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PERTURBATIONS IN THE SPEISER CLASS

ION COICULESCU AND BART�LOMIEJ SKORULSKI

ABSTRACT. In this paper we study perturbations of maps
from a family of expanding entire functions from the Speiser
class. Maps in this family, which we denoted by H, have
the form fa(z) =

∑n

j=0
aje(j−k)z where 0 < k < n and

a = (a0, . . . , an) ∈ Cn+1 is a parameter. Using a known
result of Eremenko and Lyubich about structural stability of
such maps, perturbation theory (Kato-Rellich theorem) and
research of Urbański and Zdunik on perturbations in the ex-
ponential family, we shall prove that the Hausdorff dimension
of the set of points in the Julia set having nonescaping orbits
depends analytically on the parameter a ∈ Cn+1.

1. Introduction. The long-term study of dynamical systems
directed many authors work toward the investigation of the dynamics
of families of mappings. The most popular examples of families of
transcendental entire functions of finite singular type include the one-
parameter exponential family {aez}, the one-parameter sine family
{a sin z}, with a ∈ C or the generalized 2-parameter cosine family
{aez + be−z} with (a, b) ∈ C2.

In this paper we continue our study of the dynamics of maps in the
family H introduced in [4] and defined as follows. Let n and k be
positive integers, let a = (a0, . . . , an) ∈ Cn+1 be a vector and let Pa,
fa be functions defined by the formulas

Pa(z) = anz
n + · · · + a1z + a0 ∈ C[z],

fa(z) =
Pa(ez)
ekz

=
n∑

j=0

aje
(j−k)z.

Then
H =
{
fa : 0 < k < degPa and δa > 0

}
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where

δa =
1
2

min
{

1
2
, dist (Jfa

,Pfa
)
}

and Jfa
is the Julia set of fa. Recall that by

Pfa
=
⋃
n≥0

fn
a (Crit (fa))

we denote the post-critical set of fa ∈ H where Crit (fa) = {z : f ′a(z)
= 0} and

dist (Jfa
,Pfa

) = inf{|z1 − z2| : z1 ∈ Jfa
, z2 ∈ Pfa

}.

The family H is a subclass of the class Ent, the class of transcen-
dental entire functions. Moreover, every function fa from H has only
finitely many asymptotic and critical values which are sometimes called
singular values. In other words, for f ∈ Ent, ω ∈ Ĉ is a singular value
if ω is a singularity of f−1, which means that f : f−1(V ) → V is not
a regular covering map for any neighborhood V of ω. Therefore, if ω
is a nonsingular value of f , then there exists a neighborhood V of ω
where every branch of f−1 is well defined and is a conformal map of V .
This fact is used extensively throughout the paper. The set of singular
values we denote by Sing (f−1).

The set
S = {f ∈ Ent : Sing (f−1) is a finite set}

is usually called the class of finite singular type entire functions or,
following Eremenko and Lyubich, the Speiser class, and has been
studied repeatedly for many years; the reader is referred only to [10,
12, 14]. Functions belonging to S have the property that their Fatou
set contains no wandering domain and no Baker domain.

For any f ∈ H ⊂ S, denote by B an open disk containing Sing (f−1),
and let Bc be the complement of B in C. Then any component T of
f−1(Bc) is simply connected and its closure contains infinity. The map
f : T → Bc is a universal covering, and T is called an exponential tract.
If f satisfies some conditions, it was shown that the set of points whose
orbits remain in T is a Cantor bouquet, see [10].
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1.1. An additional assumption. In view of the structural stability
theorem of Eremenko and Lybich, we additionally assume that, if
fa ∈ H and if z is a periodic point of fa of periodm, then |(fm)′(z)| �= 0.
For the sake of generality, we ask also the question about the possibility
of proving the main result of this paper without this extra condition. Of
course, such maps are not structurally stable, but what we actually need
is an existence of quasiconformal conjugacy on some ε-neighborhood of
the Julia set of them to all maps with close parameter. Then changing
the proofs a bit we could obtain the main result of this paper, that is,
the Hausdorff dimension depends analytically on the parameter for any
member of “old” H.

Observe that the assumption 0 < k < degPa implies that any map
fa ∈ H does not have a finite asymptotic value since Pa(z)/zk converges
to infinity when z approaches 0 or ∞. If this condition is not satisfied,
then one of the limits is finite and it would be a finite asymptotic value
of fa. Even in this case, the main result of this paper can be established
using the proofs from this article with minor changes provided that the
maps do not have super-attracting points.

1.2. The quotient space. Let b = (b0, . . . , bn) ∈ Cn+1. Since
the map fb ∈ H is periodic with period 2πi, we consider its natural
action on the quotient space P = C/∼ (the cylinder) where z1 ∼ z2
if, and only if, z1 − z2 = 2kπi for some k ∈ Z. If π : C → P is the
natural projection, then, since the map π ◦ fb : C → P is constant on
equivalence classes of relation ∼, it induces a conformal map

Fb : P −→ P.

The cylinder P is endowed with Euclidean metric which will be denoted
in what follows by the symbol |w− z| for all z, w ∈ P . The Julia set of
Fb is defined to be

JFb
= π(Jfb

).
Observe that

Fb(JFb
) = JFb

= F−1
b (JFb

).

1.3. Let b = (b0, . . . , bn) ∈ Cn+1. Note that the derivative f (s)
b (z),

s ≥ 0, of a map fb ∈ H has the expression

f
(s)
b (z) =

n∑
j=0

bj(j − k)se(j−k)z
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for z ∈ C. Also observe that the derivative with respect to the
parameter b ∈ Cn+1 of this function has the form

∂f
(s)
b

∂b
(z) =

⎡⎢⎢⎢⎢⎢⎢⎣
(∂f (s)

b /∂b0)(z)
(∂f (s)

b /∂b1)(z)
· · ·

(∂f (s)
b /∂bj)(z)
· · ·

(∂f (s)
b /∂bn)(z)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
(−k)se−kz

(1 − k)se(1−k)z

· · ·
(j − k)se(j−k)z

· · ·
(n− k)se(n−k)z

⎤⎥⎥⎥⎥⎥⎦ .

Hence, ∥∥∥∥∂fb

∂b
(z)
∥∥∥∥2 =

n∑
j=0

e2(j−k)Re z(1.1)

and ∥∥∥∥∂f ′b∂b (z)
∥∥∥∥2 =

n∑
j=0

(j − k)2e2(j−k)Re z,(1.2)

where ‖ · ‖ means the norm on Cn+1 defined by the formula

||(c0, . . . , cn)|| =

√√√√ n∑
j=0

|cj |2

for (c0, . . . , cn) ∈ Cn+1.

1.4. Remark. Let b ∈ H and t > 1. By f and F we respectively
denote fb and Fb. Then, for every z ∈ JF , the lower and upper
topological pressure is defined by the formulas

P z(t) = lim inf
n→∞

1
n

log
∑

x∈F−n(z)

|(Fn)′(x)|−t = lim inf
n→∞

1
n

logPz(n, t),

P z(t) = lim sup
n→∞

1
n

log
∑

x∈F−n(z)

|(Fn)′(x)|−t = lim sup
n→∞

1
n

logPz(n, t),

where Pz(n, t) =
∑

x∈F−n(z) |(Fn)′(x)|−t. It can be proved that
these do not depend on the choice of z ∈ JF and that P (t) =
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P (t) = P (t). Moreover, the function P (t) for t > 1 is finite, convex,
continuous, strictly decreasing and limP (t) = −∞ as t→ ∞. For more
explanations we refer the reader to our paper [4].

As we already said we study the set Jr
fb

consisting of those points of
Jfb

that do not escape to infinity under positive iterates of fb. If

I∞(fb) =
{
z ∈ C : lim

n→∞ fn(z) = ∞
}
, then Jr

fb
= Jfb

\I∞(fb)

and if

I∞(Fb) =
{
z ∈ P : lim

n→∞Fn(z) = ∞
}
, then Jr

Fb
= JFb

\I∞(Fb).

In [4] an important relation was proved between the pressure function
P (t) and the set Jr

fb
called Bowen’s formula, i.e., HD (Jr

Fb
) is the unique

zero of the function t �→ P (t) for t > 1.

1.5. Results. Using the methods of Thermodynamic Formalism
(for more information about TF and its connection with dynamics, we
refer the reader to [21, 27]) we are able to prove that the Hausdorff
dimension of the subset of the Julia set of such maps, consisting of the
points for which the forward orbit does not escape to infinity, i.e., the
set

Jr
fa

= Jfa
\I∞(fa),

where I∞(fa) = {z ∈ C : limn→∞ fn(z) = ∞}, depends real-
analytically on the parameter a ∈ Cn+1.

In order to do that we first study quasiconformal conjugacies in
the family H and then we introduce well defined Perron-Frobenius
operators associated with some special maps. The classical theorem of
Hartogs will help us to prove the main tool of this paper (Theorem 3.10)
which will allow us to prove Proposition 4.10 which shows that these
Perron-Frobenius operators can be embedded into a family of operators
which depend holomorphically on the parameter a chosen from a
designed open set G ⊂ Cn+1.

Finally, using perturbation theory (Kato-Rellich theorem) and our
results from [4] where we proved mainly that HD (Jr

Fa
) = h is the

unique zero of the pressure function t → P (t) for t > 1 and a ∈ Cn+1,
we get (Theorem 4.17) that the function a �→ HD(Jr

fa
) is real-analytic.
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2. Quasiconformal conjugacies in the family H. In this section
we present some analytic and geometric properties of the family H. We
follow the analysis from [25], which in turn follows the more elaborated
descriptions from [12, 18]. As in [12] every f ∈ H ⊂ S is viewed as an
element of a finite dimensional complex analytic manifoldMf = H ⊂ S.
In the referred paper [12], various analytical and geometrical results are
proved on Mf .

Since the domain of all functions from H is the noncompact complex
plane, the most natural topology of H is the topology of uniform
convergence on the compact subset of C. Observe that this topology
is equivalent to the Euclidean topology on Cn+1 when we identify a
parameter a with the function fa. Therefore, throughout this paper
we sometimes write a ∈ H with the meaning that fa ∈ H. Moreover,
whenever we say b is close to a we mean that fb is close to fa as well.
We also say b is sufficiently close to a whenever we need b to be chosen
from a small open neighborhood of a ∈ Cn+1, compare [12].

A sense-preserving homeomorphism f of a domain G is called quasi-
conformal if its maximal dilatation Q(G) ≥ 1 is finite. If Q(G) ≤ Q <
∞, then f will be called Q−quasiconformal, see [17, p. 16]. Following
the terminology used in the conformal case, we also call a quasiconfor-
mal homeomorphism a quasiconformal mapping.

After this short introduction and the description of the topological
structure of H, we can formulate a lemma which follows from [12], see
also [18].

2.1 Lemma. For a ∈ H, fa is structurally stable, i.e., if b is
sufficiently close to a, then there exists a conjugating quasiconformal
homeomorphism hb : C → C such that

fb ◦ hb = hb ◦ fa.

Moreover, the map b �→ hb(z) is holomorphic for every z ∈ C and the
mapping (b, z) �→ hb(z) is continuous. The quasiconformal constant
converges to 1 as b approaches a.

This is the moment when we need our extra condition since, if fa has a
super-attracting periodic point, then fa is not structurally stable. This
property of stability of the family H stated in the previous lemma is a
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crucial fact. But we need to have some kind of control over the changes
resulting from the action of the quasiconformal homeomorphism in a
neighborhood of a. This is stated in Proposition 2.4. To obtain this
result we need to provide some information about quasiconformal maps
and give some properties of functions from H.

Let K, α > 0. We say that a map h : C → C is (K,α)-Hölder
continuous if

|h(z1) − h(z2)| ≤ K|z1 − z2|α

for all z1, z2 ∈ C such that |z1 − z2| < 1.

But what we are really interested in is the distortion of Euclidean
distances under normalized K-quasiconformal maps, and we use the
classical theorems of Koebe and Mori. For the proof of Koebe’s
theorems, the reader can see [11] and for the proof of Mori’s theorem,
see, for example, [17, p. 66].

Next we formulate two lemmas about functions from the family H,
and we generalize a useful result from [4]. The first one follows from
1.3 and brings essential information for understanding the dynamics of
our maps. We also refer the reader to [4].

2.2. Lemma. For a ∈ H there exist positive numbers M1, M2, M3

and r such that for all b ∈ B(a, r) and for all z ∈ C with |Re z| > M3,
the following inequalities hold.

(i) M1e
|Re z|q(z) ≤ |f ′b(z)| ≤M2e

|Re z|q(z),

(ii) M1e
|Re z|q(z) ≤ |f ′′b (z)| ≤M2e

|Re z|q(z),

(iii) M1e
|Re z|q(z) ≤ |∂f ′b/∂b(z)| ≤M2e

|Re z|q(z),

where

q(z) =
{
k if Re z < 0
n− k if Re z > 0.

Another important observation is that we can maintain the bounds
from Lemma 2.2 when we apply the quasiconformal homeomorphism
hb to the points of Jfa

. Note the parts (iii) and (iv) follow from the
equalities (1.2) and (1.1).
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2.3. Lemma. For a ∈ H there exists M1, M2, M3 and r such that
for all b ∈ B(a, r) and for all z ∈ C with |Re z| > M3, the following
inequalities hold.

(i) M1e
|Re z|q(z) ≤ |f ′b(hb(z))| ≤M2e

|Re z|q(z),

(ii) M1e
|Re z|q(z) ≤ |f ′′b (hb(z))| ≤M2e

|Re z|q(z),

(iii) M1e
|Re z|q(z) ≤ |∂f ′b/∂b(hb(z))| ≤M2e

|Re z|q(z),

(iv) M1e
|Re z|q(z) ≤ |∂fb/∂b(hb(z))| ≤M2e

|Re z|q(z),

where

q(z) =
{
k if Re z < 0
n− k if Re z > 0.

Consequently, we can also generalize Proposition 2.2 from [4], and we
obtain that for a fixed parameter a ∈ H, a map f ∈ H is expanding on
its Julia set uniformly over a small neighborhood B(a, r) ⊂ H; more
precisely, for every a ∈ H there exist c > 0, γ > 1, r > 0 such that, for
all b ∈ B(a, r),

(2.1) |(fn
b )′(z)| > cγn

for every z ∈ Jfb
.

We state now the principal result of this section.

2.4. Proposition. Fix a ∈ H. For b sufficiently close to a, we can
choose hb : C → C, the quasiconformal conjugacy homeomorphism,
such that the following three properties hold.

(i) supz∈Jfa
{|(dhb/db)(z)|} is bounded.

(ii) hb : C → C is(K(Q), 1/Q)-Hölder continuous, where Q is
quasiconformal constant of hb, and K : [1,∞) → (0,∞) is increasing.

(iii) For every z ∈ C we have hb(z + 2πi) = hb(z) + 2πi. This shows
that hb is well defined on the cylinder P .

Proof. Part (i). Let fa, fb be as above. Also consider Jfb
, Jfa

and
hb : C → C with |a− b| < ε for a small ε > 0. We need to show that

sup
z∈Jfa ,b∈B(a,ε)

∣∣∣∣dhb(z)
db

∣∣∣∣ <∞
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By the conjugacy relation we have that hb ◦fa(z) = fb ◦hb(z) for every
z ∈ C. Therefore, for every n ≥ 0, we have that

(2.2) hb(fn
a (z)) = fn

b (hb(z)).

Let the function f j : Cn × C → C be defined by the formula

f j(b, z) = f j
b (z)

for j ≥ 0, and let z ∈ Jfa
be a periodic point with period n ≥ 1, i.e,

fn
a (z) = z. Then by (2.2) we obtain that

fn(b, hb(z)) = hb(z)

for every b ∈ B(a, ε). Differentiating the above relation with respect to
the variable b, we get

D1f
n(b, hb(z)) +D2f

n(b, hb(z)) · dhb

db
(z) =

dhb

db
(z).

Since periodic points from the Julia set are not parabolic, this implies
that

dhb

db
(z) =

D1f
n(b, hb(z))

1 −D2fn(b, hb(z))
.

From this and (2.1) it follows that, if the period n of z is large enough,
then

(2.3)
∣∣∣∣dhb

db
(z)
∣∣ ≤ |D1f

n(b, hb(z))|
|D2fn(b, hb(z))| − 1

≤ 2
|D1f

n(b, hb(z))|
|D2fn(b, hb(z))| .

Let w denote hb(z). Then, using the equality fn
b (w) = fb(fn−1

b (w))
(which is equivalent to fn(b, w) = f(b, fn−1

b (w))) we can estimate D1

in terms of D2 as follows. First write

D1f
n(b, w) = D1

(
f(b, fn−1(b, w))

)
= D1f(b, fn−1(b, w)) +D2f(b, fn−1(b, w)) ·D1f

n−1(b, w).

Therefore, repeating these computations for n, n−1, . . . , 1, 0 and using
the chain rule, we obtain

D1f
n(b, w) =

n−1∑
k=0

D2f
k(b, fn−k(b, w)) ·D1f(b, fn−k−1(w)).
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With ∂-notation, for w = hb(z), it looks like this:

D1f
n(b, hb(z)) =

∂fn

∂b
(b, w)

=
n−1∑
k=0

(fk
b )′(fn−k

b (w))
∂fb

∂b
(fn−k−1

b (w)).

Then

(2.4)

D1f
n(b, hb(z))

D2fn(b, hb(z))
=

(∂fn/∂b)(b, w)
(fn

b )′(w)

=
n−1∑
k=0

(∂fb/∂b)(fn−k−1
b (w)) · (fk

b )′(fn−k
b (w))

(fn
b )′(w)

=
n−1∑
k=0

(∂fb/∂b)(fn−k−1
b (w))

(fn−k
b )′(w)

=
n−1∑
k=0

(∂fb/∂b)(fn−k−1
b (w))

(f ′b)(f
n−k−1
b (w))

· 1
(fn−k−1

b )′(w)
.

Next we would like to show that∣∣∣∣∣ (∂fb/∂b)(fn−k−1
b (w))

(f ′b)(f
n−k−1
b (w))

∣∣∣∣∣
is uniformly (with respect to b) bounded from above. It is worth
reminding that fn−k−1

b (w) ∈ Jfb
and both functions (∂fb/∂b)(·) and

f ′b(·) are periodic with period 2πi. Therefore, it is enough to prove that
there exists a constant C such that

(2.5)
|(∂fb/∂b)(z)|

|(f ′b)(z)|
≤ C

for b sufficiently close to a and for z ∈ Jfb
∩ {z ∈ C : Im z ∈ [0, 2π]}.

To do this we split the set Jfb
∩ {z ∈ C : Im z ∈ [0, 2π]} into two sets,

a compact one {z ∈ Jfb
: x ∈ [−M3,M3]× [0, 2π]} and its complement.

By (2.1)

C ′ = sup
{ |(∂fb/∂b)(x)|

|(f ′b)(x)| : b ∈ B(a, ε), x ∈ Jfb
,

x ∈ [−M3,M3] × [0, 2π]
}
<∞
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for ε small enough. Moreover, by Lemma 2.2 (i) and (iii),

|(∂fb/∂b)(x)|
|(f ′b)(z)|

≤ M2

M1

if |Rex| ≥M3. Therefore (2.5) is proved with C = max{C ′,M2/M1}.

To finish the proof of part (i) note that, by (2.1), we can assume that
ε > 0 satisfies the condition

l∑
j=0

1
|(f j

b )′(w)| ≤
1

c(1 − (1/γ))

for all n and b ∈ B(a, ε). Then, putting (2.3), (2.4) and (2.5) together,
we get

sup
z∈Per

b∈B(a,ε)

∣∣∣∣dhb

db
(z)
∣∣∣∣ <∞.

Hence, since Per = Jfa
and since b �→ hb(z) is analytic, part (i) follows.

Part (ii). Obviously we want to use Mori’s theorem and the result
obtained before. Point (i) shows, in particular, that for small ε > 0,

(2.6) sup
z∈Jfa

b∈B(a,ε)

|z − hb(z)| < 1.

Then let ε > 0 be small. Fix x ∈ Jfa
and consider the open disk D(x, 1)

of radius 1 with center at x. Then Gb = hb(B(x, 1)) is an open simply
connected set for every b ∈ B(a, ε). Let Rb : D(0, 1) → Gb be the
conformal representation (Riemann map) of Gb such that R(0) = hb(x).
Then the map

gb = R−1
b ◦ hb : D(x, 1) −→ D(0, 1)

is a Q-quasiconformal homeomorphism between two disks of radius 1.

Now let χx be a path in JFa
which joins x and infinity. The existence

of such a path is a consequence of the fact that all Fatou components
are simply connected, see e.g., [18, p. 90]. Let χω

x ⊂ χx ∩ D(x, 1) be
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an arc inside B(x, 1) joining x with a point on the boundary ∂B(x, 1),
call it ω. Then hb(χω

x ) is an arc joining hb(x) and hb(ω) ∈ ∂Gb.

Note that there exists z ∈ D(0, 1) with |z| = 1/2 and y ∈ D(x, 1)∩JFa

such that Rb(z) = hb(y) ∈ JFb
(or equivalently gb(y) = z). From (2.6),

for |a− b| < ε, it follows that

|Rb(z) −Rb(0)| = |hb(y) − hb(x)|
≤ |hb(y) − y| + |y − x| + |x− hb(x)|
= |hb(y) − ha(y)| + |y − x| + |x− hb(x)|
≤ 2ε sup

{∣∣∣∣∂hb

∂b

∣∣∣∣ : z ∈ Jfa
, b ∈ B(a, ε)

}
+ 1

≤ 2ε+ 1.

It follows that Rb(D(0, 1/2)) does not contain the ball D(hb(x), 2ε+ 1)
since Rb(D(0, 1/2)) does not contain any ball centered at hb(x) with
radius greater than |Rb(z) − hb(x)|. Then, using Koebe’s distortion
theorem, we get

(2.7) |R′
b(0)| ≤ 4(2ε+ 1).

Next, applying Mori’s Theorem to the quasiconformal mapping gb

and to points z1, z2 ∈ D(x, 1), we get

|gb(z1) − gb(z2)| < 16|z1 − z2|1/Q.

If additionally z1, z2 ∈ B(x, 1/(32)Q), then, using Koebe’s theorem
with K = K(1/2) for the function Rb together with (2.7), we get

|hb(z1) − hb(z2)| = |Rb(gb(z1) −Rb(gb(z2))|
≤ K|R′(0)||gb(w) − gb(z)| ≤ 4K(2ε+ 1)|w − z|1/Q.

From the above computations it follows that hb is (4K(2ε + 1), 1/
Q)-Hölder continuous on 1/(32)Q-neighborhood of Jfa

. But note that
there exists r, such that the r/(32)Q-neighborhood of Jfa

contains the
whole plane C. Therefore, considering the map gr

b (z) = gb(rz) instead
of gb (we have to increase the domain of gb to D(x, r)), we can repeat
the computations to prove that hb is (K(Q), 1/Q)-Hölder continuous
on C for some K(Q).
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Part (iii). Consider the map b �→ kz(b) = hb(z + 2πi) − hb(z) ∈ C.
Since b �→ hb(z) is continuous, the map kz is continuous as well. If
b ∈ B(a, ε) for some small ε, then as before we get from the conjugacy
relation that

(2.8) fb(hb(z + 2πi)) = hb(fb(z + 2πi)) = hb(fb(z)) = fb(hb(z)).

Then, for every b ∈ B(a, ε), the set of possible values of kz is a discrete
subset of C (in particular has a finite intersection with the stripe
{z ∈ C : Im z ∈ [0, 2π)}). If hb(z+ 2πi) and hb(z) are regular points of
fb, then, for c sufficiently close to b, hc(z + 2πi) and hc(z) are regular
points of fc and, if kz(b) �= 2πi, then kz(c) �= 2πi, and, if kz(b) = 2πi,
then kz(c) = 2πi. Since kz(a) = 2πi for z ∈ C and since the set of
critical points of fa is discrete, kz is the constant function 2πi. This
finishes the proof.

3. The main tool. In this section we fix a ∈ H and we denote fa,
Fa and δa respectively by f , F and δ. Let CB (JF ,C) be the Banach
space of all bounded continuous functions g : JF → C with the norm
|| · ||∞. For α ∈ (0, 1] and for g ∈ CB (JF ,C) we denote by vα(g) the
α-variation of the function g which is

inf{L ≥ 0 : ∀x,y∈JF
|x− y| ≤ δ =⇒ |g(x) − g(y)| ≤ L|x− y|α}.

Let
||g||α = vα(g) + ||g||∞,

and define

Hα = Hα(JF ) = {g ∈ CB (JF ,C) : ||g||α <∞}.
Then the set Hα with the norm || · ||α is a Banach space and Hα is a
dense subset of CB (JF ,C).

3.1. Observe that it follows immediately from [4, Proposition 2.2]
L > 0 and 0 < β < 1 exist such that, for every n ≥ 0, every v ∈ JF

and every z ∈ B(Fn(v), δ)

(3.1) |(F−n
v )′(z)| ≤ Lβn,

where F−n
v is a branch of F−n such that F−n

v (Fn(v)) = v.
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3.2. We say a continuous function φ : JF → C is dynamically Hölder
with an exponent α > 0 if there exists cφ > 0 such that

|φn(F−n
v (y)) − φn(F−n

v (x))| ≤ cφ|φn(F−n
v (x))||y − x|α

for all n ≥ 1, all x, y ∈ JF with |x− y| ≤ δ and all v ∈ F−n(x), where

(3.2) φn(z) = φ(z)φ(F (z)) · · ·φ(Fn−1(z)).

We say that a continuous function φ : JF → C is summable if

sup
z∈JF

{ ∑
v∈F−1(z)

||φ ◦ F−1
v ||∞

}
<∞.

Next define

Hs
α = {φ : JF −→ C : φ is a Hölder continuous summable function}.

If the function φ ∈ Hs
α, then the formula

Lφg(z) =
∑

x∈F−1(z)

φ(x)g(x)

defines a bounded operator Lφ : CB (JF ,C) → CB (JF ,C) called the
Perron-Frobenius operator associated with the function φ.

Observe now that (see [25, Lemma 4.1]) if we let φ : JF → C be a
summable dynamically Hölder function with an exponent α > 0, then

�Lφ(Hα) ⊂ Hα

and then, if φ(JF ) ⊂ [0,∞) and supn≥1{||Ln
φ(1)||∞} <∞, there exists

a constant c1 > 0 such that

(3.3) ||Ln
φg||α ≤ 1

2
||g||α + c1||g||∞

for all n large enough and for every g ∈ Hα.

3.3. We say (see also [25]) that a summable dynamically Hölder
potential φ : JF → (0,∞) satisfies the Q-condition if

Qφ = sup
n≥1

{||Ln
φ(1)||∞} <∞,
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and we say that φ is rapidly decreasing if

lim
|Re z|→∞

L(1)(z) = 0.

As in [25, Lemma 4.2] we also observe that if we let φ : JF → (0,∞) be
a rapidly decreasing summable dynamically Hölder potential satisfying
the Q−condition and, if B is a bounded subset of (Hα, || · ||α), then
Lφ(B) is a pre-compact subset of the space (CB (JF ,C), || · ||∞).

Combining all the above results we observe that the assumptions
of Ionescu-Tulcea and Marinescu’s ergodic theorem [15, Theorem 1.5]
are satisfied for Banach spaces Hα and for the bounded operator
Lφ : CB → CB . All this shows the following theorem, see [25,
Theorem 4.3].

3.4. Theorem. If φ : JF → (0,∞) is a rapidly decreasing summable
dynamically Hölder potential satisfying the Q-condition, then there exist
p ∈ N numbers γ1, . . . , γp ∈ S1 = {z ∈ C : |z| = 1}, finitely
dimensional bounded operators Q1, . . . , Qp : Hα → Hα and an operator
S : Hα → Hα such that, for all n ≥ 1,

Ln
φ =

p∑
i=1

γn
i Qi + Sn,

Q2
i = Qi, Qi ◦Qj = 0, (i = j), Qi ◦ S = S ◦Qi = 0

and
||Sn||α ≤ Cξn

for some constant C > 0 and some constant ξ ∈ (0, 1). In particular all
numbers γ1, . . . , γp are isolated eigenvalues of the operator Lφ : Hα →
Hα, and this operator is quasicompact.

3.5. Lemma. (i) The function φ1(z) = −t log |F ′
a(z)| is 1-Hölder

(Lipshitz).

(ii) The function φ2(z) = |F ′
a(z)|−t is 1-Hölder.

Proof. Observe that φ2(z) = eφ1(z). To prove (i) we use Koebe’s
distortion theorem. Let |z − w| < δ and |z − w| = η2δ. Then

(1 − η)3

(1 + η)3
≤ |F ′

a(z)|
|F ′

a(w)| ≤
(1 + η)3

(1 − η)3
.
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Therefore∣∣∣∣− t log |F ′
a(z)| + t log |F ′

a(w)|∣∣ = |t| · | log
|F ′

a(z)|
|F ′

a(w)|
∣∣∣∣

≤ |t|(3 log(1 + η) − 3 log(1 − η))

≤ |t| 9
2δ

|z − w|

since, for η ∈ (0, 1/2), log(1 + η) ≤ η and log(1− η) < 2η. This finishes
the proof of part (i).

To get (ii), first observe that if Re t ≥ 0∣∣∣|F ′
a(z)|−t

∣∣∣ ≤ 1
ΔRe t

a

,

where

(3.4) Δa = min(1/2, inf{|f ′a(z)| : dist (z,Crit (fa)) > δ}).

Second, note that there exists Mt > 0 such that, if |x| ≤ 2|t| log(1/Δa),
then

|ex − 1| ≤Mt|x|.
Therefore∣∣|F ′

a(z)|−t − |F ′
a(w)|−t

∣∣ = |e−t log |F ′
a(z)| − e−t log |F ′

a(w)||
=
∣∣e−t log |F ′

a(w)|| · |e−t log |F ′
a(z)|+t log |F ′

a(w)| − 1
∣∣

≤ 1
ΔRe t

a

Mt
9
2δ

|z − w|.

3.6. Let φt := φ2 be the function from the previous lemma. Since

Lφt
g(z) =

∑
x∈F−1(z)

|F ′(z)|−tg(z),

the operator L̂t from [4] can be defined by the formula

L̂t = α−1
t Lφt

,
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where αt = eP (t) and P (t) is the topological pressure from Remark 1.4.
Moreover, in [4] (see also [25]) it was proved that, for t > 1, there
exists a unique (α, t)-conformal measure and α = αt. Moreover, the
measure is a fixed point of the operator L̂∗

t dual to L̂t. Next we shall
prove more properties of the operator L̂t = α−1

t Lφt
.

3.7. Lemma. If Re t > 1, then φ3(z) := e−P (t)φt(z) =
e−P (t)|(Fa)′(z)|−t is a rapidly decreasing summable dynamically Hölder
function satisfying the Q-condition. Therefore the operator Lφ3 = L̂t

satisfies Theorem 3.4.

Proof. Since |(Fn
a )′(z)| = |F ′

a(z)| · |Fω
a (Fa(z))| · · · |F ′

a(Fn−1
a (z))|, then

φn(z) for the potential |(Fa)′(z)|−t is equal to |(Fn
a )′(z)|−t. Therefore,

φn(F−n
v (y)) = |(F−n

a )′(F−n
v (y))|−t = |(F−n

v )′(y)|t.

Using the same argument as in the proof of Lemma 3.5, we have that

(3.5) | − t log |(F−n
v )′(x)| + t log |(F−n

v )′(y)|| ≤ |t| 9
2δ

|y − x|.

Then

||(F−n
v )′(x)|t − |(F−n

v )′(y)|t|
= |et log |(F−n

v )′(y)|| · |et log |(F−n
v )′(x)|−t log |(F−n

v )′(y)| − 1|
≤ |(F−n

v )′(y)|Re tM ′
t |x− y|

for some constant M ′
t. Observe that, from the estimation above and

Proposition 3.1 from [4], it follows that φ3(z) is a rapidly decreasing
summable dynamically Hölder function satisfying the Q-condition.

3.8. Corollary. If t > 1, then 1 is an isolated simple eigenvalue of
L̂t : Hα → Hα and the eigenspace of the eigenvalue 1 is generated by
the nowhere vanishing function ψt ∈ Hα such that∫

ψt dmt = 1
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and
lim

|Re z|→∞
ψt(z) = 0.

Moreover, if t > 1, then the measure μ = μt = ψtmt is F -invariant,
ergodic and equivalent to mt. In particular, μ(Jr

F ) = 1.

Proof. We have first that

‖L̂n
t (1)‖α ≤ C1

for some C1 > 0 and every n ≥ 0. Therefore

(3.6)
∥∥∥∥ 1
n

n∑
k=1

L̂k
t (1)
∥∥∥∥

α

=
∥∥∥∥L̂t

(
1
n

n−1∑
k=1

L̂k
t (1)
)∥∥∥∥

α

≤ C1

for every n ≥ 1. Then it follows from subsection 3.3 that there exists a
strictly increasing sequence of positive integers {nj}j≥1 such that the
sequence {

1
nj

nj∑
k=1

L̂k
t (1)

}
j≥1

converges in CB (JF ,C) to a function ψt : JF → R. Then, since by
(3.6) ‖ψt‖α ≤ C1, we get that ψt ∈ Hα. Moreover, by [4, Proposition
7.1], mt is a fixed point of the dual operator L̂∗

t . Therefore, for every
j ≥ 0, ∫

L̂j
t(1) dmt = 1,

and consequently ∫
1
n

n−1∑
j=0

L̂j
t (1) dmt = 1.

Applying Lebesgue’s dominated convergence theorem together with the
fact that the function φ from the previous lemma has the Q-property,
we obtain the equality ∫

ψt dmt = 1.
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Moreover, it follows then from [4, Proposition 7.1] that ψt > 0
throughout JF . Since ψt = L̂tψt and since Ltψt(z) ≤ Lt1(z)∞‖ψt‖∞
and

lim
|Re z|→∞

Lt1(z) = 0,

it follows that
lim

|Re z|→∞
ψt(z) = 0.

The fact that 1 is an isolated eigenvalue of L̂t follows from Theorem 3.3.
The last statement of the corollary follows from above and [4, Propo-
sition 4.1].

Therefore, it remains to prove that the isolated eigenvalue 1 is simple,
i.e., the eigenspace of 1 is one-dimensional. Let g = g1 + ig2 ∈ Hα,
where g1, g2 ∈ Hα are real-valued be such that

L̂t(g) = g.

Since
g1 + ig2 = g = L̂t(g1 + ig2) = L̂t(g1) + iL̂t(g2),

L̂t(gl) = gl

for l = 1, 2. We shall prove that both gl are equal to λlψt for some
λl ∈ R. So let us assume that gl �= λψt for all λ ∈ R. Since

0 ≤ 1 − gl

||gl||∞ ,

0 ≤ 1
nj

nj∑
k=1

L̂k
t

(
1 − gl

||gl||∞

)
=

1
nj

nj∑
k=1

L̂k
t (1) − gl

||gl||∞ .

Therefore, the function

h =
ψt − (g/||g||∞)∫
ψt − (g/||g||∞) dmt

is a well-defined nonzero nonnegative function which is a fixed point of
L̂t and ∫

h dmt = 1.
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But this gives us that h = ψt since we know that mt is ergodic. Then
the required contradiction follows.

3.9. Next we observe that, following [25], if we let G be a domain
in C and {Φb : JFa

→ C}b∈G be a family of continuous summable
functions such that, for every z ∈ JFa

the function G � b �→ Φb(z) ∈ C
is holomorphic and such that the map G � b �→ LΦb

∈ L(Hα) is

(3.7) b �−→ LΦb
∈ L(Hα)

is holomorphic on G.

This important remark on the analyticity of the Perron-Frobenius
operators allows us to formulate the next theorem. For a proof, the
reader can consult [25]. We only mention that the extension from
the one-dimensional case to the multi-dimensional case (what we really
need, since our parameter space is the n+1-dimensional complex space
Cn+1) is possible due to the well-known Hartogs’ theorem.

3.10. Theorem (The main tool). Suppose that G is an open
connected subset of Cn, n ≥ 1, and Φb : JFa

→ C, b ∈ G, is a family
of mappings such that

(i) for every b ∈ G, Φb ∈ Hs
α,

(ii) for every b ∈ G, Φb is dynamically Hölder,

(iii) G � b �→ Φb ∈ Hα is continuous,

(iv) family {cΦb
}b∈G is bounded,

(v) the function b �→ Φb(z) ∈ C, b ∈ G is holomorphic for every
z ∈ JFa

,

(vi) for every d ∈ G there exists r > 0 and there exists c ∈ G such
that

sup
{∣∣∣∣Φb

Φc
(z)
∣∣∣∣ : b ∈ B(d, r), z ∈ C

}
<∞.

Then the function b �→ LΦb
∈ L(Hα), b ∈ G, is holomorphic.

4. The main result. In this section we prove the main result of
this paper. For a parameter b ∈ Cn+1 and a map f = fb ∈ H, we show
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that the function b �→ HD (Jr
fb

) is real-analytic. This ultimate goal is
established in Theorem 4.17. But first we need to prove that, for t > 1,
the function a �→ Pa(t) is continuous on H. To obtain this we need the
following lemma. We separate it because we shall use it one more time
later.

4.1. Lemma. For every a ∈ H and for every ε > 1, there exists
r > 0 such that, for b ∈ B(a, r) and for z ∈ Jfa

,∣∣∣∣f ′b(hb(z))
f ′a(z)

− 1
∣∣∣∣ < ε.

Proof. First note that
(4.1)∣∣∣∣f ′b(hb(z))

f ′a(z)
− 1
∣∣∣∣ = ∣∣∣∣f ′b(hb(z)) − f ′a(z)

f ′a(z)

∣∣∣∣
≤
∣∣∣∣f ′b(hb(z)) − f ′a(hb(z))

f ′a(z)

∣∣∣∣+ ∣∣∣∣f ′a(hb(z)) − f ′a(z)
f ′a(z)

∣∣∣∣ .
Next we split the proof into two cases.

Case 1. Assume that |Re z| ≤M3 +1, where M3 is the constant from
Lemmas 2.2 and 2.3. Observe that there exists M5 <∞ such that

sup
{ n∑

j=0

(j − k)2e2(j−k)Re z : |Re z| ≤M3 + 2
}

≤M2
5 .

If b is close to a, then |Rehb(z)| ≤M3 + 2. Therefore, by (1.2), we get∣∣∣∣f ′b(hb(z)) − f ′a(hb(z))
f ′a(z)

∣∣∣∣ ≤ 1
δa

sup
{∥∥∥∥∂f ′b∂b (z)

∥∥∥∥ : |a− b| < r

}
|b− a|

≤ M5

δa
|b− a|.

Observe also that there exists M6 <∞ such that

sup{|f ′′a (z)| : |Re z| ≤M3 + 2} ≤M6.
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Then∣∣∣∣f ′a(hb(z)) − f ′a(z)
f ′a(z)

∣∣∣∣ ≤ M6

δa
|hb(z) − z| ≤ M6

δa

∣∣∣∣∂hb

∂b
(z)
∣∣∣∣ |b− a|.

Since, by Proposition 2.4, |(∂hb/∂b)(z)| is bounded in a small neigh-
borhood of a, we have that (4.1) can be as small as we want.

Case 2. Assume that |Re z| > M3 + 1. Then, similarly to Case 1 but
using Lemma 2.3 instead of estimations by M5, M6 and δa, we get∣∣∣∣f ′b(hb(z)) − f ′a(hb(z))

f ′a(z)

∣∣∣∣ ≤ M2

M1
|b− a|,

and ∣∣∣∣f ′a(hb(z)) − f ′a(z)
f ′a(z)

∣∣∣∣ ≤ M2

M1

∣∣∣∣∂hb

∂b
(z)
∣∣∣∣ |b− a|.

Therefore, again, if b is close to a, then (4.1) can be as small as we
want for b sufficiently close to a.

4.2. Lemma. For all t > 1 the function a �→ Pa(t), a ∈ H, is
continuous.

Proof. Fix a ∈ H and, for this a, r > 0 from Lemma 4.1. Next,
take any z ∈ JFa

and n ≥ 1 and x ∈ F−n
a (z). First note that, by

Proposition 2.4 (iii), hb, which conjugates fb and fa, conjugates also
Fb and Fa. Moreover, we have hb(F−n

a (z)) = F−n
b (z) and for every

i ∈ {0, 1, . . . , n} and every x ∈ F−n
a (z) we have hb ◦ f i

a(x) = f i
b ◦hb(x).

Now we can write

|(Fn
b )′(hb(x))|
|(Fn

a )′(x)| =
|(fn

b )′(hb(x))|
|(fn

a )′(x)| =
n−1∏
i=0

|f ′b(f i
b(hb(x)))|

|f ′a(f i
a(x))|

=
n−1∏
i=0

|f ′b(hb(f i
a(x)))|

|f ′a(f i
a(x))| .

Hence, by Lemma 4.1, for every γ > 1, there exists 0 < r1 < r such
that

1
γn

<
|(Fn

b )′(hb(x))|
|(Fn

a )′(x)| < γn.
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Since hb : F−n
a (z) → F−n

b (hb(z)) is a bijection, we obtain

1
γtn

<

∑
x∈F−n

b
(hb(z)) |(Fn

b )′(x)|−t∑
x∈F−n

a (z) |(Fn
a )′(x)|−t

< γtn.

Hence, taking the logarithm and dividing the last inequality by n, we
get

− t log γ < Pb(t) − Pa(t) < t log γ

for all b ∈ B(a, r1) and we are done.

4.3. Let a ∈ H. Let r1 > 0 be such a real number that, for every
b ∈ B(a, r1), there exists a quasiconformal map hb conjugating fa and
fb, and let

(4.2) α = α(r1) = inf
{

1
Q(b)

: b ∈ B(a, r1)
}
> 0.

The existence of such an r1 follows from Lemma 2.1 and Proposition 2.4.
Therefore, for b ∈ B(a, r1) and t > 1, we can define a function
φ(·)(b, t) : JFa

→ R by the formula

φz(b, t) = |F ′
b(hb(z))|−t.

4.4. Lemma. If Re t > 1, then the functions

φ4(z) = − t log |F ′
b(hb(z))| and φz(b, t) = |F ′

b(hb(z))|−t

are α-Hölder, where α is the constant from (4.2).

Proof. Since, by Proposition 2.4 (ii), we know that hb is (K(Q), (1/Q))-
Hölder, the lemma follows from Lemma 3.5.

4.5. Then by L0
b,t we denote the Perron-Frobenius operator associ-

ated with φz(b, t) = |F ′
b(hb(z))|−t, i.e.,

L0
b,tg(z) =

∑
x∈F−1

a (z)

φz(b, t)g(x)

for g ∈ CB (JF ,C).
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4.6. Embedding of Cn+1 into C2n+3. We would like to apply
Theorem 3.10, but the direct extension of φz onto an open subset of
Cn+1 ×C is not a holomorphic function of b and t. For this reason we
shall embed Cn+1 into C2n+3 in some special way described below and
then extend φz.

Let b = (b0, b1, . . . , bn) ∈ Cn+1. Write bj = b1j +ib2j for j = 0, 1, . . . , n
where i is the imaginary unit. Then e1 : Cn+1 ↪→ C2n+2 is the
embedding defined by the following formula

e1(b) = (b10, b
2
0, b

1
1, b

2
1, . . . , b

1
n, b

2
n),

and e : Cn+1 × R ↪→ C2n+3 is the embedding defined as e(b, t) =
(e1(b), t).

4.7. Sketch of the extension. We shall extend the function

φz ◦ e−1 : e(B(a, r1) × (1,∞)) → R,

where e−1 is the left inverse of e and r1 > 0 is the constant from
subsection 4.3. We cannot do this directly. But observe that

φz(b, t) = |F ′
b(hb(z))|−t = exp {−t (log |ψz(b)| + log |F ′

a(z)|)} ,

where
ψz(b) =

F ′
b(hb(z))
F ′

a(z)
.

Then, if we have defined Log (a branch of exp−1) on some neighborhood
of ψz(a), then

Re Logψz(b) = log |ψz(b)|.
Therefore, if we can extend holomorphically Re Logψz ◦e−1

1 (where e−1
1

is the left inverse of e1), we are done. However, since by Lemma 4.1
there exists r2 > 0 such that, for b ∈ B(a, r2) and for z ∈ JFa

,

(4.3) |ψz(b) − 1| < 1
2
,

the holomorphic function

Logψz : B(a, r2) −→ C
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is well defined, where Log is that branch of exp−1 which satisfies the
condition Log 1 = 0.

Before we start with the extension of Re Logψz ◦ e−1
1 , note that by

(4.3) there exists M7 <∞ such that

(4.4) |Logψz(b)| ≤M7

for all b ∈ B(a, r2) and z ∈ JFa
.

4.8. Extension of Re Logψz ◦ e−1
1 . The function Logψz :

BCn+1(a, r2) → C is analytic. Then

(4.5) Logψz(b) =
∑

(i0,... ,in)∈Nn+1

ci0,... ,in
(z)(a0− b0)i0 . . . , (an − bn)in .

From Cauchy’s estimates and (4.4), it follows that

(4.6) |ci0,... ,in
(z)| ≤ M7

ri0+...+in
2

.

Recall that bj = b1j + ib2j , aj = a1
j + ia2

j where j = 0, . . . , n and i is the
imaginary unit. Note that

e1(b) = (b10, b
2
0, b

1
1, b

2
1, . . . , b

1
n, b

2
n).

Since (4.5) can be written as∑
(i0,... ,in)∈Nn+1

ci0,... ,in
(z)

n∏
j=0

((a1
j − b1j ) + i(a2

j − b2j ))ij ,

we have

(4.7) Re Logψz ◦ e−1
1 (b′)

=
∑

(k0,... ,k2n+1)∈N2n+1

c′k0,... ,k2n+1
(z)

2n+1∏
l=0

(a′l − b′l)
kl ,

where

(4.8) c′k0,... ,k2n+1
(z) = Re (ck0+k1,... ,k2n+k2n+1(z)ik1+k3+···+k2n+1)

·
(
k0 + k1

k0

)(
k2 + k3

k2

)
. . . ,

(
k2n + k2n+1

k2n

)
,
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and a′ = (a′0, . . . , a′2n+1) = e1(a), b′ = (b′0, . . . , b′2n+1) = e1(b).
Moreover,

(4.9)

|c′k0,... ,k2n+1
(z)| ≤ |ck0+k1,... ,k2n+k2n+1(z)|2k0+k1+···+k2n+1

≤M7

(
2
r2

)k0+k1+···+k2n+1

.

Next, let a′ be as before, i.e., a′ = (a′0, . . . , a
′
2n+1) = e1(a), and let

b′ ∈ DC2n+2(a′, r3) =
{
b′ = (b′0, . . . , b

′
2n+1) ∈ C2n+2 :

max
l=0,... ,2n+1

|a′l − b′l| < r3

}
,

where r3 = r2/4. Then

(4.10)
∣∣∣c′k0,... ,k2n+1

(z)
2n+1∏
l=0

(a′l − b′l)
kl

∣∣∣ ≤M7

(
1
2

)k0+k1+···+k2n+1

.

Hence Re Logψz◦e−1
1 can be holomorphically extended to the functions

Ψz : DC2n+2(e1(a), r3) → C defined by the

(4.11) Ψz(b′) =
∑

(k0,... ,k2n+1)∈N2n+1

c′k0,... ,k2n+1
(z)

2n+1∏
l=0

(a′l − b′l)
kl .

Note that
(4.12)

|Ψz(b′)| ≤M7

∑
(k0,... ,k2n+1)∈N2n+2

(
1
2

)k0+k1+···+k2n+2

≤M722n+2

for b′ ∈ DC2n+2(e1(a), r3).

4.9. Conclusion of the process. Finally we have the extension of
φz ◦ e−1 : e(B(a, r1) × (1,∞)) → R. This is the function

Φz : DC2n+2(e1(a), r3) ×BC(t0, ρ) −→ C
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(where ρ = t0 − 1) defined by the formula

(4.13) Φz(b′, t) = exp{− t(Ψz(b′) + log |F ′
a(z)|)}.

4.10. Proposition. Fix a ∈ H and t0 > 1. Then there exist r4 and
� such that, for

(b′, t) ∈ G3 = DC2n+2(e1(a), r4) ×B(t0, �),

the Perron-Frobenius operator LΦ(b′,t) for the function

Φ(b′,t)(z) = Φz(b′, t),

is well defined. Moreover, let L be the function G3 → L(Hα), where
α = α(r4) comes from (4.2), defined by the formula

L((b′, t)) = LΦ(b′,t) .

Then L is holomorphic.

Proof. To prove the proposition it is enough to check the conditions
from Theorem 3.10.

Condition (v). This is satisfied from the construction (4.6) (4.8).

Condition (i). First, we prove that the function Φ(b′,t)(z) is summable.
From (4.12) it follows that

|Φ(b′,t)(z)| = exp{Re (− tΨz(b′))}|F ′
a(z)|−Re t ≤ eM72

2n+2|t||F ′
a(z)|−Re t.

Since in Lemma 3.7 we proved that the function φ2(z) = |F ′
a(z)|−Re t

is summable, it follows that Φ(b′,t) is summable.

Next, we shall prove that the function Φ(b′,t) is Hölder. First we
shall show that for the function z �→ Ψ(z)(b′). To do this we start
with b ∈ B(a, r2). Using the proof of Lemma 3.5 (i) and Proposition
(2.4) (ii), we can get that

|Ψz(e1(b))−Ψw(e1(b))| = |Re Logψz(b)−Re Logψw(b)| ≤M100|z−w|α



790 I. COICULESCU AND B. SKORULSKI

for some constant M100. Next we prove that the extension is Hölder by
showing that the coefficients of the extension are Hölder. To get this
we have to take a look at the function Logψ(·). From estimation of the
arg in Koebe’s theorem, we can find a constant M101 such that

| argψz(b) − argψw(b)| =
∣∣∣∣arg

ψz(b)
ψw(b)

∣∣∣∣ ≤ ∣∣∣∣arg
F ′

b(hb(z))
F ′

b(hb(w))

∣∣∣∣+ ∣∣∣∣arg
F ′

a(z)
F ′

a(w)

∣∣∣∣
≤ 6

2δ
|z − w| +

6
2δ

|hb(z) − hb(w)|
≤M101|z − w|α.

Therefore,

|Logψz(b) − Logψw(b)|
≤ |Re Logψz(b) − Re Logψw(b)| + | argψz(b) − argψw(b)|
≤ (M100 +M101)|z − w|α.

Then, by (4.5) and Cauchy’s estimation,

|ci0,... ,in
(z) − ci0,... ,in

(w)| ≤ M100 +M101

ri0+···+in
2

|z − w|α.

Hence, by (4.8),

(4.14) |c′k0,... ,k2n+1
(z) − c′k0,... ,k2n+1

(w)|

≤ (M100 +M101)
(

2
r2

)k0+···+k2n+1

|z − w|α.

Then, for b′ ∈ DC2n+2(a′, r3), r3 = r2/4,

|Ψz(b′) − Ψw(b′)| ≤ (M100 +M101)22n+2|z − w|α.

Next, as in the proof of Lemma 3.5 (ii), observe that M9 exists such
that, if

|x| ≤
(

(M23 +M24)22n+2 + 2 log
1

Δa

)
|t|,

then
|ex − 1| ≤M9|x|.
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Therefore

(4.15) |Φz(b′, t) − Φw(b′, t)|
≤ |e−t(Ψz(b′)+log |F ′

a(z)|)|
·M9(t)|t|

(
(M23 +M24)22n+2|z − w|α +

9
2δa

|z − w|
)

≤M11(t) · |z − w|α

for come constant M11.

Conditions (ii) and (iv). Now we check conditions (ii) and (iv), i.e.,
we show that Φb,t is dynamically Hölder, with exponent α, for (b, t) in
some neighborhood G ⊂ C2n+3 of (e1(a), t0) and with constants cφ(b,t)

uniformly bounded (in G). Denote

ϕ(z) = − t(Ψz(b) + log |F ′
a(z)|)

and

φ(z) = Φz(b, t) = eϕ(z)

where (b, t) ∈ G = DC2n+2(a, r3) × B(t0, �) for some t0 with Re t0 > 1
and ρ = t0 − 1. Then we need to show that, for every n ≥ 1, every
x, y ∈ JFa

such that |x− y| ≤ δ, every v ∈ F−n(x) and

φn(F−n
v (z)) =

n−1∏
k=0

φ(F k(F−n
v (z))) = e

∑
n−1

k=0
ϕ(F k(F−n

v (z)))

we have

|φn(F−n
v (y)) − φn(F−n

v (x))| ≤ cφ|φn(F−n
v (x))||y − x|α

where cφ is uniformly bounded in G.

By (3.5) and (4.15) we get that

(4.16) |ϕ(z) − ϕ(w)|
≤ (|t0| + ρ)(|Ψz(b) − Ψw(b)| + | log |F ′

a(z)| − log |F ′
a(w)||)

≤ (|t0| + ρ)
(

(M23 +M24)22n+2|z − w|α +
9
2δ

|z − w|
)

≤M15(t0 + ρ)|z − w|α
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for all z, w ∈ JFa
such that |z − w| ≤ δ and some constant M15. Then

it follows from (3.1) that∣∣∣∣ n−1∑
k=0

ϕ(F k(F−n
v (z))) −

n−1∑
k=0

ϕ(F k(F−n
v (w)))

∣∣∣∣
≤M102

n−1∑
k=0

|F k(F−n
v (z)) − F k(F−n

v (z))|α

≤M13|z − w|α

for some constants M102 and M13. Therefore putting

M14 = sup
{∣∣∣∣ez − 1

z

∣∣∣∣ : |z| ≤M13

}
<∞,

we get

(4.17)
∣∣φn(F−n

v )(z) − φn(F−n
v (w))

∣∣ ≤M13M14|φn(F−n
v (z))| |z − w|α.

Consequently, the functions φ are dynamically Hölder and we can see
that the constants cφ are uniformly bounded. So the assumptions (ii)
and (iv) of the Main Tool are verified.

Condition (iii). Now let G = DC2n+2(e1(a), r4) × B(t0, ρ) ⊂ C2n+3

where r4 = r2/16. We have to show that

G � (b, t) �−→ Φz(b, t) ∈ Hα(JFa
)

is a continuous function. Since

Φz(b, t) = e−tΨz(b)|F ′
a(z)|−t,

we can do this by proving that the following two functions are contin-
uous in each of the variables b and t,

(b, t) �−→ e−tΨz(b),

(b, t) �−→ |F ′
a(z)|−t

because both these functions are in Hα which is a Banach algebra.



PERTURBATIONS IN THE SPEISER CLASS 793

The function (b, t) �→ e−tΨz(b) is continuous in the variable t as a
function R �→ Hα where b is fixed since ||tg||α = |t|||g||α, and then

|| − t1Ψ(·)(b) + t2Ψ(·)(b)||α = |t1 − t2| ||Ψ(·)(b)||α < M103|t1 − t2|
for some constant M103. For continuity with respect with the variable
b, we recall that

||Ψ(·)(b) − Ψ(·)(c)||α = vα(Ψ(·)(b) − Ψ(·)(c)) + ||Ψ(·) · (b) − Ψ(·)(c)||∞
where b = (b0, . . . , b2n+1), c = (c0, . . . , b2n+1). Then, by (4.14), we get

(4.18) |(Ψw(b) − Ψw(c)) − (Ψz(b) − Ψz(c))|
=
∣∣∣∣ ∑

k0,... ,k2n+1

(
c′k0,... ,k2n+1

(w) − c′k0,··· ,k2n+1
(z)
)

·
( 2n+1∏

l=0

(bl − a′l)
kl −

2n+1∏
l=0

(cl − a′l)
kl

)∣∣∣∣
≤

∑
k0,... ,k2n+1

(M100 +M101)
(

2
r2

)k0+···+k2n+1

|z − w|α

·
∣∣∣∣∣
2n+1∏
l=0

(bl − a′l)
kl −

2n+1∏
l=0

(cl − a′l)
kl

∣∣∣∣∣ .
where a′ = (a′0, . . . , a′2n+1) = e1(a). But∣∣∣∣ 2n+1∏

l=0

(bl − a′l)
kl −

2n+1∏
l=0

(cl − a′l)
kl

∣∣∣∣
=
∣∣∣∣ 2n+1∑

l=0

(b0 − a′0)k0 · · · (bl−1 − a′l−1)kl−1
(
(bl − a′l)

kl − (cl − a′l)
kl
)

(cl+1 − a′l+1)kl+1 · · · (c2n+1 − a′2n+1)k2n+1

∣∣∣∣.
Then, since

(bl − a′l)
kl − (cl − a′l)

kl =
kl−1∑
j=0

(bl − a′l)
j(bl − cl)(cl − a′l)

kl−j−2,
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∣∣∣∣ 2n+1∏
l=0

(bl − a′l)
kl −

2n+1∏
l=0

(cl − a′l)
kl

∣∣∣∣
≤ (k0 + . . .+ k2n+1)

16
r2

(
r2
16

)k0+···+k2n+1

|b− c|.

Therefore, by (4.18),

|(Ψw(b) − Ψw(c)) − (Ψz(b) − Ψz(c))|
≤ 16
r2

(M100 +M101)|b− c| · |z − w|α

·
∑

k0,... ,k2n+1

(
1
8

)k0+···+k2n+1

(k0 + · · · + k2n+1),

So, this shows that

vα(Re Logψz(b) − Re Logψz(c)) ≤M15|b− c|
for some constant M15 > 0. Similarly,

||Ψz(b) − Ψz(c)||∞ ≤M16|a− b|
for some M16 > 0. Therefore,

||Ψz(b) − Ψz(c)||α ≤ (M14 +M15)|a− b|,
and the continuity is proven because using the same arguments which
led to (4.17), we can get

||e−tΨ(·)(b) − e−tΨ(·)(c)||α ≤ ||e−tΨ(·)(b)+tΨ(·)(c) − 1||α||e−tΨ(·)(c)||α
≤M17|b− c|

for some constant M17.

To prove the continuity of

(b, t) �−→ |F ′
a(z)|−t ∈ Hα,

we first observe that continuity in the variable b is clear simply because
the function is constant as a function of b. To get the continuity in the
variable t, we can for example proceed like before i.e., writing

|F ′
a(z)|−t = e−t log |F ′

a(z)|
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and first estimating

|| − t1 log |F ′
a(·)| + t2 log |F ′

a(·)|| |α.

Condition (vi). Let (d, td) ∈ BC2n+3((e1(a), t0),min{r3/4, ρ}). Let γ
be such a real number that

BC2n+3((d, td), 2γ) ⊂ BC2n+3((e1(a), t0),min{r3/4, ρ}),

and let tc be an arbitrary point from the interval (1,Re (tb − γ)). Now,
let (b, tb) ∈ BC2n+3((d, td), γ). Then, by (4.12) we get that

|etc(Ψz(e1(a))−Ψz(b))| ≤ etc22n+3M7 ,

|e(tc−tb)Ψz(b)| ≤ eρM72
2n+2

.

Therefore,∣∣∣∣ Φb,tb
(z)

Φe1(a),tc
(z)

∣∣∣∣ ≤ e−tbΨz(b)

e−tcΨz(e1(a))
|F ′

a(z)|−(tb−tc)

≤ |etc(Ψz(e1(a))−Ψz(b))| |e(tc−tb)Ψz(b)| |F ′
a(z)|Re (tc−tb)

≤ e(tc+ρ)22n+3M22Δ−ρ
a

where Δa is defined by the formula (3.4) and is a strictly positive real
number.

4.11. Now we shall invoke the following perturbation theorem, see
[22, Theorem XII.8 and Problem 8, p. 70].

4.12. Kato-Rellich theorem. Let H be a complex Banach space,
L(H) the Banach space of bounded operators on H, G an open region
in Cm for some m ≥ 1 and

G � b �−→ Lb ∈ L(H)

a holomorphic function. If La with a ∈ G has a simple eigenvalue αa

which is an isolated point of the spectrum of La with the associated
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eigenvector ga, then for every ε > 0 small enough there exists δ > 0
such that, if |b − a| < δ, then the operator Lb has a simple eigenvalue
αb and eigenvector gb with the properties

(i) the functions b �→ αb and b �→ gb are holomorphic on BCm(a, δ),

(ii) if |b− a| < δ, then

(4.19) spectrum (Lb)
⋂
B(αa, ε) = {αb}.

4.13. Kato-Rellich theorem works. Fix b = (b0, . . . , bn) ∈
BCn+1(a, r3/4) and t ∈ (t0 − �, t0 + �). It follows from Corollary 3.8
that ePb(t) is a simple isolated eigenvalue of Lb,t. Note also that

L0
b,t = L(e1(b), t)

and, if b �= a, then Lb,t �= L0
b,t. But

La,t = L0
a,t = L(e1(a), t).

Therefore, ePa(t0) is a simple isolated eigenvalue of L(e1(a), t0). Then
it follows from Kato-Rellich that, for every ε > 0 small enough, there
exist δ1 > 0 and δ2 > 0 such that, for (b′, t) ∈ C2n+3 such that
|b′ − e1(a)| < δ1 and |t − t0| < δ2, L(b′, t) has a simple eigenvalue
α(b′,t) with the properties

(i) the function (b′, t) �→ α(b′,t) is holomorphic on BC2n+2(e1(a), δ1)×
BC(t0, δ2),

(ii) if |b′ − e1(a)| < δ1 and |t− t0| < δ2, then

spectrum (L(b′, t))
⋂
B(ePa(t0), ε) = {α(b′,t)}.

So next we shall prove that α(e1(b),t) = ePb(t) for b ∈ B(a, δ1).

4.14. Diagram. We claim that b ∈ BCn+1(a, r3/4); the following
diagram is commutative

H1(JFb
) �

Lb,t

�

Tb

H1(JFb
)

�

Tb

Hα(JFa
) �

L(e1(b),t)
Hα(JFa

),



PERTURBATIONS IN THE SPEISER CLASS 797

where Tb(g) = g ◦ hb. Since Tb is linear and continuous, Tb is bounded.
Moreover, since hb is Hölder, Tb(H1(JFb

)) ⊂ Hα(JFa
). To prove the

claim, observe

(L(e1(b), t) ◦ Tb)(g)(z) =
∑

x∈F−1
a (z)

|(F ′
b ◦ hb)(x)|−tg(hb(z)),

(Tb ◦ Lb,t)(g)(z) = Lb,t(g(hb(z))) =
∑

x∈F−1
b

(hb(z))

|(Fb)′(x)|−tg(x).

Since Fa and Fb are conjugated by the homeomorphism hb, see Propo-
sition 2.4 (iii),

F−1
b (hb(z)) = {hb(y) : y ∈ F−1

a (z)}.

This finishes the proof of the claim.

4.15. We prove that α(e1(b),t) = ePb(t). Let gb,t ∈ H1(JFb
) be an

eigenvector that is associated to the eigenvalue ePb(t) of the operator
Lb,t, see Corollary 3.8. From diagram 4.14 it follows that

L(e1(b), t)(gb,t ◦ hb) = ePb(t)(gb,t ◦ hb).

Therefore, α(e1(b),t) and ePb(t) are eigenvalues of L(e1(b), t). Since we
have α(e1(a),t0) = ePa(t0) and since ePb(t) is continuous for (b, t) close to
(a, t0) (see Lemma 4.2 and [4, Proposition 3.1]), we have that

ePb(t) ∈ B(ePa(t0), ε).

Then from (4.19) we have the equality α(e1(b),t) = ePb(t) and the
following corollary.

4.16. Corollary. The function (b, t) �→ Pb(t) is real-analytic in
some neighborhood of (a, t0) in Cn+1 × (1,∞).

4.17. Theorem. The Hausdorff dimension of HD (Jr
fa

) is real-
analytic with respect to a ∈ H ⊂ Cn+1.
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Proof. To prove that
a �−→ HD (Jr

Fb
)

with a ∈ H real analytic, it suffices to show that the solution of the
equation

Pb(t) = 0

(which by [4, Theorem C] is some t > 1 equal to HD (Jr
Fb

)) is real-
analytic for every b in some neighborhood of a. Since the function
Pb : (1,∞) → R is real-analytic (Corollary 4.16), convex, strictly
decreasing [4, Proposition 3.1], and

∂Pb(t)
∂t

�= 0,

the theorem follows from the implicit function theorem.
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5. M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational
maps, Nonlinearity 4 (1991), 103 134.

6. , On the existence of conformal measures, Trans. Amer. Math. Soc. 328
(1991), 563 587.

7. , On Sullivan’s measures for rational maps of the Riemann sphere,
Nonlinearity 4 (1991), 365 384.

8. , Hausdorff measures and conformal measures on Julia sets with
rationally indifferent fixed point, J. London Math. Soc. 43 (1991), 107 118.



PERTURBATIONS IN THE SPEISER CLASS 799

9. R.L. Devaney, Cantor bouquets, explosions and Knaster continua: Dynamics
of complex exponential, Publ. Mat. 43 (1999), 27 54.

10. R. Devaney and F. Tangerman, Dynamics of entire functions near the
essential singularity, Ergodic Theory Dynam. Systems 6 (1986), 498 503.

11. P.L. Duren, Univalent functions, Springer, New York, 1983.

12. A.E. Eremenko and M.Yu. Lyubich, Dynamical properties of some classes of
entire functions, Ann. Inst. Fourier 4 (1992), 989 1020.

13. K. Falconer, Techniques in fractal geometry, John Wiley & Sons, Chichester,
1997.

14. L.R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of
entire functions, Ergodic Theory Dynam. Systems 6 (1986), 183 192.

15. C. Ionescu-Tulcea and G. Marinescu, Theorie ergodique pour des classes
d’operations non-complement continues, Ann. of Math. 52 (1950), 140 147.

16. S.G. Krantz, Function theory of several complex variables, Wadsworth and
Brooks, Pacific Grove, CA, 1992.

17. O. Lehto and K.I. Virtanen, Quasiconformal mappings in the plane, Springer-
Verlag, New York, 1973.
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Angamos 0610, Antofagasta, Chile, and Faculty of Mathematics and In-

formation Sciences, Warsaw University of Technology, Warsaw, Poland

E-mail address: bskorulski@ucn.cl


