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ON SOME TOPOLOGICAL PROPERTIES OF
VECTOR-VALUED FUNCTION SPACES

MARIAN NOWAK

ABSTRACT. Let E be an ideal of L° over a o-finite measure
space (2, X, ) with a Hausdorff locally convex-solid topology
g, and let (X, || - ||x) be a real Banach space. Let E(X) be
a subspace of the space L°(X) of u-equivalence classes of all
strongly ¥-measurable functions f :  — X and consisting
of all those f € L°(X) for which the scalar function || f(-)||x
belongs to E. In this paper we show that a number of topo-
logical properties of the spaces X and (F,&) can be lifted to
the space (E(X), £), where £ stands for the topology on E(X)
associated with . We characterize some important topolog-
ical properties of the space (E(X),&) (weak compactness of
order intervals, almost reflexivity, weak sequential complete-
ness, semi-reflexivity, relative weak compactness of solid hulls)
in terms of the corresponding properties of X and (E,§).

1. Introduction and preliminaries. Let E be an ideal of L° (over
a o-finite measure space) with a Hausdorff locally convex-solid topology
¢, and let X be a real Banach space. The aim of this paper is to
extend some important topological properties of the space (E, ) to the
vector-valued function space (E(X), £), where £ stands for the topology
on E(X) associated with £&. We characterize the following topological
properties of the space (E(X),§): weak compactness of order intervals:
Section 2, almost reflexivity; Section 3, weak sequential completeness;
Section 4, semi-reflexivity; Section 5, relative weak compactness of solid
hull; Section 6, in terms of the corresponding properties of X and (E, §).

In the particular case of E being a Banach function space, over a finite
measure space, the problem of characterizing the topological properties
of the Kothe-Bochner space E(X) in terms of the properties of both
Banach spaces E and X has been considered by Pisier [28], Bombal
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918 M. NOWAK

[3], Geuiler and Chubarova [16], Bombal and Hernando [4], Talagrand
[30], Bukhvalov and Lozanowskii [6, 7).

For terminology concerning Riesz spaces and function spaces we refer
to [1, 18, 33]. Given a topological vector space (L, 7) by (L,7)* or L%,
we will denote its topological dual. We denote by o(L, K) and 8(L, K)
and 7(L, K) the weak topology, the strong topology and the Mackey
topology on L with respect to a dual system (L, K).

Throughout the paper we assume that (2, X, 1) is a complete o-finite
measure space and let ¥y = {A € ¥ : p(A) < oo}. Let L° denote the
corresponding space of p-equivalence classes of all ¥-measurable real
valued functions. Then L° is a super Dedekind complete Riesz space
under the ordering u < v whenever u(w) < v(w), p almost everywhere
on ). Let X4 stand for the characteristic function of a set A. By N
and R we denote the sets of natural and real numbers.

Let E be an ideal of L° with supp £ = (Q, and let E’ stand for the
Koéthe dual of E, i.e.,

E'_{UELO: lu(w)v(w)|dp < oo for alluEE}.

Q

Throughout the paper we assume that supp B’ = Q. Let E~, E/
and E7 stand for the order dual, the order continuous dual and the
singular dual of E, respectively. Then E,’ separates points of F and it
can be identified with E’ through the mapping: E' 3 v — ¢, € E,
where

p(u) = /Qu(w)v(w)du forall we€ FE.

Then E~ = Ey @ E5” and EJ = (E})? (= the disjoint complement of
E; in E™).

By a locally solid, respectively locally convex-solid, function space
(E,¢) we mean an ideal E provided with a locally solid, respectively
locally convex-solid, topology &.

Note that in view of the super Dedekind completeness of E, both
types of order convergence in E for sequences and for nets coincide, so
E;’ = EY (= the o-order continuous dual of E). Recall that a Haus-
dorff locally convex-solid topology £ on FE is a Lebesgue, respectively o-
Lebesgue, topology if and only if Ef C E7, respectively Ef C E7, see
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[1, Theorem 9.1, Theorem 9.2]. This shows that for £ the o-Lebesgue
property and the Lebesgue property coincide. Moreover, one can show
that for £ the o-Levy and the Levy property coincide, see [13, Propo-
sition 3.2].

For terminology and basic concepts from the theory of vector-valued
function spaces E(X), in particular Lebesgue-Bochner spaces LP(X),
we refer to the three main monographs: Diestel and Uhl’s “vector
measures” [12], Cembranos and Mendoza’s “Banach spaces of vector
valued functions” [10] and Pei-Kee Lin’s “Kéthe-Bochner function
spaces” [19].

Now we recall terminology and some basic results concerning the
topological properties and the duality theory of vector-valued function
spaces F(X) as set out in [5, 7, 10, 12, 14, 19, 21-23|.

Let (X,]| - ||x) be a real Banach space and let X* stand for the
Banach dual of X. Let Sx, Bx stand for the unit sphere and the unit
ball of X. By L°(X) we denote the set of u-equivalence classes of all
strongly ¥-measurable functions f: 2 — X. For f € L(X), let us set
f(w) = |lf(w)| for w € Q. Let

E(X)={feL’X):feE}.

Recall that the algebraic tensor product £® X is the subspace of E(X)
spanned by the functions of the form v ® z, (u® x)(w) = u(w)x, where
ueFk reX.

A subset H of F(X) is said to be solid whenever fl < fg and
f1 € E(X), fo € H imply f; € H. A linear topology 7 on E(X)
is said to be locally solid if it has a local base at zero consisting of solid
sets. A linear topology 7 on E(X) that is as the same time locally
solid and locally convex will be called a locally convez-solid topology
on E(X). A semi-norm ¢ on E(X) is called solid if o(f1) < o(f2)
whenever f1, fo € E(X) and f; < fo. It is known that a locally convex
topology 7 on E(X) is locally convex-solid if and only if it is generated
by some family of solid semi-norms defined on E(X), see [14]. A locally
solid topology 7 on E(X) is said to be a Lebesgue topology whenever for

anet (fo) in B(X), fo 2 0in E implies f, = 0, see [23, Definition 2.2].
Let (E,¢) be a Hausdorff locally convex-solid function space. Then
one can topologize the space E(X) as follows, see [14]. Let {p, : t € T’}
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be a family of Riesz semi-norms on E that generates £. By putting

ﬁt(f)::pt(f) for feEX), teT,

we obtain a family {p; : ¢ € T} of solid semi-norms on E(X) that
defines a Hausdorff locally convex-solid topology & on E(X), (called the
topology associated with ¢). Then ¢ is a Lebesgue topology whenever &
is a Lebesgue topology, see [14].

Conversely, let 7 be a Hausdorff locally convex-solid topology on
E(X), and let {o; : t € T} be a family of solid semi-norms on E(X)
that generates 7. By putting, for a fixed z, € Sx

or(u) == o(u®x,) for wuek, teT,

we obtain a family {g; : ¢t € T'} of Riesz semi-norms on E that defines
a Hausdorff locally convex-solid topology 7 on E.

One can show that £ = ¢ and 7 = 7, see [14]. Thus every Hausdorff
locally convex-solid topology 7 on E(X) can be represented as the
topology associated with some Hausdorff locally convex-solid topology
E(=7)on E.

In particular, for a Banach function space (E, || - || g) the space E(X)
provided with the norm || f||gx) = | fllz is usually called a Kdéthe-
Bochner space, see [19].

For a linear functional F on E(X), let us put
[FI(f) = suwp{|F(h)|:he E(X), h< f} for feE(X).
The set
E(X)~ ={Fec EX)*:|F|(f) <ooforall fc E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic
dual of E(X)).

For F1,Fy € E(X)~ we will write |Fy| < |Fy| whenever |Fy|(f) <
|F2|(f) for all f € E(X). A subset A of E(X)™ is said to be solid
whenever |Fy| < |Fy| with Fy € E(X)~ and F» € A imply F; € A. A
linear subspace I of E(X)"~ will be called an ideal of E(X)~ whenever
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I is solid. It is known that if 7 is a locally solid topology on E(X),
then (E(X),7)* is an ideal of E(X)™, see [21, Theorem 3.2].

A linear functional F' on E(X) is said to be order continuous when-

ever, for a net (f,) in B(X), fo 2 0 in E implies F(f,) — 0. The
set consisting of all order continuous linear functionals on E(X) will
be denoted by E(X); and called the order continuous dual of E(X),

see [5, 21]. Since we assume that supp B/ = , E(X); separates
points of E(X). A Hausdorff locally convex-solid topology 7 on E(X)
has the Lebesgue property if and only if E(X)* C E(X);, see [23,

Theorem 2.4].

We now recall terminology concerning the spaces of w*-measurable
functions, see [5, 7, 10].

For a given function g : @ — X* and x € X, we denote by g,
the real function on  defined by g,;(w) = g(w)(z) for w € Q. A
function g : Q@ — X* is said to be w*-measurable if the functions g,
are measurable for each z € X. We shall say the two w*-measurable
functions ¢1,g2 are w*-equivalent whenever gi(w)(z) = go(w)(x), u
almost everywhere for each z € X.

Let L°(X*, X) be the set of weak*-equivalence classes of all weak*-
measurable functions g : @ — X*. Following [5, 7] one can define the
so-called abstract norm ¥ : L°(X*, X) — L° by ¥(g) := sup {|g.| : =
Bx}.

Then for f € L°(X) and g € L°(X*, X) the function (f,g) : @ - R
defined by (f, g)(w ) := (f(w), g(w)) is measurable and |(f, g)| < f¥(g).
Moreover, ¥(g) = g for g € L°(X™*).

For an ideal M of E’, let
M(X*X)={ge L (X*,X):9(9) € M }.

¥y ) with

Then M(X*, X) is an ideal of E'(X*, X), i.e., if ¥(q1) <
X*,X), see [21,

g1 € F'(X*,X) and go € M(X*, X), then g1 € M(X
Definition 1.2]. Clearly M (X*) C M(X*, X).

Due to Bukhvalov, see [5, Theorem 4.1], E(X);’ can be identified

with E/(X*, X) through the mapping: E'(X*,X) > g+— F, € E(X),/,
where

Fy(f) = /Q (f) g())dp forall f € E(X),
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and moreover

|Fy|(f) = Qf(w)ﬁ(g)(w)du for all f € E(X).

It is well known that if X is reflexive, then E'(X*, X) = E'(X™).
Let F' € E(X)~ and z, € Sx be fixed. For u € E*, let us set:

or(u) == |F|(u® z,) = sup{ |[F(h)| : h € E(X), h<u}.

Then ¢r : ET — R7 is an additive mapping and ¢r has a unique
positive extension to a linear mapping from E to R, denoted by ¢p
again, and given by

or(u) == pr(ut) —pp(u”) foral ueE,

see [7, Lemma 7]. We shall need the following two technical results.

Proposition 1.1. Let (E,§) be a Hausdorff locally convez-solid
function space. Then for F € E(X)™, the following statements are
equivalent:

(i) F is &-continuous.

(ii) @p is &-continuous.

Proof. (i)=(ii). Let { be generated by a family {p; : ¢ € T'} of Riesz
semi-norms on FE, and let F' be §-continuous. Then there exist ¢; € T
i=1,2,...,n,and a > 0 such that |F(h)| < amaxi<;<n p, (h) for all
h € E(X). Then for u € ET,

or(u) =sup{ |F(h)|: h € BE(X), h<u} <a max p,(u).
It easily follows that ¢p(u) < 2a maxi<;<n Pt (u) for all u € E, so pp
is &-continuous.

(ii)=(i). Assume that pr € E. Then, there exist t; € T,
i=1,...,n,and a > 0 such that for f € E(X) we have

PN < IFI(f) = er(f) < a max p,,(f) = a max pr,(f),

1<i<n 1<i<n

and this means that F is é-continuous. ]
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Proposition 1.2. Let (E,§) be a Hausdorff locally convez-solid
function space with the Lebesque property. Then there exists an ideal
M¢ of E' with supp M¢ = Q and such that

Ef ={py:ve M} and E(X);={F;:g9€ M (X", X)}.

Proof. Since Ef C E}, there exists an ideal M of E’ with supp Mg =
Q and such that Ef = {¢, : v € M¢}. Now we shall show that
E(X)g ={F,:9¢€ M:(X*, X)}.

Indeed, let F € E(X)z— Then by Proposition 1.1, op € Ef, so

YF = @y, for some v, € M; On the other hand, since F' € E(X);,
we have F = F, for some g € E'(X*, X). It easily follows that
©F, = Po(g); 50 V(g9) = vo € M. This means that g € M¢(X*, X).

Now, assume that F' = F,, where g € M(X*,X). Then ¢p =
©F, = Po(g), Where J(g) € Me. Hence pp € Ef, and in view of
Proposition 1.1, F' € E(X)Z— O

2. Order intervals in vector-valued function spaces. We start
by recalling a characterization of weak compactness of order intervals
in locally convex-solid function spaces (FE, ), see [9, Proposition 5.1],
[1, Theorem 22.1].

Theorem 2.1. Let (E, &) be a Hausdorff locally convez-solid function
space. Then the following statements are equivalent:

(i) € is a Lebesgue topology.
(ii) Each order interval in E is o(E, Ef)-compact.
(iii) E, embedded in a natural way, is an ideal of the bidual of (E,§).

The aim of this section is to extend this result to the vector-valued
setting. For this purpose, we first recall terminology and some results
concerning the duality theory of the spaces E(X) as set out in [22].

Let I be an ideal of E(X)"™ separating points of E(X). For a linear
functional V on I let us set

V|(F) =sup{ |V(G)| : G eI, |G|<|F|} for Fel.
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Then the set
I"={Vel?:|V|(F)<ooforall F€I}

will be called the order dual of I (here I# denotes the algebraic dual
of I).

For V1,V, € I we will write |V1| < |Va| whenever |V1|(F) < |V2|(F)
for all F' € I. A subset K of I"™ is said to be solid whenever |V;| < |V4|
with V3 € I™, Vo € K imply Vi € K. A linear subspace L of I™ is
called an ideal of I™ if L is solid.

Let 7 be a Hausdorff locally convex-solid topology on E(X). Then
E(X)% is an ideal of E(X)™~. The strong topology S(E(X)*, E(X)) is a
Hausdorff locally convex-solid topology on E(X)%, see [22, Section 4],
and the topological dual (E(X);)j (= (E(X)7, B(E(X);, E(X)))), is

an ideal of (E(X)*)™, see [22, Theorem 2.1]. The space (E(X)%)% is

T T

called the bidual of (E(X), ).
For f € E(X), let us put

7p(F)=F(f) for Fe B(X)"

Then |7¢|(F) = |F|(f) for F € E(X)f and 7y € (E(X)%)™, see

[22, Section 1]. Hence |7y, | < |mp,| whenever fi,fo € E(X) with

fi < fo. Moreover, 7y € (E(X)z—)*7 so we have a natural embedding

T E(X)> f — 7€ (B(X)])5

Denote by (E(X);)r(x) the ideal of (E(X);)j; generated by the
set m(E(X)), that is, (E(X);)p(x) is the smallest ideal of (E(X)})j
containing 7(F(X)). Then

(B(X)2) s = {V € (BX)2)5 < [V] < |y for some f € E(X)}.

For each f € E(X), let of(F) = |F|(f) for F' € I. We define the
absolute weak* topology |o|(I, E(X)) on I as the locally convex-solid
topology generated by the family {os : f € E(X)} of solid semi-norms
on I, see [22].

Theorem 2.2 (see [22, Theorem 3.2]). Let 7 be a Hausdorff locally
convez-solid topology on E(X). Then (E(X)X, |o|(E(X):, E(X)))* =
(E(X)7)ex)-
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For f € E(X), let us put

Iy ={V e (B(X)))5: V] <|myl}-

Theorem 2.3 (see [22, Theorem 4.1]). Let 7 be a Hausdorff locally
convez-solid topology on E(X). Then for f € E(X), the set Ij is
o((E(X)7)e(x), E(X)})-compact in (E(X)7)p(x)-

For each uw € ET the set D, = {f € F(X) : f < u} will be called an
order interval in E(X).

Now we are in a position to state the main result of this section.

Theorem 2.4. Let (E,£) be a Hausdorff locally convex-solid function
space, and let X be a Banach space. Then the following statements are
equivalent:

ach order interval in E is o -compact an 1s reflezive.
i) Each order 1 Lin Eis o(E, Ef d X is reflexi

(i) €
(iii) Each order interval in E(X) is o(E(X), E(X)Z—

(iv) m(E(X)) is an ideal of (E(X)Z—)E, i.e., m(E(X)) = (E(X)E—)E(X).
(v) (E(X) [o|(BE(X)z, E(X)))* = 7(E(X)).

is a Lebesgue topology and X is reflexive.

)-compact.

Proof. (i)<(ii). See Theorem 2.1.

)&
(ii)=-(iii). Assume that ¢ is a Lebesgue topology and X is reflexive.
Then E(X )2— E(X);, and by [7, Section 4, Corollary 1] each order

no

interval in F(X) is o(F(X), E(X)z—) -compact.

(iii)=-(ii). Assume that each order interval in E(X) is o(E(X),
E(X )Z) compact. First we show that £ is a Lebesgue topology, that
is, EE C E;, see [bfl, Theorem 9.1]. Indeed, assume on the contrary
that there exists ¢, € Ef such that ¢ ¢ E;’. Hence there exist €, > 0
and a net (uy) in E such that u, | 0 in F and |p,(uq)| > &, for all
o. We can assume that u, < u for some v € Et and all . Let
fa = uq ® x, for each « and a fixed z, € Sx. Then f, € D, for all ¢,

so one can choose a subnet (f3) of (f,) and f, € D, such that f3 — f,
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for U(E(X),E(X)z—). Choose z} € Sx» such that z¥(z,) = 1, and for

each ¢ € E%, let us put

F (f)=¢(xiof) foral fe E(X).

We shall show that F, € E(X)z— Indeed, let {p; : t € T} be a family
of Riesz semi-norms that generates £. Since ¢ € E¢, there exist a > 0
and t, € T,i=1,...,n, such that for each f € E(X) we have

()l = lp(zg 0 /I <1 max py (250 f) < a max py,(f)

= aargiagnpn(f),

that is, F, € E(X)z— Hence

p(ug) = Fp(up ® ) — Fp(fo) = @(z5 0 fo).
This means that ug—aj o f, € E for o(E, Ef), as desired.

On the other hand, since ug | 0 in E, we conclude that ug—0 for
o(E, Ef), see [18, Corollary 10.2.2]. But ¢, € Ef = (E,0(E, Ef))*,
50 ¢o(ug)—0, which is in contradiction with |¢,(ug)| > &, > 0. This
contradiction establishes that £ is a Lebesgue topology.

Now we shall show that X is reflexive, i.e., the unit ball Bx is weakly
compact. Indeed, let (z,) be a net in Bx. Given a fixed u € E* let
us put h, = u ® x, for each . Then h, € D, for each «, so there
exist a subnet (hg) of (hy) and h, € D, such that u ® zg = hg—h,

for O'(E(X),E(X)z—). Let M¢ be an ideal of E’ determined by &, see

Proposition 1.2. Choose v, € Mg such that [, u(w)vy(w)dp = 1.
Hence v, ® * € M (X*) C M¢(X*, X) for each 2* € X*, so

z*(zp) = /Q u(w)vo(w)a™ (zg) d
— Fayor (4 25)— Fayoa- (h)

=/wwm%wmwmb

Q

=/wwwmmw»m
Q

o ([ ame)dn).
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Hence zg—x, = fQ vo(w)ho(w)dp € By for (X, X*).

(iv)=(ii). Assume that 7(E(X)) = (E(X)?)p(x), and let u, € Et.
Let f, = u,®u, for a fixed z, € Sx. Then in view of [22, Theorem 1.3]
for f € E(X), we have that |7y < |7y, | if and only if f < f, = u,.
Hence

Iy, = {ﬂ—f:fEE(X)v |7Tf| < |7Tfo‘}: {Ff:fEE(X)7 J?SUD}'

In view of Theorem 2.3, Iy, is a U(W(E(X)),E(X)z—)—compact subset
of m(E(X)). Since F(f) = n;(F) for f € E(X) and F € E(X)Z—, the
mapping

i (n(B(X)), o(r(BE(X)), E(X);)) — (B(X),0(E(X), BE(X)))

is continuous. Hence, the set 77 1(I,) (= Dy,) is U(E(X),E(X)Z—)-
compact.

(ii)=(iv). Assume that (ii) holds. We shall show that (E(X)E—)E(X) C
m(E(X)). Indeed, let V € (E(X)Z—)E(X), ie, V € (E(X)z—)* and
|V| < |ry,| for some f, € E(X). Let Mg be an ideal of E’ determined
by &, see Proposition 1.2. In view of [22, Theorem 1.1], the mapping
¥ Me(X™) 5 g — Fy € E(X)g is an order continuous bijection, i.e.,
for a net (go) in Me(X™), ga 2 0in M implies F, 2 0in E(X)z—, see
[22, Definition 1.2]. Hence one can easily show that Vo1 € Mg (X*)7.
Since X* is reflexive, there is h, € M (X™™), (= M{(X™*, X)) such
that

V(E,) = V(i(g)) = /Q (9(w), ho(@)) d i forall g € M(X7).

Let j : X — X** stand for the canonical isometry. Define k,(w) =
G H(ho(w)) for w € Q. One can easily show that the function k, : Q —
X is strongly Y-measurable and ||ko(w)||x = |[ho(w)||x=~ for all w € Q,
Le., ko € M{(X). We have

M{(X)y = {Fy: g € M{(X")},

where

Fy(k) :/Q<k(w),g(w)>du for ke M{(X).
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Hence, for each g € Mé’(X*), we get

o (Fy) = Fyll) = [ (ko). g(w)) dp
+) = [ )@ d
= [ to)ha(w)) dp = V(F,)
We shall now show that k, € E(X), i.e., k, € E. Indeed, let g, €
M{(X*). Then by [21, Corollary 2.5] for g € M (X™), |Fy| < |Fy,| if

and only if § < g,. Hence by making use of (+) and [5, Theorem 4.1]
we get

[VI(Fgo) = sup{|V(Fy)| : g € M¢(X7), § < 3o}
= sup{|my, (Fy)| : g € M{(X*), § < go}
_sup{‘F )| i g M "(X7), <90}
= sup ‘/ ))dp gEMé/(X*),gﬁgo}

/%<mme
Q

Since |V| < |my,| and for each g € M¢(X™) € M{(X*), |7y, [(Fy) =
|Fy|(fo), we get

/Qﬁ(w)ifo(w)dﬂ = [VI(Fy) < |7 [(Fy) = [Fyl(fo) = /Qfo(w)ﬁ(W)du
It follows that k, < fo, where k, € MEI and fo eECE'C MEI Hence

ko € E, ie., k, € B(X). Hence, in view of (+) for each g € Me(X*),
we get

V(Fy) = /Q<k0(w),g(w)> dp = Fy(ky) = mry (Fy).

Thus V = 7, , where k, € E(X), i.e., V € n(E(X)), as desired.
(iv)<(v). Tt follows from Theorem 2.2. O
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Remark. In [6, Proposition 2] it is shown that every order interval in
E(X)is o(E(X), E(X);)-compact if and only if X is reflexive.

3. Almost reflexivity of vector-valued function spaces. First
we recall some definitions. Let (L, K) be a dual pair. A subset A of
L is said to be conditionally o(L, K)-compact whenever each sequence
in A contains a o(L, K)-Cauchy subsequence. Recall that a normed
space X is said to be almost reflexive if every norm-bounded subset of
X is conditionally weakly compact, see [11, 17]. The fundamental ¢*-
Rosenthal theorem [29] says that a Banach space X is almost reflexive
if and only if it contains no isomorpic copy of ¢1.

Due to Geuiler and Chubarova [16], see also [4, Proposition 3.2],
the Kothe-Bochner space E(X) is almost reflexive if and only if both
Banach spaces X and E are almost reflexive. This result is a broad
generalization of the corresponding theorems of Pisier [28] and Bombal
[3], who proved it in the special cases of LP(X), 1 < p < oo, and Orlicz-
Bochner spaces respectively.

Now we extend the concept of almost reflexivity to the class of locally
convex spaces.

Definition 3.1. A Hausdorff locally convex space (L, €) is said to
be almost reflexive whenever every U(L,LE)-bounded subset of L is
conditionally o (L, Lz)—compact.

In this section we characterize almost reflexivity of (E(X),£) when-
ever (E,¢) is a Hausdorff locally convex-solid function space with the
Lebesgue property and X is a Banach space.

Let M be an ideal of E’ with suppM = €. Assume that B is a
o(E, M)-bounded subset of E. Then B is also |o|(E, M)-bounded, see
[1, Theorem 6.6], so one can define a Riesz semi-norm pg on M by

pp(v) = Sup{/ﬁ|u(w)v(w)\du RS B}.

Let (E, &) be a Hausdorff locally convex-solid function space with the
Lebesgue property and let M be an ideal of E' with supp M, = Q
such that Ef = {p, : v € M¢}. The following characterization
of conditionally o(E, M¢)-compact sets in E will be needed, sec [26,
Theorem 3.2].
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Proposition 3.1. Let (E,£) be a Hausdorff locally convez-solid
function space with the Lebesque property. Then for a subset B of
E, the following statements are equivalent:

(i) B is conditionally o(E, M¢)-compact.
(ii) B is o(E, M¢)-bounded and pp is order continuous on Me.

The strong topology B(Me, E) is a locally convex-solid topology on M,
that is generated by a family {pp : B € B}, where B; is the collection
of all o(E, M¢)-bounded solid subsets of E, see [1, Section 9].

As a simple consequence of Proposition 3.1, we get the following;:

Proposition 3.2. Let (F, &) be a Hausdorff locally convez-solid func-
tion space with the Lebesque property. Then the following statements
are equivalent:

(i) Every o(E,M¢)-bounded set in E is conditionally o(E, Me)-
compact.

(ii) (Mg, E) is a Lebesgue topology.

Proof. (i)=(ii). It follows from Proposition 3.1.

(ii)=-(i). Assume that B(M¢, E) is a Lebesgue topology and, let B be
a 0(E, M¢)-bounded subset of E. Then its solid hull S(B) in E is also
o(E, M¢)-bounded and the semi-norm pg(p) on M is order continuous.
Hence by Proposition 3.1 B is conditionally o(E, M)-compact. O

As an application of Proposition 3.2 we have the following character-
ization of almost reflexivity of (E,¢).

Corollary 3.3. Let (E,£) be a Hausdorff locally convex-solid func-
tion space with the Lebesgue property. Then the following statements
are equivalent:

(i) (E,&) is almost reflexive.
(i) B(EE, E) is a Lebesgue topology on Ef.
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Now we are ready to characterize almost reflexivity of (E(X),£).

Theorem 3.4. Let (E, &) be a Hausdorff locally convez-solid function
space with the Lebesgue property, and let X be a Banach space. Then
the following statements are equivalent:

(i) X is almost reflexive and (E,€) is almost reflezive.

(ii) (E(X),&) is almost reflezive.

Proof. (i)=-(ii). Assume that (i) holds, and let H be a o(E(X),
M¢(X*, X))-bounded subset of E(X). Then by [25, Proposition 1.3],
the set {f : f € H} is o(F, M¢)-bounded, so it is conditionally
o(E, M¢)-compact. Hence by [25, Proposition 2.3], H is conditionally

o(E(X), Me(X*, X))-compact, so (E(X),¢) is almost reflexive.

(ii)=(i). Assume that (F(X),¢&) is almost reflexive. To show that
By is conditionally weakly compact, let (x,) be a sequence in Bx.
Given u € Et let h, = v ® z, for n € N. We shall show that
the set {h, : n € N} is o(E(X), M¢(X*, X))-bounded. Indeed, for
g € M¢(X*, X), we have

sup| [ ()@ dn] < [ u@)itg)w)dn < x.
Hence the set {h, : n € N} is conditionally o(E(X), M¢(X*, X))-
compact, so there exists a o(E(X), M¢(X*, X))-Cauchy subsequence
(hg,) of (hy). Arguing as in the proof of implication (iii)=-(ii) in
Theorem 2.4, we see that (xy, ) is weakly Cauchy.

Now assume that Z is a o(E, M¢)-bounded subset of E. Then Z
is also |o|(E, M¢)-bounded, so for each g € M¢(X*,X) and a fixed
x, € Sx, we get

supp‘/ W)z, g(w)ydp <sup/|u )9(g)(w)dp < 0.
ueZ u€Z

Hence the set {u®z,: v € Z} is o(E(X), Me(X*, X))-bounded, so it
is conditionally o(E(X), M¢(X*, X))-compact. By [25, Theorem 2.2],
the set {|u| : v € Z} is conditionally o(E, M¢)-compact, so Z is
conditionally o(E, M¢)-compact, see [8, Theorem 3.4, Proposition 2.2].
This means that (F, &) is almost reflexive. o
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4. Weak sequential completeness of vector-valued function
spaces. In his celebrated paper Talagrand [30] showed that a Kothe-
Bochner space E(X) is weakly sequentially complete if and only if
both Banach spaces E and X are weakly sequentially complete. In
particular, it is well known that a Banach function space (E, || - || g) is
weakly sequentially complete if and only if E is KB-space, i.e., || - || g
has both the o-Lebesgue property and the o-Levy property, see [20,
Theorem 1.c.4], [18, Theorem 10.4.9]. In this section we study weak
sequential completeness of (E(X),&) whenever (E,&) is a Hausdorff
locally convex-solid function space and X is a Banach space.

We start by recalling a characterization of weak sequential complete-
ness of locally convex-solid function spaces. For this purpose, we now
establish notation and some results as set out in [33, Exercise 102.24,
pp. 331-332].

Let (E,¢) be a Hausdorff locally convex-solid function space. Then
putting
Ef,:=E;NE; and Ef,:=FENES

we get Ef = Ef @ E¢ .. We have

EY¢):={u€E:|ul >u,|0in E implies ¢(u,) — 0 for all p € Ef}
={u€E:|ul>u, | 0in E implies u,, — 0 for all £}.

Observe that £ is a o-Lebesgue topology (= Lebesgue topology) if and
only if E%(¢) = E. Moreover, if supp E%(£) = , i.e., E*(&) is order
dense in L°, then we have

Ef,=E*&)" ={p € Ef:p(u)=0forallu € E*(£)}

and Ef |, separates points of E.

Now we are in position to state our desired result, see [26, Theo-
rem 2.2].

Theorem 4.1. Let (E, &) be a Hausdorff locally convez-solid function
space such that supp E*(§) = Q. Then the following statements are
equivalent:

(i) E is U(E,Eg)-sequentially complete.
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(ii) € has both the o-Lebesgue property and the o-Levy property.
(iil) & has both the Lebesgue property and the Levy property.

As a simple consequence of Theorem 4.1, we have the following well-
known result, see [8, Corollary 4.2], [1, Theorem 20.26]).

Theorem 4.2. Let (E, &) be a Hausdorff locally convez-solid function
space with the Lebesque property. Then the following statements are
equivalent:

(i) E is o(E, Ef)-sequentially complete.

(i) € is a o-Levy topology.

Now we pass on to the vector-valued setting. Recall that a functional
F € E(X)~ is said to be singular if there is an ideal B of F with
supp B = Q and such that F(f) =0 for all f € F(X) with f € B. The
set consisting of all singular functionals on E(X) will be denoted by
E(X)7 and called the singular dual of E(X), see [7, 21].

Due to Bukhvalov and Lozanowski, see [7, Section 3, Theorem 2], the
following Yosida-Hewitt type decomposition holds:

(4.1) E(X)~ = B(X)y © B(X)7
and moreover, if F' = F,, + F, where g € E'(X*, X) and F, € E(X)7,

then op = ¢, + ¢p,, where ¢p, (u) = [ u(w)d(g)(w)dpu for u € E
and g, € B .

Let us put
B(X)g, = BE(X)g nEX)y
and
E(X);, = E(X):nE(X)7
Then
(4.2) B(X)g=E(X)g, ® B(X)g,
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and there is an ideal M¢ of E' with supp M = Q such that
Eg‘n = {py v e M}

We shall now show that

(4.3 B(X);, = 1y g € Me(X, X)),
Indeed, let F € E(X)z—n7 ie., F = F, for some g € E'(X*, X)
and F € E(X)Z— Hence vr = ¢r, = py(g), where J(g) € E' and

¢r € Ef, see Proposition 1.1. Hence o € Ef ,, so ¥(g) € M¢. Thus
g € Me(X*, X).

Now, let F' = F,, where g € M¢(X*,X). Then F € E(X); and

©F = QF, = Py(g), Where ¥(g) € M¢. Hence pr € Ef, s0 I' € E(X)z—,

see Proposition 1.1. Thus F' € E(X)Z—n

The following “topological versions” of [25, Theorem 2.2 and Theo-
rem 3.3] will be of importance in the proof of Theorem 4.5.

Theorem 4.3. Let (E,£) be a Hausdorff locally convex-solid function
space with the Lebesgue property, and let X be a Banach space. Then
for a subset H of E(X) the following statements are equivalent:

(i) H is conditionally U(E(X),E(X)E—)-compact.

(i) (a) The set {f : f € H} is conditionally o(E, Ef)-compact.
(b) For each subset A € ¥y with X4 € M¢ and each sequence (fy) in
H there exists a sequence (h2) with ht € conv{Xafy : k > n} such
that (hi(w)) is weakly Cauchy in X for almost every w € A.

Theorem 4.4. Let (E, &) be a Hausdorff locally convez-solid function
space with the Lebesgue property, and the o-Levy property, and let X be
a Banach space. Then for a subset H of E(X), the following statements
are equivalent:

(i) H is relatively o(E(X), E(X)z—)-sequentially compact.

(i) (a) The set {f : f € H} is relatively o(E, Ef)-sequentially
compact. (b) For each A € Xy with X4 € M¢ and each sequence
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(fn) in H, there is a sequence (hZ) with hit € conv {fx : k > n} such
that (hiH(w)) is weakly convergent in X for almost every w € A.

Now we are in position to state our main result.

Theorem 4.5. Let (E, &) be a Hausdorff locally convez-solid function
space with supp E*(§) = Q, and let X be a Banach space. Then the
following statements are equivalent:

(i) E(X) s U(E(X),E(X)Z—)—sequentially complete.

ii) E is o(E, Bf)-sequentially complete and X is weakly sequentially
3
complete.

Proof. (i)=(ii). Assume that F(X) is o(E(X), E(X)Z—)—sequentially
complete.

First, we show that E is o(E, E¢ )-sequentially complete. Indeed, let
(un) be a o(E, Ef)-Cauchy sequence in E. For a fixed z, € Sx let

hyn, = un @z, for n € N. We shall show that (h,) is a o(E(X), E(X)z—)—

Cauchy sequence in E(X). Indeed let F' € E(X)Z— Then F = F, + Fj,

where g € M¢(X*,X) and F; € E(X)Z—S7 see (4.2) and (4.3). We have
©F, = Po(g), Where |gz,| < 9(g) € Me. Hence g, € M, so

Fy(hn) = /Q n ()9 (@) (o) d o = /Q () g () d jr— 1y € R.

Now let us set
vs(u) := Fs(u®x,) for weE.

In view of (4.1) and Proposition 1.1, we have that ¢p, € Ef_.
Moreover, for u € ET, we have

|psl(u) = sup{|Fs(w @ z,)| : w € E, Jw| <u}
< sup{|Fy(h)| : h € B(X), h <u}
= |Fsl(u®z) = ¢r, (u).

It follows that ¢, € Egs, because pp, € EE,S and Egs is an ideal of
E~. Hence

Fs(hy) = Fs(up ® x,) = @s(u,)— as € R.
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Thus
F(hn) = Fg(hn) + Fs(hn)—ng +as € R,

and this means that (h,,) isa o (E(X), E(X)E)—Cauchy sequence. Hence
there exists h, € E(X) such that h,, — h, for o(E(X), E(X)Z—) Choose
x} € Sx» such that z¥(z,) = 1. Then u, = z¥ o h, € E.

We shall show that w, —u, for O’(E,Eg). Indeed, let p € E¥, i.e.,

© = ¢y + ps, where v € M¢ and ¢ € Ef .. Then g = v® g €

Me(X*,X), s0 Fy € E(X)z—n, see (4.3). Hence

u(ttn) = Fy(hn)—Fy(hy) = /Q (2 0 ho)(@)o(w) d o = g ().

Let us put
Gs(f) == gs(zgof) for fe E(X).

We shall first show that Gs € F(X)% . Indeed, for u € ET we have

£s
sup{|Gs(f)| : f € E(X), f§ u} < sup{|ps(w)|:w € E, |w| <u}
= [ips|(u).

Hence G5 € E(X)™. Since s € E7, there exists an ideal B of E with
supp B = Q and such that ¢s(u) = 0 for all u € B. Assume now that
f € E(X) with f € B. Then |z o f| < f, so 2f o f € B. Hence
Gs(f) = ps(zko f) = 0,80 Gy € E(X)7. Let & be generated by a
family {p; : ¢t € T} of Riesz semi-norms on E. Since 5 € Ef there
exist a >0and t; € T, i=1,...,n, such that for f € E(X),

GL(F)] = le(ai o )] < @ max pr, (a0 ) < 0 max pe,(f)

= a max D, (f).

Hence G, € E(X)Z—, so G, € E(X): and

&,s
Ps(un) = ps(T50(un®@70)) = Gs(hn)—Gs(ho) = s(T50h0) = s (o).
It follows that

O(un) = @u(Un) + Ps(Un) =00 (U) + s(uo) = @(u,),



PROPERTIES OF VECTOR-VALUED FUNCTION SPACES 937

Le., up—u, for o(E, Ef). Thus E is o(E, Ef)-sequentially complete.

Making use of Theorem 4.1 we obtain that £ is a Lebesgue topology,
so in view of (4.3), E(X); = E(X); | ={Fy:g € M(X*, X)}.

We shall now show that X is weakly sequentially complete. Indeed,
let (x,) be a weakly Cauchy sequence in X. Then sup, ||z.||x =
a < oo. Given a fixed v € ET, let us put h, = u ® =z, for
n € N. We shall now show that (h,,) is a 0(E(X), M(X*, X))-Cauchy
sequence in E(X). In fact, let ¢ € M(X* X). Let 2}, = x,/a
for n € N. Then g, | < 19( ) € Mg C E' for n € N, and since
Gt (W) = g(w)(x,); gor (W )—>v( ) for some v € M, and all w € Q.
It follows that (gx/ —v) @ 0in E'. Since u € E C E", we get
u(gar, — ) = [ou(w)(gar (w) — v(w)) d p—0. Hence

[ ) dn=a [ u@an @) dp—a [ wwpe)dpeR.

This means that (hy) is o(E(X), M¢(X*, X))-Cauchy, so there exists
ho € E(X) such that h, — h, for o(E(X), M¢(X* X)). Choose
v, € Mgr such that [, u(w)vo(w)dp = 1. Then v, ® z* € M¢(X*)
for z* € X, so

x*(xn):/Qu(w)vo(w)x*(xn)du

= LPyg@a* (u ® Tp)— Vo®x* (ho)

= [ () vy dn

Q

— [ @) dn
Q

= x*(/{lvo(w)ho(w) d,u).

Hence z,,—x, = fQ Vo(w w)dp € X for (X, X™*), as desired.
(il)=(i). Assume that ( i) holds. In view of Theorem 4.1 £ is a
Lebesgue topology, so E(X)z— = E(X)§ = {F, : g € M¢(X*, X)},
see (4.3). Let (fn) be a o(E(X), M¢(X*, X))-Cauchy sequence in
E(X). Then theset {f, : n € N} is conditionally o (E(X), M¢(X*, X))-
compact, so in view of Theorem 4.3 and Theorem 4.4 it is also relatively
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o(E(X), M¢(X*, X))-sequentially compact. Hence, one can choose a
subsequence (fx,) of (f,) and f, € E(X) such that fx, — f, for
o(E(X), Me(X*,X)). It follows that f,, — f, for o(E(X), Me(X*, X)),
as desired. O

We know that E*(£) = E whenever £ has the Lebesgue property, so
as a consequence of Theorem 4.5, we get the following vector-valued
analogue of Theorem 4.2.

Corollary 4.6. Let (E,£) be a Hausdorff locally convez-solid func-
tion space with the Lebesque property, and let X be a Banach space.
Then the following statements are equivalent:

(i) E(X) s U(E(X),E(X)z—)-sequentially complete.

(i) £ is o(E, Ef)-sequentially complete and X is weakly sequentially
complete.

Now we apply Theorem 4.5 and Corollary 4.6 to two particular cases:
E=7(E,E~) and £ =7(E,E)).

Recall that an ideal E is said to be perfect whenever E = E”. Note
that F is o(F, E;’)-sequentially complete if and only if F is perfect,
see Theorem 4.1 and [1, Theorem 9.4].

It is well known that the Mackey topology 7(E, E™) is locally solid,
see [2]. Let

E*:={u€ FE:|ul >u, | 0in E implies p(u,) — 0 for all p € E~}.

Since the Mackey topology 7(E(X), E(X)™) is locally solid and 7(E(X),
E(X)~) =7(E, E~), see [22, Theorem 3.7], [24, proof of Theorem 3.3],
by making use of Theorem 4.1 and Theorem 4.5, we get:

Corollary 4.7. Let E be an ideal of L° with supp E® = Q, and let
X be a Banach space. Then the following statements are equivalent:
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(i) E(X) is o(E(X), E(X)™)-sequentially complete.
(ii) B~ = E;, E is perfect and X is weakly sequentially complete.

It is well known that the Mackey topology 7(E, E;’) is the finest Haus-
dorff locally convex-solid topology on E with the Lebesque property,
see [2, 15]. Since (E,7(E, E;))* = {¢, : v € E'}, by Proposition 1.2
we get E(X)Y p ) = {Fy : g € E'(X",X)} = E(X);. Hence, in
view of Corollary 1.6, we obtain the following:

Corollary 4.8. Let E be an ideal of L°, and let X be a Banach
space. Then the following statements are equivalent:

(i) E(X) is o(E(X), E(X);)-sequentially complete.
(ii) E is perfect and X is weakly sequentially complete.

5. Semi-reflexivity of vector-valued function spaces. Recall
that a Hausdorff locally convex space (L, £) is said to be semi-reflexive if
the natural embedding of L into its bidual is onto. It is well known that
(L, §) is semi-reflexive if and only if every o (L, L§)-bounded subset of L
is relatively o(L, Lf)-compact, see [31, Chapter 10.2]. In particular, a
Banach space X is reflexive (= semi-reflexive) if and only if it is almost
reflexive and weakly sequentially complete.

The following characterization of semi-reflexivity of function spaces
will be of importance, see [9, Proposition 5.4], [1, Theorem 22.4], [32].

Theorem 5.1. Let (E, &) be a Hausdorff locally convez-solid function
space. Then the following statements are equivalent:
(i) (E,¢&) is semi-reflexive.
(ii) § s a Lebesgue, Levy topology and PB(Ef,E) is a Lebesgue
topology.

In this section we extend this characterization to the vector-valued
setting. In particular, it is known that if E is a Banach function
space, (over a finite measure space) with an order continuous norm,
then the Koéthe-Bochner space E(X) is reflexive if and only if both
Banach spaces F and X are reflexive, [4, Proposition 3.2].
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We will need the following version of the Eberlein-Smulian theorem

for the locally convex space (E(X),o(FE(X), E(X)Z—))

Theorem 5.2 (see [25, Theorem 3.2]). Let (E,§) be a Hausdorff
locally convez-solid function space with the Lebesgue property, and let X
be a Banach space. Assume that the absolute weak topology |o|(E, Ef)
has the o-Levy property. Then for a subset H of E(X), the following
statements are equivalent:

(i) H is relatively U(E(X),E(X)Z—)—compact.
ii) H 1is relatively o(E(X), E(X)%)-sequentially compact.
¢

Now we are in position to state our main result.

Theorem 5.3. Let (E, &) be a Hausdorff locally convez-solid function
space, and let X be a Banach space. Then the following statements are
equivalent:

(1) (E(X),€) is semi-reflexive.

(ii) X is reflexive and (E, &) is semi-reflexive.

Proof. (1)=(ii). Assume that (E(X),&) is semi-reflexive, i.e.,
m(E(X)) = (E(X)z—); Then, in view of Theorem 2.4, X is reflex-
ive and ¢ is a Lebesgue topology. Let M, be an ideal of E’ determined

by &, see Proposition 1.2.

To show that (E,&) is semi-reflexive, let Z be a o(E, M¢)-bounded
subset of E. It is enough to show that Z is relatively o (E, M¢)-compact.
Indeed, let (uo) be a net in Z and z, € Sx. Then {u® z, : v € Z}
is a o(E(X), Me(X*,X))-bounded subset of E(X), see the proof of
(ii)=-(i) in Theorem 3.4, so it is also relatively o(E(X), M¢(X*, X))-
compact. Hence there exist a subnet (ug) of (u,) and h, € E(X) such
that ug ® x,—h, for o(E(X), Me(X*, X)). Choose z} € Sx+ such that
zf(x,) =1. Then v @ z} € M(X*, X) for every v € My, so

po(ug) = Foga; (ug ® o) — VT (ho)

- / (ho(w), v(w)z?) d
Q
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~ [ @ o h)@nte) dp
Q

= QDU(:L‘; o hO)v

ie., ug — x¥oh, € E for o(E, M), as desired.

(ii)=(i). Assume that X is reflexive and (F,¢) is semi-reflexive,
i.e., & is a Lebesgue, Levy topology and ﬁ(Eg,E) has the Lebesgue
property, see Theorem 5.1. By making use of Theorem 3.4, we obtain
that the space (E(X),€) is almost reflexive. Moreover, by Theorem 4.2
and Corollary 4.6, E(X) is U(E(X),E(X)Z—)—sequentially complete.
It follows that every U(E(X),E(X)Z—)—bounded subset H of E(X) is

relatively o(E(X), E(X)?)-sequentially compact. Since |o|(E, Ef) is

¢
a Levy topology, by Theorem 5.2, H is relatively U(E(X),E(X)Z—)-
compact. This means that (E(X),£) is semi-reflexive. O

6. Relative weak compactness of solid hulls in vector-valued
function spaces. Bukhvalov [6, Proposition 5] has showed that if a
Banach function space E is a KB-space and X is a reflexive Banach
space, then the convex-solid hull of every relatively weakly compact
subset of the Kothe-Bochner space F(X) is again relatively weakly
compact. In this section we extend this result to the general setting
whenever (E,¢) is a Hausdorff locally convex-solid function space and
X is a Banach space.

By S(H) we will denote the solid hull of a set H in F(X), i.e., the
smallest solid set in F(X) containing H. Then S(H) = {f € E(X) :
f < h for some h € H}. It is known that the convex hull of a solid
subset H of E(X) is again solid, see [14, Theorem 1.2].

The following result will be of importance.

Theorem 6.1. Let (E,£) be a Hausdorff locally convex-solid function
space with the Lebesgue property, and let X be a Banach space. Then
the following statements are equivalent:

(i) X is almost reflexive.
(ii) The convex solid hull of every conditionally o(E(X), E(X)%)-

3
compact subset of E(X) is conditionally o(E(X), E(X)Z—)—compact.



942 M. NOWAK

(iii) The solid hull of every conditionally o(FE(X), E(X)

subset of E(X) is conditionally o(E(X), E(X)z—)—compact.

)-compact

s

Proof. (1)=-(ii). See [6, Corollary 1 of Proposition 4].

(if)=(iii). It is obvious.

(ii)=>(i). Assume that (iii) holds. It is enough to show that the unit
ball Bx is conditionally weakly compact. Indeed, let (z,,) be a sequence
in By, and let w € E*. Then the order interval D, (= S({u ® z,})
for a fixed z, € Sx) is conditionally o(E(X), E(X)Z—)—compact. Then
hyp, = u®x, € D, for n € N, so there exists a J(E(X),E(X)Z—)—
Cauchy subsequence (hy, ) of (hy,). Arguing similarly as in the proof of
implication (iii)=-(ii) in Theorem 2.4, we obtain that (xj,) is weakly
Cauchy, as desired. i

Now we are in position to state our desired result.

Theorem 6.2. Let (E, &) be a Hausdorff locally convez-solid function
space with the Levy property and X a Banach space. Then the following
statements are equivalent:

(i) € is a Lebesgue topology and X is reflexive.

(ii) The convex solid hull of every relatively o (E(X), E(X)%)-compact

3
subset of E(X) is relatively o(E(X), E(X)E—)-compact.

(iil) The solid hull of every relatively o(E(X), E(X)%)-compact subset

3
of E(X) is relatively o(E(X), E(X)z—)—compact,

Proof. (i)=(ii). Assume that (i) holds, and let H be a relatively
U(E(X),E(X)z—)-compact subset of F(X). In view of Theorem 5.2,

H is J(E(X),E(X)z—)—sequentially compact, so it is U(E(X),E(X)Z—)—

conditionally compact. Hence, by Theorem 6.1, conv (S(H)) is also
conditionally U(E(X),E(X)z—)—compact. Since the space E(X) is

o(E(X), E(X)Z—)—sequentially complete, see Corollary 4.6, conv (S(H))

is relatively o (F(X), E(X )Z—)—sequentially compact. Making use of The-

orem 5.2, we obtain that conv (S(H)) is relatively U(E(X),E(X)Z—)-
compact, as desired.



PROPERTIES OF VECTOR-VALUED FUNCTION SPACES 943

(if)=-(iii). It is obvious.

(iii)=-(i). Assume that (iii) holds. Then for every u € E* the order
interval D, (=S({u ® z,}) for a fixed z, € Sx) is U(E(X),E(X)Z—)-
compact. In view of Theorem 2.4 £ has the Lebesgue property and X

is reflexive. ]

Now we consider a particular case whenever £ = 7(E, E;’). Since
(E,7(E,E))* = (E,|o|(E,E))* = E;, see [1, Theorem 6.6], E is
perfect, i.e., E = E”, if and only if 7(F, E’) is a Levy topology, see
[1, Theorem 9.4]. Moreover, E(X)j(E)E;) = E(X); holds. Thus as an

application of Theorem 6.2 we get:

Corollary 6.3. Let E be a perfect ideal, and let X be a Banach
space. Then the following statements are equivalent:

(i) X is reflexive.

(il) The convex solid hull of every relatively o(E(X),E(X)y)-
compact subset of E(X) is relatively o(E(X), E(X);)-compact.

(iil) The solid hull of every relatively o(E(X), E(X))-compact sub-
set of E(X) is relatively o(E(X), E(X)y)-compact.
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