x̃(p) = ξnT+p

x ,
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is a stationary process, where
∏T

i=1 Xi = {(x1, . . . , xT ), xi ∈ X,

i = 1, . . . , T}, and x̃(p) = (0, . . . , x, . . . , 0) ∈ ∏T
i=1 Xi with all

coordinates being zero except the (p + 1)th which is x. Since ζ is a
stationary process, it admits the representation

(3.2) ζn =
∫ 2π

0

e−inλΦ(dλ),

in the sense that

(3.3) E ζn
x̃ ζm

ỹ =
∫ 2π

0

e−i(n−m)λEΦ(dλ)x̃Φ(dλ)ỹ,

where Φ is a random measure with orthogonal increments on
∏T

i=1 Xi.
Corresponding to Φ define the column vector Φ̃ whose entries are

(3.4) Φp(dλ)x = Φ(dλ)(0, . . . , x, . . . , 0), p = 0, . . . , T − 1.

Note that for each x ∈ X, Φp(dλ)x is a random variable. Moreover
each Φp is an RMOI on X.

Theorem 3.5. Let ξ = {ξn
x , x ∈ X, n ∈ Z} be a PC process. Then

(3.6) ξn
x =

T−1∑
j=0

e−i2πjn/T ηn
x̃(j),

where ηn = {ηn
x̃ , x̃ ∈ ∏T

i=1 Xi, n ∈ Z} is the unique stationary process
given by

(3.7) ηn =
∫ 2π/T

0

e−inλΨ(dλ).

The Ψ, in (3.7), is related to Φ through

(3.8) Ψ̃
(

dλ

T

)
= M−1ρ

(
− λ

T

)
Φ̃(dλ),

where Φ is given by (3.3), Ψ̃ corresponding to Ψ throughout (3.4),
M = [mpj ] and ρ(λ/T ) = [δpjρj ] are T × T matrices with:

mpj = e−i(p−1)(j−1)(2π/T ) and ρj = e−i(j−1)λ/T , p, j = 1, . . . , T.



1048 A.R. SOLTANI AND Z. SHISHEBOR

Proof. Let ξ be a PC process. It follows from (3.1), (3.2) and (3.8)
that for every x ∈ X and h ∈ H,

E ξnT+p
x h̄ = E ζn

x̃(p)h̄

=
∫ 2π

0

e−inλEΦp(dλ)xh̄

=
∫ 2π

0

e−inλ
T−1∑
j=0

e−i(2πjp)/T−i(pλ)/T EΨj

(
1
T

dλ

)
xh̄

=
T−1∑
j=0

e−i(2πjp)/T

∫ (2π)/T

0

e−i(nT+p)λEΨj(dλ)xh̄

=
T−1∑
j=0

e−i(2πjp)/T E ηnT+p
x̃(j) h̄.

Therefore, (3.6) holds. For the uniqueness, let (3.6) hold; then

E ξnT+p
x h̄ =

T−1∑
j=0

e−i(2πj(nT+P ))/T EηnT+p
x̃(j) h̄

=
T−1∑
j=0

e−i(2πjp)/T

∫ (2π)/T

0

e−i(nT+p)λ EΨj(dλ)xh̄

=
∫ 2π

0

e−inλ
T−1∑
j=0

e−i(2πjp)/T e−ip(λ/T )EΨj

(
1
T

dλ

)
xh̄.

On the other hand,

E ξnT+p
x h̄ =

∫ 2π

0

e−inλEΦp(dλ)xh̄.

Therefore (3.8) follows from the uniqueness of the spectral representa-
tion for stationary processes.

The Theorem 3.5 given above provides a transparent proof for the
harmonizability of a PC process with values in a Hilbert space. The
following theorem gives the details.
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Theorem 3.9. Let ξ be a PC process. Then

(3.10) ξn =
∫ 2π

0

e−inλZ(dλ),

where the spectral random measure Z is given by

(3.11) Z(dλ) = Ψp

(
dλ − 2πp

T

)
, λ ∈

[
2πp

T
,
2π(p + 1)

T

)
.

Furthermore, the spectral distribution F (., .), introduced by

(3.12) EZ(ds)xZ(dt)y = (x, F (ds, dt)y),

is a measure on [0, 2π)×[0, 2π) which is supported by lines dk = {(s, t) ∈
[0, 2π)2, s − t = (2πk)/T}, k = 1 − T, . . . , T − 1.

Proof. Let {ξn
x} be a PC process. By (3.6) we will have

ξn
x =

T−1∑
p=0

e−i(2πpn)/T ηn
x̃(p)

=
T−1∑
p=0

e−i(2πpn)/T

∫ (2π)/T

0

e−inλΨp(dλ)x

=
T−1∑
p=0

∫ 2π(p+1)/T

(2πp)/T

e−inλΨp

(
dλ − 2πp

T

)
x

=
∫ 2π

0

e−inλZ(dλ)x.

The fact that the distribution F (., .) is supported on the cited lines
follows from the point that {Ψp(dλ)} is an independently scattered
random measure, i.e.,

(3.13) EZ(ds)xZ(dt)y =

{
(x, F (ds, dt)y) s − 2πp

T
= t − 2πl

T
0 otherwise

for s ∈ [(2πp)/T, (2π(p + 1))/T ) and t ∈ [(2πl)/T, (2π(l + 1))/T ).
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Remark 3.14. It is well known that, if a distribution F is given, then
there is a unique Z for which (3.12) is satisfied, see [13].

4. The covariance operator. In this section we characterize
the covariance operator of a PC process, introduced in Section 2.
Let Fk(s) be the restriction of F (s, t) to the line, dk, k = −T +
1, . . . , T − 1. Now, for the point (s, t) on the diagonal of the square,
[(2πp)/T, (2π(p + 1))/T )× [(2πl)/T, (2π(l + 1))/T ), p, l = 0, . . . , T −1,
i.e., s − t = ((2π)/T )(p − l), s ∈ [(2πp)/T, (2π(P + 1))/T ), t ∈
[(2πl)/T, (2π(l + 1))/T ), we have

(4.1) (x, F (s, t)y) = (x, Fp−l(s)y).

Thus, in particular for u ∈ [0, (2π)/T ), we obtain that

(4.2) EΨp(du)x Ψl(du)y =
(

x, Fp−l

(
du +

2πp

T

)
y

)
.

Now define a square matrix F by

(4.3) F(ds) =
[
Fp−l

(
ds +

2πp

T

)]
p,l=0,... ,T−1

, s ∈
[
0,

2π

T

)
,

Lemma 4.4. The matrix defined by (4.3) is positive definite.

Proof. Recall that an operator-matrix T = [Ti,j ], i, j = 0, . . . , T − 1,
is called positive definite if and only if, for each xk0 , . . . , xkT−1 , the
matrix

(4.5) [(xkj , Tj,l xkl
)]j,l=0,... ,T−1,

is positive definite. It follows from (4.2) that, for F(ds), the ma-
trix given by (4.5) is the covariance matrix of the random vec-
tor (Ψ0(du)xk0 , . . . , ΨT−1(du)xkT−1) and therefore is positive definite.
The proof is complete.

Lemma 4.6. If {ξn
x} is a PC process, then

(4.7) E ξn+τ
x ξn

y = (x, S(n, τ )y), x, y ∈ X, n, τ ∈ Z,



PERIODICALLY CORRELATED PROCESSES 1051

where the operator S(n, τ ) is given by

(4.8) S(n, τ ) =
T−1∑
k=0

e−i(2πkn)/T Rk(τ ),

and Rk(τ ), k = 0, . . . , T − 1 are certain operators in L(X).

Proof. Equation (4.7) follows from the fact that E ξn+τ
x ξn

y is a bilinear
and bounded function on X×X, see [14, Theorem 12.8]. For fixed x, y
in X, E ξn+τ

x ξn
y is periodic in n with period T and so is (x, S(n, τ )y).

Thus,

(4.9) (x, S(n, τ )y) =
T−1∑
k=0

ei(2πkn)/T Bk,τ,x,y,

where

(4.10) Bk,τ,x,y =
1
T

T−1∑
n=0

(x, S(n, τ )y)e−i(2πkn)/T .

It is easy to see that Bk,τ, . , . is a bilinear form and a bounded
function on X × X. Therefore, there is an operator-valued function
Rk(τ ) ∈ L(X) for which

(4.11) Bk,τ,x,y = (x, Rk(τ )y).

It follows from (4.9) and (4.11) that

(4.12)

(x, S(n, τ )y) =
T−1∑
k=0

ei(2πkn)/T (x, Rk(τ )y)

=
(

x,
T−1∑
k=0

e−i(2πkn)/T Rk(τ )y
)

.

The following theorem is the main theorem in this section.
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Theorem 4.13. In order for the operator S(n, τ ) in (4.8) to be the
covariance operator of a PC process, it is necessary and sufficient that
the operator-valued functions Rk(τ ), k = 0, . . . , T−1 can be represented
as

(4.14) Rk(s) =
∫ 2π

0

e−iτsdGk(s),

where each Gk(s) is defined in terms of the Fk(s) by

Gk(s) =

⎧⎪⎨
⎪⎩

Fk(s)
2πk

T
< s

F−T+k(s) s ≤ 2πk

T

, k = 0, . . . , T − 1.

Proof. Let ξ be a PC process and S(n, τ ) its covariance. It follows
from Theorem 3.9 that

(x, S(n, τ )y) = E ξn+τ
x ξn

y

=
∫ 2π

0

∫ 2π

0

e−i(n+τ)s+intEZ(ds)xZ(dt)y

=
∫ 2π

0

∫ 2π

0

e−i(n+τ)s+int(x, F (ds, dt)y)

=
T−1∑
p=0

T−1∑
l=0

∫ (2π(p+1))/T

(2πp)/T

∫ (2π(l+1))/T

(2πl)/T

e−i(n+τ)s+int(x, F (ds, dt)y)

=
T−1∑
p=0

T−1∑
l=0

∫ (2π(p+1))/T

(2πp)/T

e−iτs−i(2π(p−l)n)/T (x, Fp−l(ds)y)

=
−1∑

k=−T+1

T+k−1∑
p=0

∫ (2π(p+1))/T

(2πp)/T

e−iτs−i(2πkn)/T (x, Fk(ds)y)

+
T−1∑
p=0

∫ (2π(p+1))/T

(2πp)/T

e−iτs(x, F0(ds)y)

+
T−1∑
k=1

T−l∑
p=k

∫ (2π(p+1))/T

(2πp)/T

e−iτs−i(2πkn)/T (x, Fk(ds)y)(4.15)
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=
−1∑

k=−T+1

e−i(2πnk)/T

∫ (2π(T+k))/T

0

e−iτs(x, Fk(ds)y)

+
∫ 2π

0

e−iτs(x, F0(ds)y)

+
T−1∑
k=1

e−i(2πnk)/T

∫ 2π

(2πk)/T

e−iτs(x, Fk(ds)y)

=
T−1∑
k=0

e−i(2πnk)/T

∫ 2π

0

e−iτs(x, Gk(ds)y).

Thus, (4.14) follows from (4.8) and the observation given above. Con-
versely, let

S(n, τ ) =
T−1∑
k=0

e−i(2πnk)/T Rk(τ ),

where Rk(τ ) are defined by (4.14). Since F(ds) is a positive-definite
matrix, there exists a unique random measure Φ such that (4.2) holds.

Thus, if we produce the stationary process η = {ηn
x̃ , x̃ ∈ ∏T−1

i=1 Xi,
n ∈ Z} by

ηn
x̃(p) =

∫ 2π

0

e−inλΦp(dλ)x, p = 0, . . . , T − 1

and ξ by (3.6), then it is easy to see that ξ is a PC process with the
covariance γ(.).

5. Time-dependent spectra. In this section we present a time-
dependent spectral distribution for a PC process. The significance
of such observation lies on the fact that the law of the process is
governed by a positive measure μ and a deterministic kernel, see
(5.17). We proceed with the following lemma concerning the Cholesky
decomposition for a positive definite operator-matrix.

Lemma 5.1. Let Mn be an n × n positive operator-matrix, then

(5.2) Mn = U∗
n Un,

where Un is an n × n upper triangular matrix.



1054 A.R. SOLTANI AND Z. SHISHEBOR

Proof. See [1].

For any operator valued-measure Fk, there exists a positive measure
μk such that, see [2],

‖Fk(Δ)‖ ≤ μk(Δ).

Thus,
|Fk(Δ)x| ≤ ‖Fk(Δ)‖ ‖x‖X ≤ μk(Δ)‖x‖X .

It is straightforward to show that there exists a positive measure μ such
that

|Fk(Δ)x| ≤ μ(Δ) ‖x‖X , k = −T + 1, . . . , T − 1,

and

(5.4) μ(2πk)/T (dx) = μ(dx) on
[
0,

2π

T

)
, k = 1 − T, . . . , T − 1,

where, for a measure ν on [0, 2π),

(5.5) ν(2πk)/T (E) = ν

((
E +

2πk

T

)
∩ [0, 2π)

)
.

Now let fk, k = 1−T, . . . , T −1, be an L(X)-valued function on [0, 2π)
such that

(5.6) (x, Fk(Δ)y) =
∫

Δ

(x, fk(s)y)μ(ds),

[7].

Theorem 5.7. A second order X-valued stochastic process {ξn
x ,

n ∈ Z, x ∈ X} is PC if and only if

(5.8) ξn
x =

T−1∑
k=0

∫ 2π

0

e−insΦ(−2πk)/T (ds)ak(s)x,

where i) Φ is an independently scattered random measure satisfying

(5.9) EΦ(dλ)x Φ(dλ)y = (x, y)Xμ(dλ),

μ is a finite measure satisfying (5.4).
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ii) ak(s) are operators with ak(s) = 0 for s ∈ [0, (2πk)/T ). Further-
more, the matrix

(5.10) A(x) =
[

aj−k

(
x +

2πj

T

)]
k≤j

, k, j = 0, . . . , T − 1

satisfies

(5.11) f(x) = A∗(x)A(x) x ∈
[
0,

2π

T

)
,

where f(x) is given by

(5.12) f(x) =
[
fp−l

(
dx +

2πp

T

)]
l,p=0,... ,T−1

.

Proof. Let {ξn
x} be a process for which (5.8) holds. Thus

(x, S(n, τ )y) = E ξn+τ
x ξn

y

=
T−1∑
k=0

T−1∑
l=0

∫ 2π

0

∫ 2π

0

e−i(n+τ)s+intEΦ(−2πk)/T (ds)

× ak(s)x Φ(−2πl)/T (dt)al(t)y;

it also follows from (5.9) that

EΦ(−2πk)/T (ds)ak(s)x Φ(−2πl)/T (dt)al(t)y

=

⎧⎨
⎩ (ak(s)x, ap+k

(
s +

(
2πp

T

)
y

)
μ(−2πp)/T (ds)s − 2πk

T
= t − 2πl

T

0 otherwise,

where p = l − k. Since μ(−2πp)/T (ds) = μ(ds), p = 1− T, . . . , T−1, we
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obtain that
(5.13)

(x, S(n, τ )y) =
−1∑

p=−(T−1)

∫ 2π

0

e−i(n+τ)s+in(s+((2πp)/T ))

×
T−1∑

k=−p

(
ak(s)x, ak+p

(
s +

2πp

T

)
y

)
μ(ds)

+
∫ 2π

0

e−i(n+τ)s+ins
T−1∑
k=0

(ak(s)x, ak(s)y)μ(ds)

+
T−1∑
p=1

∫ 2π

0

e−i(n+τ)s+in(s+((2πp)/T ))

×
T−1−p∑

k=0

(
ak(s)x, ak+p

(
s +

2πp

T

)
y

)
μ(ds).

It is clear from (5.13) that {ξn
x} is a PC process. Conversely, let {ξn

x}
be a PC process with covariance S(., .) . As demonstrated in the proof
of Theorem 4.13, E ξn+τ

x ξn
y can be expressed by (4.15). By using (5.6)

and comparing with (5.13), we obtain that

(5.14)

T−1∑
k=−p

(
ak(s)x, ap+k

(
s +

2πp

T

)
y

)
= (x, f−p(s)y),

p = −T + 1, . . . ,−1,

T−1∑
k=0

(ak(s)x, ak(s)y) = (x, f0(s)y)

T−1−p∑
k=0

(
ak(s)x, ak+p

(
s +

2πp

T

)
y

)
= (x, f−p(s)y),

p = 1, . . . , T − 1.

It is easy to verify that (5.14) and (5.11) are identical. On the other
hand, it follows from Lemma 5.1 that (5.11) is satisfied, as it is a
Cholesky decomposition for f(.), for details see [9].
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Theorem 5.15. Let {ξn
x , x ∈ X, n ∈ Z} be a PC process with

period T . Then the process {ξn
x} admits the following time-dependent

spectral representation

(5.16) ξn
x =

∫ 2π

0

einsΦ(ds)Vn(s)x,

in the sense that

(5.17) E ξn
x ξm

x =
∫ 2π

0

ei(n−m)s(Vn(s)x, Vm(s)y)μ(ds),

where

(5.18) Vn(s) =
T−1∑
k=0

e−i(2πkn)/T ak

(
s +

2πk

T

)
, s ∈ [0, 2π), n ∈ Z.

Proof. It follows from Theorem 5.7 that

ξn
x =

T−1∑
k=0

∫ 2π

(2πk)/T

e−insΦ(−2πk)/T (ds)ak(s)x

=
T−1∑
k=0

∫ 2π((T−k)/T )

0

e−ins−i((2πkn)/T )Φ(ds)ak

(
s +

2πk

T

)
x

=
T−1∑
k=0

∫ 2π

0

e−ins−i((2πkn)/T )Φ(ds)ak

(
s +

2πk

T

)
x

=
∫ 2π

0

e−ins
T−1∑
k=0

e−i((2πkn)/T )Φ(ds)ak

(
s +

2πk

T

)
x,

giving the result (5.16). Equation (5.17) follows from (5.16) and (5.9).
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