CURVES ARISING FROM ENDOMORPHISM RINGS OF KRONECKER MODULES

DAVID MCKINNON AND MIKE ROTH

Abstract

In this note we prove that the endomorphism ring of a Kronecker module attached to a power series $\alpha \in$ $k[[X]]$ is minimally generated by three generators, unless its degree d is less than 3 . We prove this via the theory of algebraic curves, by proving that none of the affine curves arising from these endomorphism rings are planar for $d \geq 3$, but can always be embedded in \mathbf{A}^{3}.

1. Introduction. In their paper [4], Okoh and Zorzitto describe a family of k-algebras A_{α} attached to Kronecker modules P_{α}, where α is a power series with coefficients in an algebraically closed field k. The algebra A_{α} has a degree $d=\operatorname{deg}\left(A_{\alpha}\right)$, and Okoh and Zorzitto prove that if $d \leq 2$, then the algebra A_{α} is minimally generated as a k-algebra by d elements. They then ask how many elements will minimally generate an algebra A_{α} of arbitrary degree. The purpose of this note is to show that the answer is $\min \{3, d\}$.

Okoh and Zorzitto prove their result for $d=1$ and $d=2$ using the theory of algebraic curves. In this paper, we will take this philosophy further and derive general results using more sophisticated geometric tools. Precisely, in Section 2, we recall the relevant definitions and notation from [4]. To keep the paper to a manageable length, we describe only the definitions and properties we use in this paper; for a full description of the Kronecker modules and associated constructions, we refer the reader to [4]. In Section 3, we give a careful description of the geometry of the curves under consideration, and in Section 4 we prove the main result. Section 4 in particular contains some quite technical algebraic geometry; we refer the reader to [2] and [1] for definitions and explanations of any unfamiliar geometric or algebraic terms.

[^0]There are other questions posed by Okoh and Zorzitto in their paper, more closely tied to the geometry of the curves they construct. For example, they ask when the curves associated to the A_{α} can be be embedded as a complete intersection in some \mathbf{A}^{n}. We cannot answer this question in general, although if the curve is smooth, then a corollary of our results (Corollary 4.5 is that the algebra A_{α} corresponds to a complete intersection if and only if the degree d of A_{α} is at most 3). The authors believe that the smoothness hypothesis should not be necessary, but cannot remove it.
To the authors' knowledge, the best result on smooth affine complete intersections was proven by Serre-Murthy-Towber [3, Corollary 4.3]. They prove that a smooth curve can be embedded as a complete intersection in \mathbf{A}^{3} if and only if its canonical bundle is trivial. There is also a result of Sathaye [5] which gives an example of an affine curve which is a complete intersection but not planar, so the two questions are not equivalent.
The authors would like to thank Frank Zorzitto for bringing the problem to their attention, and both Frank Okoh and Frank Zorzitto for many helpful conversations. We would also like to thank the referee for many helpful remarks.
2. Definitions and notation. We review some of the notation and terminology of Kronecker modules from [4]. Let k be an algebraically closed field of arbitrary characteristic, and fix a linear functional $\alpha: k[X] \rightarrow k$. As described in [4], we may associate to this linear functional a deriver $\partial_{\alpha}: k[X] \rightarrow k[X]$ defined by:

$$
\partial_{\alpha}(1)=0, \quad \text { and } \quad \partial_{\alpha}\left(X^{j}\right)=\sum_{i=0}^{j-1} \alpha\left(X^{j-i-1}\right) X^{i}
$$

Note in particular that if j is the smallest integer such that $\alpha\left(X^{j}\right) \neq 0$, then $\partial_{\alpha}\left(X^{j+1}\right)=\alpha\left(X^{j}\right)$ is a nonzero constant, and $\partial_{\alpha}\left(X^{i}\right)=0$ for all $i \leq j$.

Okoh and Zorzitto also associate to α a Kronecker algebra P_{α} and its endomorphism ring:

$$
A_{\alpha}=\operatorname{End}\left(P_{\alpha}\right)
$$

which is the object with which this note is concerned. Since we will not use the precise definition of P_{α}, we refer the reader to [4] for its description.

We shall address the case in which P_{α} is indecomposable, in which case A_{α} is an integral domain. As noted in [4], it happens that P_{α} is indecomposable if and only if the following formal power series does not represent a rational function of X :

$$
\sum_{n=0}^{\infty} \alpha\left(X^{n}\right) X^{n}
$$

To summarize:

- The ring A_{α} is an integral domain.
- The functional α is irrational over $k[X]$; in particular, α is not identically zero.

Explicitly, A_{α} is a subalgebra of the 2 by 2 matrix algebra $M_{22}(k(X))$ over $k(X)$. Okoh and Zorzitto define the generic matrix D associated to A_{α} :

$$
D=\left[\begin{array}{cc}
p+\partial_{\alpha}(q) & -q \\
-\partial_{\alpha}\left(p+\partial_{\alpha}(q)\right) & \partial_{\alpha}(q)
\end{array}\right]
$$

where p and q are a fixed pair of polynomials associated to α. (For details, see [4].) For each $i \geq 0, i \in \mathbf{Z}$, define:

$$
\varphi_{i}=D X^{i}+\partial_{\beta}\left(X^{i}\right) I
$$

where β is another linear functional on $k[X]$, defined by $\beta(f(X))=$ $\alpha(q f(X))$. Note that since α is not identically zero, it follows that β is also not identically zero. We then have:

$$
A_{\alpha}=k\left[\varphi_{0}, \ldots, \varphi_{d-1}\right]
$$

where $d=\operatorname{deg} \operatorname{tr} D$ is the degree of A_{α} referred to in the introduction.
By the Cayley-Hamilton theorem, D satisfies a quadratic equation over $k[X]$:

$$
\begin{equation*}
D^{2}-(\operatorname{tr}(D)) D+\operatorname{det}(D)=0 \tag{1}
\end{equation*}
$$

Okoh and Zorzitto prove that the polynomial on the left side is irreducible (Lemma 4.9 of [4]), and that the fraction field $k(X, D)$ of A_{α} is a quadratic extension of the rational function field $k(X)$ (Corollary 3.6 of [4]). Moreover, they also prove that $\operatorname{deg} \operatorname{det}(D) \leq \operatorname{deg} \operatorname{Tr}(D)$ (Proposition 3.11 of [4]). Finally, there is a distinguished maximal ideal J of A_{α}, defined by:

$$
J=\left(\varphi_{0}, \varphi_{1}, \ldots\right)=\left(\varphi_{0}, \ldots, \varphi_{d-1}\right)
$$

In what follows, we will treat A_{α} as a k-algebra rather than a set of matrices, and so we will often refer to the identity element of A_{α} as 1 instead of I.
3. Geometry. Consider $C_{1}=\operatorname{Spec} A_{\alpha}$, the affine curve embedded in \mathbf{A}_{k}^{d} via the coordinates $\varphi_{0}, \ldots, \varphi_{d-1}$. We also have the affine curve $C_{2}=\operatorname{Spec} k[X, D] \subset \mathbf{A}_{k}^{2}$, which admits a birational map:

$$
\psi: C_{2} \rightarrow C_{1}
$$

corresponding to the inclusion of rings $A_{\alpha} \hookrightarrow k[X, D]$. Our program will be to study the curve C_{2}, and then to deduce properties of C_{1} via a study of the birational map ψ.

The following definition is not standard, but is ideal for our purposes.

Definition 3.1. Let C be a reduced and irreducible, but possibly singular, projective curve. Then we say that C is hyperelliptic if there is a finite 2:1 map $f: C \rightarrow \mathbf{P}^{1}$, called the hyperelliptic map.

The standard definition would require that a hyperelliptic curve be smooth. However, this is an inconvenient and unnatural requirement for the curves we consider in this paper.
Notice that every hyperelliptic curve C admits an involution $i: C \rightarrow C$ defined by interchanging the sheets of the hyperelliptic map. That is, $i(P)=Q$, where Q is the unique point of C such that $f^{-1}(i(P))=$ $\{P, Q\}$. This allows us to define an affine hyperelliptic curve as a curve C whose projective closure is hyperelliptic in the sense of Definition 3.1, and such that $i(C)=C$. The map i is called the hyperelliptic involution of the curve C.

Now let C be the projective closure of C_{2} in \mathbf{P}_{k}^{2}. Then C is a hyperelliptic curve, where the $2: 1$ map is given by projection onto the X-axis (X and D are the coordinates). It is easy to see that there are exactly two points of C at infinity, and that these two points correspond to two points on the normalization of C. That is, C_{2} is an affine hyperelliptic curve, isomorphic to a projective hyperelliptic curve minus two points which are conjugate via the hyperelliptic involution. In particular, neither of these two points is a ramification point of the 2-to-1 map to \mathbf{P}_{k}^{1}.

We claim that C_{1} is isomorphic to a (possibly singular) projective hyperelliptic curve minus one point which is not a ramification point of the hyperelliptic map. This claim will follow from the the following three intermediate claims:

1. The curve C_{1} is not projective.
2. The map ψ is not surjective.
3. The map ψ is injective.

Once we have established these claims, we will know that C_{1} is strictly bigger than C_{2} but strictly smaller than a projective curve, and since C_{2} is a projective curve minus two points, it will follow immediately that C_{1} is a projective curve minus a single point. By the previous discussion, this single point will be one of the two points missing from C_{2}, which are not ramification points of the hyperelliptic map.

The first of the claims follows immediately from the fact that C_{1} is affine. We will now proceed to prove the other two:

Lemma 3.2. The map ψ is not an isomorphism.

Proof. To prove this, we will construct a point (the only point, as it turns out) which is not in the image of ψ. This point Q_{J} corresponds to the maximal ideal J, generated by $\varphi_{0}, \ldots, \varphi_{d-1}$ (but recall also that J contains φ_{i} for all nonnegative i). To show that Q_{J} is not in the image of ψ, it suffices to show that J becomes the unit ideal upon the adjunction of X to A_{α}. This is easy: if i is the smallest positive integer such that $\partial_{\beta}\left(X^{i}\right) \neq 0$, then $\partial_{\beta}\left(X^{i}\right)$ must be constant, and hence

$$
\varphi_{i}=D X^{i}+\gamma
$$

for some nonzero $\gamma \in k$. Thus, $(k[X, D]) J$ contains

$$
\left(X^{i}\right) D-\left(D X^{i}+\gamma\right)=\gamma
$$

and hence must be the unit ideal.

Lemma 3.3. The map ψ is injective.

Proof. We will construct a birational inverse to ψ which is defined everywhere away from Q_{J}. In particular, for every point Q of $C_{1}-\left\{Q_{j}\right\}$, we will construct a birational inverse of ψ which is defined at Q.

First, note that for each positive integer i, we have the identity:

$$
\begin{aligned}
\varphi_{i} & =D X^{i}+\partial_{\beta}\left(X^{i}\right) \\
& =D X^{i}+X \partial_{\beta}\left(X^{i-1}\right)+\beta\left(X^{i-1}\right) \\
& =X \varphi_{i-1}+\beta\left(X^{i-1}\right) \\
& =X \varphi_{i-1}+\beta\left(X^{i-1}\right)
\end{aligned}
$$

We therefore obtain:

$$
X=\frac{\varphi_{i}-\beta\left(X^{i-1}\right)}{\varphi_{i-1}} .
$$

Because $Q \neq Q_{J}$, we know that there exists some φ_{i} such that φ_{i} does not vanish at Q, that is, φ_{i} does not lie in the maximal ideal of A corresponding to Q. Thus, since $\beta\left(X^{i-1}\right) \in k$, we have the following birational inverse of ψ which is defined at Q :

$$
\left(\varphi_{0}, \frac{\varphi_{i}-\beta\left(X^{i-1}\right)}{\varphi_{i-1}}\right)
$$

and hence ϕ is injective, as desired.
4. The canonical bundle of hyperelliptic curves. In this section, we will prove some geometric facts about hyperelliptic curves and their canonical bundles, from which it will follow that if $d \geq$ 3 , then C_{1} cannot be embedded in \mathbf{A}^{2}. This section contains the most technically difficult algebraic geometry of the paper, and in particular we refer the reader to $[\mathbf{1}, \mathbf{2}]$ for definitions and descriptions
of the terms used in this section. We will, however, attempt to maintain a connection to the original algebraic nature of the problem, by explaining the algebraic significance of the geometric results, as they are proven.

The projective closure of our curve C_{1} is therefore hyperelliptic, in the sense of Definition 3.1. Our first step will be to show that C_{1} is locally planar. Geometrically, this means that for every point P of C_{1}, there is an open neighborhood of P which is isomorphic to a planar curve. Algebraically, this means that, for every maximal ideal M of A_{α}, there is a finite set f_{1}, \ldots, f_{r} of elements $f_{i} \in A_{\alpha}-M$ such that the localization $A_{\alpha}\left[1 / f_{1}, \ldots, 1 / f_{r}\right]$ can be generated by two elements.

Away from Q_{J}, C_{1} is locally isomorphic to the planar curve C_{2}, so it is clearly locally planar away from Q_{J}. To show that C_{1} is locally planar at Q_{J}, it suffices to show that C_{1} is smooth at Q_{J}. Equivalently, we will show that the localization of A_{α} at J is a regular local ring.

Lemma 4.1. The local ring $\left(A_{\alpha}\right)_{J}$ is a regular local ring. That is, $\operatorname{dim} \bar{J} / \bar{J}^{2}=\operatorname{dim}\left(A_{\alpha}\right)=1$, where \bar{J} is the maximal ideal of the local $\operatorname{ring}\left(A_{\alpha}\right)_{J}$.

Proof. Recall that $J=\left(\varphi_{0}, \ldots, \varphi_{d-1}\right)$. Thus, for every i and j in the appropriate range, we have:

$$
\varphi_{i} \varphi_{j}-\varphi_{i+1} \varphi_{j-1} \in \bar{J}^{2}
$$

We may thus calculate:

$$
\begin{aligned}
\varphi_{i} \varphi_{j}-\varphi_{i+1} \varphi_{j-1}= & \left(D X^{i}+\partial_{\beta} X^{i}\right)\left(D X^{j}+\partial_{\beta} X^{j}\right) \\
& -\left(D X^{i+1}+\partial_{\beta} X^{i+1}\right)\left(D X^{j-1}+\partial_{\beta} X^{j-1}\right) \\
= & D^{2} X^{i+j}+D X^{j} \partial_{\beta} X^{i}+D X^{i} \partial_{\beta} X^{j}+\partial_{\beta} X^{i} \partial_{\beta} X^{j} \\
& -D^{2} X^{i+j}-D X^{j-1} \partial_{\beta} X^{i+1} \\
& -D X^{i+1} \partial_{\beta} X^{j-1}-\partial_{\beta} X^{i+1} \partial_{\beta} X^{j-1} \\
= & D X^{j}\left(\sum_{m=0}^{i-1} \beta\left(X^{m}\right) X^{i-1-m}\right) \\
& +D X^{i}\left(\sum_{m=0}^{j-1} \beta\left(X^{m}\right) X^{j-1-m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -D X^{i+1}\left(\sum_{m=0}^{j-2} \beta\left(X^{m}\right) X^{j-2-m}\right) \\
& +D X^{j-1}\left(\sum_{m=0}^{i} \beta\left(X^{m}\right) X^{i-m}\right) \\
& +\partial_{\beta} X^{i} \partial_{\beta} X^{j}-\partial_{\beta} X^{i+1} \partial_{\beta} X^{j-1} \\
= & D\left(\sum_{m=0}^{i-1} \beta\left(X^{m}\right) X^{i+j-1-m}+\sum_{m=0}^{j-1} \beta\left(X^{m}\right) X^{i+j-1-m}\right. \\
& \left.-\sum_{m=0}^{i} \beta\left(X^{m}\right) X^{i+j-1-m}-\sum_{m=0}^{j-2} \beta\left(X^{m}\right) X^{i+j-1-m}\right) \\
& +\partial_{\beta} X^{i} \partial_{\beta} X^{j}-\partial_{\beta} X^{i+1} \partial_{\beta} X^{j-1} \\
= & D\left(\beta\left(X^{j-1}\right) X^{i}-\beta\left(X^{i}\right) X^{j-1}\right) \\
& +\partial_{\beta} X^{i} \partial_{\beta} X^{j}-\partial_{\beta} X^{i+1} \partial_{\beta} X^{j-1} \\
= & \beta\left(X^{j-1}\right) \varphi_{i}-\beta\left(X^{i}\right) \varphi_{j-1} .
\end{aligned}
$$

We use the convention that a sum from $m=0$ to -1 is an empty sum. We therefore get:

$$
\beta\left(X^{j-1}\right) \varphi_{i}-\beta\left(X^{i}\right) \varphi_{j-1} \equiv 0 \bmod J^{2}
$$

For some i, we have $\beta\left(X^{i}\right) \neq 0$. This immediately implies that for all j :

$$
\beta\left(X^{i}\right) \varphi_{j} \equiv \beta\left(X^{j}\right) \varphi_{i} \bmod J^{2} .
$$

Since the set $\left\{\varphi_{i}\right\}$ generates J as a vector space over k, it follows that J / J^{2} is one dimensional. Thus, \bar{J} / \bar{J}^{2} is one dimensional, as desired. -

Thus, our discussion will now focus on locally planar hyperelliptic curves. The strategy is to use the two-to-one map to \mathbf{P}^{1} to link the algebra and geometry of C_{1} to the algebra and geometry of \mathbf{P}^{1}. This is done via the dualizing sheaf ω_{C} on the projective curve C. We will first show that global sections of ω_{C} are invariant under the hyperelliptic involution on C.

Lemma 4.2. Let C be a locally planar hyperelliptic curve (for example, the projective closure of C_{1}), with hyperelliptic map $f: C \rightarrow$ \mathbf{P}^{1}. Then the dualizing sheaf of C is $\omega_{C}=f^{*} \mathcal{O}_{\mathbf{P}^{1}}(g-1)$, where g is the arithmetic genus of C.

Proof. Let g be the arithmetic genus of C, and set $w=f^{*} \mathcal{O}_{\mathbf{P}^{1}}(g-1)$. Then $\operatorname{deg}(w)=2(g-1)$, and $h^{0}(C, w) \geq g$ since $h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(g-1)\right)=g$.

By Riemann-Roch,

$$
h^{0}(w)-h^{0}\left(w^{*} \otimes \omega_{C}\right)=2(g-1)+(1-g)=g-1
$$

so the condition that $h^{0}(w) \geq g$ implies that $h^{0}\left(w^{*} \otimes \omega_{C}\right) \geq 1$, hence $w=\omega_{C}$ since $w^{*} \otimes \omega_{C}$ is a line bundle of degree zero, and C is an irreducible curve. This proves the lemma.

As an aside, it is easy to describe what C looks like. Let \widetilde{C} be the normalization of C. Then the composite map

$$
\widetilde{C} \longrightarrow C \longrightarrow \mathbf{P}^{1}
$$

is still $2: 1$, so we see that \widetilde{C} is itself hyperelliptic, and that C is somehow constructed from \widetilde{C} in such a way as to preserve the map to \mathbf{P}^{1}.

In fact, if we write C as a plane curve with equation $y^{2}=p(x) y-q(x)$, then the singularities of C are as follows:

- if $p^{2}(x)-4 q(x)$ has a zero of even order $2 k$ at some point x of \mathbf{P}^{1}, then the singularity of C over x is obtained by taking the two conjugate points Q, Q^{\prime} of \widetilde{C} over x and gluing them together with contact order k.
- if $p^{2}(x)-4 q(x)$ has a zero of odd order $2 k+1$ at some point x of \mathbf{P}^{1}, then the singularity of C over x is obtained by taking the ramification point Q of \widetilde{C} over x and "crimping" it; that is, making it into the singularity

$$
y^{2}=x^{(2 k+1)}
$$

Note that, since $h^{0}\left(\omega_{C}\right)=g$, all the global sections of ω_{C} on C are pulled back from the global sections of $\mathcal{O}_{\mathbf{P}^{1}}(g-1)$ on \mathbf{P}^{1} and are
therefore invariant under the hyperelliptic involution. This gives us the following:

Corollary 4.3. If C is a hyperelliptic curve and $\sigma \in H^{0}\left(C, \omega_{C}\right)$ is a global section of the canonical bundle, then the order of vanishing of σ at a point p of C is the same as the order of vanishing of σ at p^{\prime}, the hyperelliptic conjugate of p. In particular, σ vanishes at p if and only if it vanishes at p^{\prime}.

We will now show that if C_{1} can be embedded in \mathbf{A}^{2}, then we can find a global section of ω_{C} which does not vanish anywhere on C_{1}, but does have a zero on C. Since C_{1} is not invariant under the hyperelliptic involution, this will provide our contradiction. (Note: a Gorenstein curve is one whose local rings are all Gorenstein. For the definition of a Gorenstein ring, see [1, p. 528]. The relevance of the Gorenstein property for our purposes is that a Gorenstein curve has a well defined dualizing line bundle, which is crucial to our argument.)

Lemma 4.4. If C is a reduced and irreducible (but not necessarily smooth) projective curve of arithmetic genus g, and $p \in C$ is a smooth point of C such that $C-\{p\}$ can be embedded in \mathbf{A}^{2}, then C is a Gorenstein curve with dualizing line bundle $\omega_{C}=\mathcal{O}_{C}((2 g-2) \cdot p)$.

Proof. The curve C is clearly Gorenstein since $C-\{p\}$ is planar, and p is a smooth point. Let $i: C-\{p\} \hookrightarrow \mathbf{A}^{2}$ be the embedding. By the valuative criterion of properness, this extends to a map $\nu: C \longrightarrow \mathbf{P}^{2}$, with image curve C^{\prime}, differing from C only around $p^{\prime}=\nu(d)$. If C^{\prime} is a curve of degree e, then since p is the only point of C mapping to the line at infinity, we have $\nu^{*} \mathcal{O}_{\mathbf{P}^{2}}(1)=\mathcal{O}_{C}(e \cdot p)$. In particular, $\nu^{*} \omega_{\mathbf{P}^{2}}=\nu^{*} \mathcal{O}_{\mathbf{P}^{2}}(-3)=\mathcal{O}_{C}(-3 \cdot p)$.

By embedded resolution of singularities for curves on surfaces (valid in all characteristics) we can, by a sequence of blow-ups, resolve the singularity of C^{\prime} at p^{\prime} in \mathbf{P}^{2}. The result is a smooth surface S with proper map $\pi: S \longrightarrow \mathbf{P}^{2}$ and an embedding $j: C \hookrightarrow S$ making the following diagram commute:

The exceptional divisors of the blowup meet C (in S) only at p. Since the canonical bundle of S is the pullback of the canonical bundle of \mathbf{P}^{2} twisted by the exceptional divisors, we see that $j^{*} \omega_{S}$ is a multiple of p.

Before the blowups, the normal bundle of C^{\prime} in \mathbf{P}^{2} (when pulled back to C) was $\mathcal{O}_{C}\left(e^{2} \cdot p\right)$. Again, since we blowup only at p^{\prime} (or the corresponding point in the intermediate blowups) the normal bundle will change only at p, giving us that the normal bundle of C in S is again a multiple of p.

Finally, the adjunction formula $\omega_{C}=j^{*} \omega_{S} \otimes N_{C / S}$ then gives that the dualizing line bundle of C is a multiple of p. Since $\operatorname{deg}\left(\omega_{C}\right)=2 g-2$, this gives $\omega_{C}=\mathcal{O}_{C}((2 g-2) \cdot p)$.

Putting together Lemma 4.4 and Corollary 4.3, we arrive at the following result.

Corollary 4.5. Let C be a hyperelliptic curve (in the sense of Definition 3.1), and $p \in C$ a smooth point which is not a fixed point of the hyperelliptic involution. If the arithmetic genus g of C is greater than 1, then there does not exist an embedding $C-\{p\} \hookrightarrow \mathbf{A}^{2}$. If in addition $C-\{p\}$ is smooth, then it cannot be embedded in \mathbf{A}^{n} as a complete intersection for any n.

Proof. For the first claim, note that by Lemma 4.4, $\omega_{C}=\mathcal{O}_{C}((2 g-$ $2) \cdot p$). If $g>1$, then there is a global section of ω_{C} vanishing only at p. If p is not a fixed point of the hyperelliptic involution, then this contradicts Corollary 4.3.
For the second claim, note that the canonical bundle of an affine complete intersection is trivial. Thus, if $C-\{p\}$ is an affine complete intersection, then there is a global section of ω_{C} that vanishes only at p, which again contradicts Corollary 4.3.

The curve C has arithmetic genus $g=d(d-1) / 2$, where $d=$ $\operatorname{deg}\left(A_{\alpha}\right)=\operatorname{deg} \operatorname{tr} D$, as before. (This is because C is a projective plane curve of degree $d+1$.) In particular, if $d \geq 3$, then $g>1$. Thus, if $d \geq 3$, then the curve C_{1} is not a planar curve, and hence the corresponding coordinate ring is not generated as a k-algebra by two elements. It is a well-known geometric fact that every locally planar curve can be embedded in \mathbf{A}^{3}, so that A_{α} can always be generated by three elements. For the sake of completeness, the proof is included here:

Theorem 4.6. Every locally planar affine curve can be embedded in \mathbf{A}^{3}.

Proof. Let C be a locally planar affine curve, embedded in some affine space $C \subset \mathbf{A}^{n}$, where n is the minimal integer such that C embeds in \mathbf{A}^{n}. If $n \leq 3$, then we're done, so assume $n>3$. View C as a subset of \mathbf{P}^{n} via the embedding of \mathbf{A}^{n} into \mathbf{P}^{n} as a standard affine subset. Let $\pi: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n-1}$ be any projection. Then π extends to a projection $\mathbf{P}^{n} \rightarrow \mathbf{P}^{n-1}$ away from a point P on the locus at infinity. Our strategy is to find a point P at infinity such that the map $\left.\pi\right|_{C}$ is an isomorphism.

First, define the secant variety $S \subset \mathbf{P}^{n}$ to C. It is the projective closure of the union of all lines $L \subset \mathbf{P}^{n}$ such that $\#(L \cap C) \geq 2$. If $\left.\pi\right|_{C}$ is to be one-to-one, we must choose P to lie outside of S.

In order to ensure that $\left.\pi\right|_{C}$ is an isomorphism in a neighborhood of a point $Q \in C$, we need the line joining P to Q to intersect C transversely at Q. If Q is a smooth point of C, then this means that the line joining P to Q is not tangent to C at Q; in other words, we require that P does not lie on the tangent variety T of C, which is the closure of the union of all tangent lines to C.
If Q is a singular point of C, then since C is locally planar, there is a surface X_{Q} which is smooth at Q and contains C. For $\left.\pi\right|_{C}$ to be an isomorphism near Q, it suffices to ensure that the line joining P to Q intersect X_{Q} transversely at Q. In other words, P must not lie in the tangent plane H_{Q} to X_{Q} at Q. Since C has only finitely many singular points, it follows that there are only finitely many such planes.
In summary, then, to ensure that $\left.\pi\right|_{C}$ is an isomorphism, we need to choose P to lie outside the union $Y=S \cup T \cup H_{Q_{1}} \cup \cdots \cup H_{Q_{r}}$, where
Q_{1}, \ldots, Q_{r} are the singular points of C. Our goal is to show that Y does not contain all points at infinity.

First of all, each $H_{Q_{i}}$ has dimension 2, and therefore if Y contains the $(n-1)$-dimensional hyperplane H_{∞} at infinity, then $H_{\infty} \subset S \cup T$. (Recall that $n \geq 4$, so $n-1 \geq 3$.) Similarly, since T is also (at most) two-dimensional [2, roof of Proposition IV.3.5], we must have $H_{\infty} \subset S$.

If $H_{\infty} \subset S$, then if $L \subset H_{\infty}$ is a line through P, then L must intersect the projective closure \bar{C} of C. Since C is not contained in H_{∞}, it follows that \bar{C} intersects H_{∞} in a finite set of points, and hence there are plenty of lines $L \subset H_{\infty}$ which contain P but are disjoint from \bar{C}. Thus, H_{∞} is not contained in S, and therefore is not contained in Y either, so we can always choose P so that $\left.\pi\right|_{C}$ is an isomorphism.
But this means that C can be embedded in \mathbf{A}^{n-1}, which contradicts the minimality of n. Therefore, n must be no greater than 3 , as desired.

We therefore summarize with the following theorem:

Theorem 4.7. Let A_{α} be the endomorphism algebra associated to a Kronecker module P_{α}, and let d be the degree of A_{α}, as defined in Section 2. Then a minimal set of k-algebra generators has cardinality $\min \{d, 3\}$.

Proof. We have already proved this for $d \geq 3$, and Okoh and Zorzitto deal with the case $d<3$ in [4].

REFERENCES

1. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer Verlag, New York, 1994.
2. R. Hartshorne, Algebraic geometry, Springer Verlag, New York, 1977.
3. M.P. Murthy and J. Towber, Algebraic vector bundles over \mathbf{A}^{3} are trivial, Invent. Math. 24 (1974), 173-189.
4. F. Okoh and F. Zorzitto, Curves arising from Kronecker modules, Linear Algebra Appl. (2003).
5. A. Sathaye, On planar curves, Amer. J. Math 99 (1977), 1105-1135.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
E-mail address: dmckinno@math.uwaterloo.ca
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6
E-mail address: mikeroth@mast.queensu.ca

[^0]: The first author was partially supported by a grant from the Natural Sciences and Engrg. Research Council of Canada. The second author was partially supported by a grant from the Natural Sciences and Engrg. Research Council of Canada.

 Received by the editors on Feb. 27, 2004, and in revised form on Feb. 1, 2005.

