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SOME OBSERVATIONS ON
GENERALIZED LIPSCHITZ FUNCTIONS

RADU MICULESCU

ABSTRACT. In this paper we present a notion of gener-
alized Lipschitz function, suggested by the Riemann-Stieltjes
integral viewed as a generalization of the Riemann integral.
We make some remarks on the connection of this notion with
the Hellinger integral, we give a McShane’s type result for
generalized Lipschitz functions and a result on approximation
of bounded generalized uniformly continuous function with
generalized Lipschitz functions.

The classical notion of Lipschitz function is the following one:

Definition 1. Let (X, d) and (Y, d′) be metric spaces. A function
f : X → Y is called Lipschitz if there exists a constant M ≥ 0 such
that

d′(f(x), f(y)) ≤ M · d(x, y)

for all x, y ∈ X. The smallest number M ≥ 0 satisfying the above
relation is called the Lipschitz constant of f and is denoted by lip f .

Remark 1. Intuitively speaking, a Lipschitz function is one that obeys
speed limits.

From the point of view of real analysis, the condition of being
Lipschitz should be viewed as a weakened version of differentiability,
because of the followings result due to Rademacher, see [6]:

Theorem 1. If U is an open set in Rn and f : U → Rm is a
Lipschitz function, then f is differentiable outside of a Lebesgue null
subset of U .
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The class of Lipschitz functions has been intensively studied. The
paper of Luukkainen and Väisälä, see [2], is a very good introduction
to the study of Lipschitz topology.

Several generalizations of the notion of Lipschitz function were given.

Mankiewicz, see [3], generalized the definition of a Lipschitz function
for locally convex spaces, as follows:

Definition 2. A function f from a subset A of a locally convex
vector space X into a locally convex space Y is said to be Lipschitz
if for every continuous pseudonorm p on Y there exists a continuous
pseudonorm q on X and a constant M such that

p(f(x) − f(y)) ≤ Mq(x − y),

for every x, y ∈ A.

He has obtained some extensions of the classical theorem of Rade-
macher and he has given applications of this result to the problem of
the topological classification of Fréchet spaces.

Recently, Romaguera and Sanchis, see [7], defined the notion of semi-
Lipschitz function, namely:

Definition 3. Let X be set and d a quasi-metric on X. A function
f : X → R is called semi-Lipschitz if there exists a constant M ∈ R+

such that, for every x, y ∈ X, we have

f(x) − f(y) ≤ Md(x, y).

They use this notion to characterize the points of best approximations
and semi-Chebyshev sets in quasi-metric spaces.

Jouini [1] has considered a generalization of the notion of Lipschitz
function, which in particular includes all nondecreasing functions. More
precisely,
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Definition 4. Given a cone Q with vertex 0 in Rn × R, if K is a
compact subset of Rn, a function f : K → R is said to be Q-Lipschitz
if it is lower semi-continuous and

(epi (f) + Q) ∩ (K × R) ⊆ epi (f).

Remark 2. f is k-Lipschitz, in the usual sense, if and only if it is
Qk-Lipschitz, where Qk = {(x, u) | u ≥ k ‖x‖}.

He has obtained, based on this notion, an analog of Ascoli’s theorem
and has given some applications for certain differential equations.

In this paper we present a notion of generalized Lipschitz function
which is suggested by the Riemann-Stieltjes integral viewed as a gen-
eralization of the Riemann integral.

To be more specific, we have:

Definition 5. Let (X, d) and (Y, d′) be metric spaces. A function
f : X → Y is called Lipschitz with respect to a function g : X → X if
there exists a constant M ≥ 0 such that

d′(f(x), f(y)) ≤ M · d(g(x), g(y))

for all x, y ∈ X.

The smallest number M ≥ 0 satisfying the above relation is called
the Lipschitz constant of f and is denoted by lipgf .

Remark 3. Obviously, for g = IdX , we obtain the classical notion of
Lipschitz function.

Remark 4. Let g : R → R be a strictly increasing function and
f : R → R a Lipschitz function with respect to g. Then, for each
a, b ∈ R, a < b, the Hellinger integral

∫ b

a
(df)2/dg exists.
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Indeed, if {x0, x1, . . . , xn} is a subdivision of [a, b], then

n∑
k=1

(f(xk) − f(xk−1))2

g(xk) − g(xk−1)
≤

n∑
k=1

(lipgf)2(g(xk) − g(xk−1))

= (lipgf)2(g(b) − g(a)),

so
∫ b

a
(df)2/dg exists and, moreover,

∫ b

a

(df)2

dg
≤ (lipgf)2(g(b) − g(a)).

On the other hand, if for a, b ∈ R, a < b, the Hellinger integral∫ b

a
(df)2/dg exists and the function H : [a, b] → R, given, for each

x ∈ [a, b], by H(x) =
∫ b

a
(df)2/dg, is Lipschitz with respect to g, then

f is Lipschitz with respect to g.

Indeed, for each x, y ∈ [a, b] with x < y, we have

|f(y) − f(x)|2
g(y) − g(x)

≤ |H(y) − H(x)| ≤ lipgH(g(y) − g(x)),

so
|f(y) − f(x)| ≤ √

lipgH (g(y) − g(x)).

Our first result is about the extension of generalized Lipschitz func-
tions. It is just a reformulation, in our frame, of the classical McShane’s
result, see [5].

Theorem 2. Let (X, d) be a metric space, g : X → X and
f : S → R, where S is a subset of X, a Lipschitz function with respect
to g. Then, there exists F : X → R a Lipschitz function with respect
to g such that :

a)
F|S = f

and

b)
lipgF = lipgf.
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Proof. Let us define, for every x ∈ X,

F (x) = sup {f(y) − (lipgf)d(g(x), g(y)) | y ∈ S} .

For a fixed x ∈ S, we have

f(y) − (lipgf)d(g(x), g(y)) ≤ f(x),

for each y ∈ S.

Moreover, since in the above inequality for x = y, we have equality,
we conclude that

F (x) = f(x),

for each x ∈ S, i.e., F|S = f .

Now we show that F (x) < ∞ for all x ∈ X.

Indeed, let us choose an arbitrary x ∈ X and fix y0 ∈ S.

Then, for each y ∈ S, we have

f(y) − (lipgf)d(g(x), g(y)) ≤ f(y) − (lipgf)d(g(y0), g(y))
+ (lipgf)d(g(y0), g(x)).

Hence
F (x) ≤ f(y0) + (lipgf)d(g(y0), g(x)) < ∞.

For x, x′ ∈ X such that F (x′) ≥ F (x), we have

0 ≤ F (x′) − F (x)
= sup{f(y) − (lipgf)d(g(x′), g(y)) | y ∈ S}
− sup{f(y) − (lipgf)d(g(x), g(y)) | y ∈ S}

≤ sup{(lipgf)(d(g(x), g(y) − d(g(x′), g(y)))) | y ∈ S}
≤ (lipgf)d(g(x′), g(x)).

Consequently, we have

|F (x) − F (x′)| ≤ (lipgf)d(g(x′), g(x)),

for all x, x′ ∈ X.
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In conclusion F is Lipschitz with respect to g and

lipgF ≤ lipgf.

If lipgF < lipgf , then, as F|S = f , we would get a contradiction with
the definition of lipgf .

So
lipgF = lipgf.

Our second result is concerning the approximation of bounded uni-
formly continuous functions by generalized Lipschitz functions.

Definition 6. Let (X, d) and (Y, d′) be metric spaces. Given a
function g : X → X, the function f : X → Y is called uniformly
continuous with respect to g if, for every ε > 0, there exists δ > 0 such
that

d(g(x), d(y)) < δ implies d′(f(x), f(y)) ≤ ε.

Definition 7. Let (X, d) and (Y, d′) be metric spaces and g : X → X.
The pair (X, d) and (Y, d′) is said to have the g Lipschitz extension
property if there is a constant C, which depends only on X, Y and g,
such that for each subset B of X and each function f : B → Y which
is Lipschitz with respect to g, there exists a function F : X → Y which
is Lipschitz with respect to g, such that

F|B = f

and
lipg(F ) ≤ C · lipg(f).

Theorem 3. Let (X, d) and (Y, d′) be a pair of metric spaces which
has the g Lipschitz extension property, where g is nonconstant. Then,
for every bounded uniformly continuous function f : X → Y with
respect to g and every ε > 0, there exists a function F : X → Y
which is Lipschitz with respect to g, such that

sup
x∈X

d′(f(x), F (x)) < ε.
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Proof. If f is constant, the conclusion is trivial. So we can assume f
to be nonconstant.

Let us fix an element a in X. Therefore,

sup
x∈X

d′(f(x), f(a)) 
= 0.

For ε > 0, let us consider ε′, such that

0 < ε′ <
2ε

C + 1
.

Since f is uniformly continuous with respect to g, there exists δ > 0
such that

d(g(x), d(y)) < δ implies d′(f(x), f(y)) ≤ ε′

2
.

Let us consider η > 0 such that

η < min{δ, (ε′ · δ/4 · sup
x∈X

d′(f(x), f(a)))}.

Eventually working with a smaller η we can suppose that the set

M = {A ⊆ X | for each x, y ∈ A, x 
= y, we have d(g(x), g(y)) ≥ η}

is not empty.

Ordering M by inclusion, we obtain an inductive ordered set, hence,
taking into account Zorn’s lemma, there exists a maximal element S of
M.

If x, y ∈ S and d(g(x), g(y)) ≥ δ, then

d′(f(x), f(y)) ≤ d′(f(x), f(a)) + d′(f(a), f(y))

≤ 2 · sup
z∈X

d′(f(z), f(a)) = 2 · supz∈X d′(f(z), f(a))
δ

· δ

≤ 2 · supz∈X d′(f(z), f(a))
δ

· d(g(x), g(y)).
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If x, y ∈ S and 0 < d(g(x), g(y)) < δ, then

d′(f(x), f(y)) ≤ ε′

2
=

ε′

2 · η · η ≤ ε′

2 · η · d(g(x), g(y)).

Therefore,

d′(f(x), f(y)) ≤ max
{
2 · supz∈X d′(f(z), f(a))

δ
,

ε′

2 · η
}
· d(g(x), g(y)),

for all x, y ∈ S, so f|S : S → Y is a Lipschitz function with respect to
g.

We can consider, according to our hypothesis, F : X → Y a Lipschitz
function with respect to g, such that

F|S = f|S

and

d′(F (x), F (y)) ≤ C max
{

2· supz∈X d′(f(z), f(a))
δ

,
ε′

2 · η
}
·d(g(x), g(y)),

for all x, y ∈ X.

For x ∈ X − S, there exists x0 ∈ S, such that d(g(x), g(x0)) < η
because otherwise S ∪ {x} ∈ M, which contradicts the fact that S is a
maximal element of M.

For x ∈ S, there exists x0 = x ∈ S, such that d(g(x), g(x0)) = 0 < η.

Hence, for each x ∈ X, there exists x0 ∈ S, such that d(g(x), g(x0)) <
η < δ.

Then, for all x ∈ X, we have

d′(f(x), F (x)) ≤ d′(f(x), F (x0)) + d′(F (x0), F (x))
= d′(f(x), f(x0)) + d′(F (x0), F (x))

≤ ε′

2
+ C max

{
2 · supx∈X d′(f(x), f(a))

δ
,

ε′

2 · η
}
· η

≤ ε′(C + 1)
2

< ε.
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Hence,
d′(f(x), F (x)) ≤ ε

for all x ∈ X, and F : X → Y is a Lipschitz function with respect to
g.

Remark 5. Our first result provides a pair of metric spaces which has
the g Lipschitz extension property, namely (X, d) and R.

Remark 6. Theorem 3 is not valid if the condition on f to be bounded
is not satisfied.

Indeed, let (Y, d′) be R with the usual metric.

Let (en)n∈N∗ be the canonical basis of l2, and let ‖.‖ denote the
Euclidian norm.

Let

X =
∞⋃

n=1

Xn,

where
Xn = {en + t(en+1 − en) | t ∈ [0, 1]},

endowed with the metric d given by

d(x, y) = ‖x − y‖ ,

x, y ∈ X.

Let g = IdX . We consider f : X → R, defined by

f(x) = n + t,

if
x = en + t(en+1 − en),

t ∈ [0, 1].

Then f is not bounded and it is uniformly continuous with respect
to g on (X, d), see [4, p. 796].

Let us suppose that Theorem 3 is valid for f .
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Then there exists a function F : X → R which is Lipschitz with
respect to g, such that

|f(x) − F (x)| <
1
2
,

for each x ∈ X.

Hence

|f(x) − f(y)| ≤ |f(x) − F (x)| + |F (x) − F (y)| + |F (y) − f(y)|
<

1
2

+ lipF · ‖x − y‖ +
1
2

= 1 + lip F · ‖x − y‖ ,

for all x, y ∈ X.

In particular, for

x = en +
1
2

(en+1 − en) =
en + en+1

2
and

y = em +
1
2

(em+1 − em) =
em + em+1

2
,

where m, n ∈ N∗, we have
∣∣∣∣
(

n +
1
2

)
−

(
m +

1
2

)∣∣∣∣ < 1 +
lip F

2
· ‖en + en+1 − (em + em+1)‖ ,

so
|n − m| < 1 +

lip F

2
· (‖en‖ + ‖en+1‖ + ‖em‖ + ‖em+1‖) ,

for all m, n ∈ N∗.

Therefore we obtain the following contradiction:

|n − m| < 1 + 2 · lip F,

for all m, n ∈ N∗.
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