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CONVOLUTION OPERATORS ON SCHWARTZ SPACES
FOR CHÉBLI-TRIMÈCHE HYPERGROUPS

J.D. BETANCOR, J.J. BETANCOR AND J.M.R. MÉNDEZ

ABSTRACT. The convolution associated to the general-
ized Fourier transformation related to Chébli-Trimèche hyper-
groups is investigated on the Schwartz type spaces introduced
by Bloom and Xu. In particular, the pointwise multipliers for
these spaces are described and the convolution is studied in
detail on the corresponding dual spaces.

1. Introduction. In a series of papers [6 8, 23], J.J. Betancor
and Marrero studied the Hankel convolution on spaces of distributions.
They developed for the Hankel convolution a theory analogous to the
classical one for the usual convolution on the Schwartz distribution
spaces. In this paper, we study the convolution operator associated
to Chébli-Trimèche hypergroups on Schwartz type distribution spaces
introduced by Bloom and Xu [12].

Although the notion of hypergroup was introduced in the 1930’s, the
harmonic analysis on hypergroups was developed in the 1970’s by Dunkl
[14], Jewett [20] and Spector [26], amongst others.

Here we deal with a special kind of hypergroup known as Chébli-
Trimèche hypergroups. This sort of hypergroup has been quite investi-
gated in the last years, see [12, 22, 31]. Chébli-Trimèche hypergroups
are a class of one-dimensional hypergroups on [0,∞) associated to a
Sturm-Liouville boundary value problem. The characters of the hyper-
group are the solutions of the considered problem.

More specifically, we denote by � the differential operator

� = − d2

dx2
− A′(x)
A(x)

d

dx
,
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where A is a continuous function on [0,∞) that is twice continuously
differentiable on (0,∞) and that satisfies the following conditions:

(i) A(0) = 0 and A(x) > 0, x ∈ (0,∞).

(ii) A is increasing and unbounded on [0,∞).

(iii) There exist an odd function B ∈ C∞(R), α > −1/2, and δ > 0
such that

A′(x)
A(x)

=
2α+ 1
x

+B(x), x ∈ (0, δ).

(iv) A′/A ∈ C∞(0,∞) and it is decreasing on (0,∞). Hence, the limit
limx→∞A′(x)/A(x) exists. We define ρ = (1/2) limx→∞A′(x)/A(x).

If A is a function satisfying the properties listed above, A is called a
Chébli-Trimèche function [13, 29].

Also we will assume that the function A defining the operator
� satisfies the following condition: there exist R, δ > 0 for which
A′(x)/A(x) = 2ρ+ e−δxD(x), if ρ > 0, or A′(x)/A(x) = (2α+ 1)/x+
e−δxD(x), if ρ = 0, when x > R, and D ∈ C∞(0,∞), dk/(dxk)D being
bounded on (0,∞), for every k ∈ N.

If f ∈ C∞(R) is even, the generalized translation u(x, y) = (τxf)(y),
x, y ∈ (0,∞), is defined as the solution of the Cauchy problem

(�x −�y)u(x, y) = 0,
u(x, 0) = f(x), uy(x, 0) = 0, x ∈ (0,∞).

This generalized translation can be extended to the Lebesgue space
Lp(m), where 1 ≤ p ≤ ∞ and m = Adx is the Haar measure associated
to the hypergroup. Thus, τx is a contraction on Lp(m), for each
x ∈ (0,∞) and 1 ≤ p ≤ ∞.

The #-convolution induced by the translation τx, x ∈ (0,∞), is given,
as usual, through

(f#g)(x) =
∫ ∞

0

f(y)(τxg)(y)A(y) dy,

where f and g are nice functions (for instance, f, g ∈ L1(m)). For
this convolution operation a Young inequality holds. Also, the #-
convolution can be extended to the space of all the bounded complex
measures on (0,∞) [22].
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The pair ([0,∞),#) is a hypergroup on [0,∞) called a Chébli-
Trimèche hypergroup. The characters of the hypergroup ([0,∞),#)
are the functions ϕλ, λ ∈ C, where �ϕλ = (λ2 + ρ2)ϕλ, ϕλ(0) = 1,
ϕ′
λ(0) = 0, λ ∈ C.

We have an integral transformation F associated to the hypergroup
([0,∞),#). This transformation F , called generalized Fourier trans-
form, is defined on L1(m) by

(Ff)(λ) =
∫ ∞

0

ϕλ(x)f(x)A(x) dx, λ ∈ (0,∞).

The inverse of the F-transformation is given, under adequate condi-
tions, by means of

f(x) =
∫ ∞

0

F(f)(λ)ϕλ(x)
dλ

|c(λ)|2 , x ∈ (0,∞),

where c is a continuous and zero free function on [0,∞). The function
c is usually known as a Harish-Chandra function, see [30].

A Plancherel theorem holds for the generalized Fourier transform
[11, Theorem 2.2.13]. Also in [29, Theorem 2.2] a Paley-Wiener type
theorem was established for F-transforms.

Two important special cases of Chébli-Trimèche hypergroups are
the following ones. If A(x) = x2α+1, x ∈ (0,∞), with α > −1/2,
([0,∞),#) reduces to the Bessel-Kingman hypergroup [21] and #
is the Hankel convolution [18, 19, 24]. The Jacobi hypergroup
appears when A(x) = sinh2α+1 x cosh2α+1 x, with α ≥ β ≥ −1/2 and
α �= −1/2 [16, 17]. If G is a noncompact connected real semi-simple
Lie group with finite center and rank one, the spherical functions are
Jacobi functions and the spherical Fourier transformation reduces to
the Jacobi transformation.

Bloom and Xu [12] introduced spaces of Schwartz type (see Section 2
for definitions) on Chébli-Trimèche hypergroups. They investigated the
generalized Fourier transformation on those spaces. Also they started
the study of the #-convolution on the above spaces. Recently the
authors in [4] have investigated the #-convolution and the generalized
Fourier transform F on other new spaces of distributions that are
different from those considered by Bloom and Xu. Our objective in
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this paper is to continue the analysis of the #-convolution operators on
the Schwartz type spaces introduced by Bloom and Xu. This paper is
organized as follows. In Section 2 we recall definitions and fundamental
properties of some function and distribution spaces that will appear
throughout this paper. In Section 3 we study new properties for the
spaces of Bloom and Xu. We describe the pointwise multipliers for these
spaces. The #-convolution is studied on the corresponding dual spaces
in Section 4. We characterize distribution spaces defining convolution
operators on Schwartz type distribution spaces of Bloom and Xu. Our
results are inspired by the classical investigations of Schwartz [25] about
the usual convolution and Euclidean Fourier transform and by the
studies of J.J. Betancor and Marrero [6 8, 23] about the distributional
convolution for Bessel-Kingman hypergroups (the so-called generalized
Hankel convolutions). As it was mentioned above, Bessel-Kingman
hypergroups are special cases of Chébli-Trimèche hypergroups. Thus,
our results can be seen as an extension of the ones obtained by J.J.
Betancor and Marrero. Also, when we consider the special case of
Jacobi hypergroups our results seem to be new and they complete the
important investigations of Flensted-Jensen and Koornwinder [16, 17].

Throughout this paper by C we always denote a positive constant
not necessarily the same in each occurrence.

2. Preliminaries. In this section we present the function and
distribution spaces that will be appear throughout the paper. We recall
some of their properties that will be useful in the sequel.

2.1 Spaces Da and Dm
a , a > 0, m ∈ N. For every a > 0, as in

[29], we denote by Da the space constituted by all those complex and
even functions φ ∈ C∞(R) having support contained in [−a, a]. On Da
is considered the topology associated to the family {γk}k∈N of semi-
norms, where

γk(φ) = max
x∈[−a,a]

∣∣∣∣ d
k

dxk
φ(x)

∣∣∣∣, φ ∈ Da and k ∈ N.

By D we represent the inductive space ∪a>0Da.
In [29, Theorem 7.2] Trimèche characterized, for every a > 0, the

generalized Fourier transform F(Da) of Da as the space La defined as
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follows. An entire and even function Φ is in La if and only if, for every
k ∈ N,

ρak(Φ) = sup
λ∈C

(1 + |λ|2)ke−a|Imλ||Φ(λ)| <∞.

The topology of La is defined by the family {ρak}k∈N of norms.

Let a > 0 and m ∈ N. By Dm
a we denote the space of even functions

φ ∈ C2m(R) having support contained in [−a, a]. On Dm
a we consider

the topology associated to the norm αm defined by

αm(φ) = max
0≤k≤2m

γk(φ), φ ∈ Dm
a .

Note that if b > a and φ ∈ Dm
a , there exists a sequence {φn}n∈N ⊂ Db

such that φn → φ, as n→ ∞, in Dm
b .

Bloom and Xu [12] introduced Fréchet function spaces that are
isomorphic under the generalized Fourier transformation F .

Let 0 < p ≤ 2. The generalized Schwartz space Sp is defined as
follows. An even function φ ∈ C∞(R) is in Sp if and only if

μpk,l(φ) = sup
x∈[0,∞)

(1 + x)lϕ0(x)−2/p

∣∣∣∣ d
k

dxk
φ(x)

∣∣∣∣ <∞

for every k, l ∈ N. We define on Sp the topology associated to the
family {μpk,l}k,l∈N of semi-norms. Thus, Sp is a Fréchet and Montel
space.

The topology of Sp is also generated by the system {ηpk,l}k,l∈N of
semi-norms, where

ηpk,l(φ) = sup
x∈[0,∞)

(1 + x)lϕ0(x)−2/p|�kφ(x)|, φ ∈ Sp

Indeed, according to [12, Lemma 4.18], {μpk,l}k,l∈N defines on Sp a
topology stronger than the one associated to {ηpk,l}k,l∈N. On the other
hand, by analyzing the proof of [12, Proposition 4.24] and taking into
account [12, Theorem 4.27], we can see that the topology defined by
{ηpk,l}k,l∈N is stronger than the one generated by {μpk,l}k,l∈N.

Let ε ≥ 0. A function Φ defined in the region Ωε = {λ ∈ C : |Imλ| ≤
ε} is in Sε if, and only if, the following two conditions hold
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(a) Φ is holomorphic and even in Ω0
ε = {λ ∈ C : |Imλ| < ε} and, for

every k ∈ N, dk/(dλk)Φ can be continuously extended to Ωε, and

(b) τk,l;ε(Φ) = supλ∈Ωε
(1 + |λ|)l|dk/(dλk)Φ(λ)| < ∞, for every

l, k ∈ N.

The space Sε is endowed with the topology generated by the family
{τk,l;ε}k,l∈N of semi-norms. Thus, Sε is a Fréchet space.

Bloom and Xu established that the generalized Fourier transforma-
tion F is an isomorphism from Sp onto S(2/p−1)ρ [12, Theorem 4.27].
The generalized Fourier transformation can be defined on the dual space
S ′
p of Sp by transposition. That is to say, if T ∈ S ′

p, the generalized
Fourier transform FT of T is the element of S ′

(2/p−1)ρ, the dual space
of S(2/p−1)ρ, defined by

(2.1) 〈FT,Fφ〉 = 〈T, φ〉, φ ∈ Sp.

In [4] we introduced for every m ∈ Z, m < 0, the spaces Am and Am,
that will be very useful in our study about Chébli-Trimèche convolution
operators, as follows.

Let m ∈ Z, m < 0. The space Am consists of all those even functions
φ in C∞(R) such that, for every k ∈ N,

αkm(φ) = sup
x∈[0,∞)

(1 + x)m|Δkφ(x)| <∞.

Am is endowed with the topology associated to the family {αkm}k∈N

of semi-norms. Thus, Am is a Fréchet space. It is clear that Δ is a
continuous operator from Am into itself. We proved in [4, Proposition
2.1] that the system {βkm}k∈N of semi-norms, where

βkm(φ) = sup
x∈[0,∞)

(1 + x)m
∣∣∣∣ d

k

dxk
φ(x)

∣∣∣∣, φ ∈ Am and k ∈ N,

generates on Am the same topology as the one defined by {αkm}k∈N.

The space Sp is contained in Am but Sp is not dense in Am, for every
0 < p ≤ 2. Indeed, let φ be in the closure of Sp in Am. There exists
a sequence {φj}j∈N ⊂ Sp such that φj → φ, as j → ∞, in Am. Since
(1+x)mφj(x) → 0, as x→ ∞, for every j ∈ N, also (1+x)mφ(x) → 0,
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as x → ∞. Consider now an even function ψ ∈ C∞(R) such that
ψ(x) = 0, x ∈ (0, 1) and ψ(x) = (1 + x)−m, x ∈ (2,∞). Then,
taking into account that dk/(dxk)

(
A′(x)/A(x)

)
is bounded in (1,∞),

for every k ∈ N [12, p. 93], we deduce that αkm(ψ) <∞, for any k ∈ N.
On the other hand, (1 + x)mψ(x) �→ 0, as x → ∞. Hence, for each
0 < p ≤ 2, ψ ∈ Am and ψ is not in the closure of Sp in Am.

We define the space Am,p as the closure of Sp in Am. Actually, the
space Am,p is not dependent on p, as was proved in [4, Proposition
2.2]. Since Am,p does not depend on 0 < p ≤ 2, in the sequel we will
write Am instead of Am,p for each m ∈ Z, m < 0. By A′

m we denote
the dual space of Am, where m ∈ Z.

It is obvious that Am+1 is continuously contained in Am, where
m ∈ Z and 0 < p ≤ 2. We equip the union space A = ∪m∈ZAm with
the inductive topology. The operator � defines a continuous linear
mapping from the space A into itself.

3. Generalized Fourier transformable Fréchet function
spaces.

3.1 Function spaces Sp, 0 < p ≤ 2. We denote by S∗ the subspace
of the Schwartz space S constituted by all those even functions in S.
If we consider in S∗ the topology induced by S, then by virtue of [12,
Lemma 3.6, (ii)], the mapping φ → ϕ

2/p
0 φ is an isomorphism from S∗

onto Sp. Hence the space of pointwise multiplier of Sp coincides with
the space of pointwise multipliers of S∗. Moreover, by [15, Corollary
4.8, remark ff.], the space S∗ is constituted by all those even functions
φ ∈ C∞(R) such that

γk,l(φ) = sup
x∈[0,∞)

(1 + x)l
∣∣∣∣
(

1
x

d

dx

)k
φ(x)

∣∣∣∣ <∞,

for every l, k ∈ N. Therefore, according to [5, Theorem 2.3], a
function f defined on R is a pointwise multiplier of Sp, that is, the
mapping φ → fφ is continuous from Sp into itself, if and only if,
f ∈ C∞(R) is even and, for every k ∈ N, there exists n = nk such
that supx∈[0,∞)(1 + x2)−nk |(1/xd/dx)kf(x)| < ∞. Also it is not hard
to see that f is a pointwise multiplier of Sp when, and only when, f
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is even and it is a pointwise multiplier of S. The space of pointwise
multipliers of Sp will be denoted by Θ. Note that Θ is not depending
on p. Furthermore, Sp is contained in Θ.

We will represent by L(Sp) the space of the continuous linear map-
pings from Sp into itself. Ls(Sp), respectively Lb(Sp), denotes the space
L(Sp) endowed with the topology of the pointwise convergence, respec-
tively uniform convergence on the bounded sets of Sp. The space Θ
can be seen as a subspace of L(Sp). As in [9, Proposition 1] we can see
that Ls(Sp) and Lb(Sp) induces the same topology on Θ.

Let n, k ∈ N. The space Θn,k consists of all those even functions
f ∈ Cn(R) such that

αn,k(f) = sup
x∈[0,∞)
0≤j≤n

(1 + x2)−k
∣∣∣∣
(

1
x

d

dx

)j
f(x)

∣∣∣∣ <∞.

Θn,k is equipped with the topology defined by the norm αn,k. Thus
Θn,k is a Banach space. It is clear that Θ = ∩n∈N ∪k∈N Θn,k, where
the equality is understood algebraically.

Proposition 3.1. The topology that Ls(Sp), equivalently Lb(Sp), de-
fines on Θ coincides with the projective-inductive topology of ∩n∈N∪k∈N

Θn,k.

Proof. Firstly we prove that the topology that Ls(Sp) induces on Θ
is stronger than the projective-inductive topology of ∩n∈N ∪k∈N Θn,k.

Suppose that A is a bounded set of Θ when we consider on Θ the
topology of the pointwise convergence. Then, for every n ∈ N, there
exist k ∈ N and C > 0 in such a way that

sup
x∈[0,∞)

(1 + x2)−k
∣∣∣∣
(

1
x

d

dx

)n
f(x)

∣∣∣∣ ≤ C, f ∈ A.

Indeed, assume that n ∈ N is such that, for every k ∈ N, there exist
xk ∈ (0,∞) and fk ∈ A such that

(1 + x2
k)

−k
∣∣∣∣
(

1
x

d

dx

)n
fk(x)|x=xk

∣∣∣∣ ≥ k,
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and, for every j ∈ N, 0 ≤ j < n, we can find k ∈ N and C > 0 for
which

sup
x∈[0,∞)

(1 + x2)−k
∣∣∣∣
(

1
x

d

dx

)j
f(x)

∣∣∣∣ ≤ C, f ∈ A.

Suppose that we can choose the sequence {xk}k∈N such that x0 > 1/4
and xk ≤ xk+1 − 1, k ∈ N. We consider an even function φ ∈ C∞(R)
having its support contained in [−1/4, 1/4] and verifying φ(0) = 1. We
also define a function ψ by

ψ(x) =
∞∑
k=0

ϕ0(xk)2/p
φ(x− xk)
(1 + x2

k)k
, x ∈ [0,∞),

and ψ(x) = ψ(−x), x ∈ (−∞, 0). Thus, ψ ∈ C∞(R) and ψ is even.
Moreover, by [12, Lemma 3.4], for every l,m ∈ N, we can write

sup
x∈[0,∞)

ϕ0(x)−2/p(1 + x)l
∣∣∣∣ d

m

dxm
ψ(x)

∣∣∣∣
≤ C sup

z∈[−1/4,1/4]

∣∣∣∣ d
m

dzm
φ(z)

∣∣∣∣
∞∑
k=0

(1 + (xk + 1/4)2)l+2/p

(1 + x2
k)k

<∞,

because xk → ∞, as k → ∞. Hence, ψ ∈ Sp.

On the other hand, Leibniz’s rule leads to

ϕ0(xk)−2/p

∣∣∣∣
(

1
x

d

dx

)n
(fkψ)(x)|x=xk

∣∣∣∣
≥ ϕ0(xk)−2/p

∣∣∣∣ψ(xk)
(

1
x

d

dx

)n
fk(x)|x=xk

∣∣∣∣
− ϕ0(xk)−2/p

n−1∑
j=0

(
n

j

)∣∣∣∣
(

1
x

d

dx

)j
fk(x)|x=xk

(
1
x

d

dx

)n−j
ψ(x)|x=xk

∣∣∣∣
≥ (1 + x2

k)
−k

∣∣∣∣
(

1
x

d

dx

)n
fk(x)|x=xk

∣∣∣∣ − C ≥ k − C.

This contradicts that A is a bounded set in Θ when it is endowed with
the topology induced by Ls(Sp).
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Suppose now that we cannot find a sequence {xk}k∈N as above. Then
there exist l ∈ N, α > 0, C > 0, such that

(1 + x2)−l
∣∣∣∣
(

1
x

d

dx

)n
f(x)

∣∣∣∣ ≤ C, x ≥ α, f ∈ A.

Hence xk ∈ (0, α), for k large enough. We choose an even function
ψ ∈ C∞(R) such that ψ(x) = 1, x ∈ (0, α), and ψ(x) = 0, x ≥ α + 1.
It is clear that ψ ∈ Sp. Moreover, for k large enough,

ϕ0(xk)−2/p

∣∣∣∣
(

1
x

d

dx

)n
(fkψ)(x)|x=xk

∣∣∣∣
≥ ϕ0(xk)−2/p

∣∣∣∣ψ(xk)
(

1
x

d

dx

)n
fk(x)|x=xk

∣∣∣∣
− ϕ0(xk)−2/p

n−1∑
j=0

(
n

j

)∣∣∣∣
(

1
x

d

dx

)j
fk(x)|x=xk

(
1
x

d

dx

)n−j
ψ(x)|x=xk

∣∣∣∣
≥ ϕ0(xk)−2/pk(1 + x2

k)
k − C.

Again, according to [12, Lemma 3.4] we obtain a contradiction because
A is bounded in Θ equipped with the topology of Ls(Sp).

Hence, A is bounded in the inductive space ∪k∈NΘn,k, for every
n ∈ N. Since Θ endowed of the pointwise convergence topology is
bornological, see [9, Proposition 2], we can conclude that the inclusion
i : Θ → ∪k∈NΘn,k is continuous, for every n ∈ N. Therefore, the
topology induced by Ls(Sp) on Θ is stronger than the projective-
inductive topology of ∩n∈N∪k∈NΘn,k, because the projective topology
is the initial topology associated to the inclusions i : Θ → ∪k∈NΘn,k,
n ∈ N.

To see that the projective-inductive topology of ∩n∈N ∪k∈N Θn,k is
stronger than that of the Ls(Sp) topology on Θ, we can proceed as in
[27, Proposition 2.20].

Remark 3.1. We emphasize that the proof of Proposition 3.1 is
different than the one presented in [27, Corollary 3.37] for the space of
multipliers on the Schwartz space S.

By S ′
p we will denote the dual space of Sp. We now obtain a

characterization of the elements of S ′
p that will be very useful in the

sequel.
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Lemma 3.1. Let T be a functional on Sp. Then, the following
properties are equivalent :

(i) T ∈ S ′
p.

(ii) There exist r ∈ N and essentially bounded, with respect to the
Lebesgue measure on (0,∞), functions fk on (0,∞), k = 0, 1, . . . , r,
for which

(3.1) 〈T, φ〉 =
r∑

k=0

∫ ∞

0

(1 + x)rϕ0(x)−2/p d
k

dxk
φ(x)fk(x)dx, φ ∈ Sp.

Proof. It is sufficient to use the Hahn-Banach theorem and standard
duality arguments, [28], by taking into account that, for every j, r ∈ N,
there exists C > 0 such that

μpj,r(φ) ≤ C

∫ ∞

0

(1 + t)r+2/pϕ0(t)−2/p

∣∣∣∣ d
j+1

dtj+1
φ(t)

∣∣∣∣dt φ ∈ Sp.

Let now f be a measurable function on (0,∞) such that
∫ ∞

0

|f(x)|e−(2ρ/p)x(1 + x)−l+2/pA(x) dx <∞,

for some l ∈ N. Then, by proceeding as in [4, p. 272], we can see that
the functional Tf defined on Sp by

(3.2) 〈Tf , φ〉 =
∫ ∞

0

f(x)φ(x)A(x) dx, φ ∈ Sp,

is in S ′
p.

Thus, Sp can be seen as a subspace of S ′
p by identifying φ ∈ Sp with

Tφ ∈ S ′
p. In a similar way, we can prove that the space Θ of multipliers

of Sp is contained in S ′
p, when ρ = 0 or 0 < p ≤ 1 and ρ > 0.

The operator Δ is defined on S ′
p by transposition.

3.2 Function spaces Sε, ε ≥ 0. In the following we characterize the
pointwise multipliers of Sε.



734 J.D. BETANCOR, J.J. BETANCOR AND J.M.R. MÉNDEZ

Proposition 3.2. Let F be a function defined on Ωε. Then, the
next assertions are equivalent :

(i) F is holomorphic and even in Ω0
ε = {λ ∈ C : |Imλ| < ε} and,

for every k ∈ N, (dk/dλk)F can be continuously extended to Ωε, and,
for every k ∈ N, there exists l ∈ N such that

sup
λ∈Ωε

(1 + |λ|)−l
∣∣∣∣ d

k

dλk
F (λ)

∣∣∣∣ <∞.

(ii) FΦ ∈ Sε, for every Φ ∈ Sε.

(iii) The mapping Φ → FΦ is continuous from Sε into itself.

Proof. (i) ⇒ (ii). It is sufficient to note that if k,m ∈ N, then there
exist l ∈ N and C > 0 such that

τk,m;ε(FΦ) = sup
λ∈Ωε

(1 + |λ|)m
∣∣∣∣ d

k

dλk
(FΦ)(λ)

∣∣∣∣ ≤ C
k∑
j=0

τj,m+l;ε(Φ),

for all Φ ∈ Sε.

(ii) ⇒ (iii). It is a straightforward consequence of the closed graph
theorem and the fact that convergence in Sε implies pointwise conver-
gence.

(iii) ⇒ (i). The function Φ(λ) = e−λ
2
, λ ∈ Ωε,is in Sε. Then, FΦ = Ψ

is also in Sε. Hence, F (λ) = Psi(λ)eλ
2
, λ ∈ Ωε, where Ψ ∈ Sε. It is

immediately deduced that F is holomorphic in Ω0
ε and (dk/dλk)F can

be continuously extended to Ωε, for every k ∈ N.

Assume now that (i) does not hold. Then, we can find k ∈ N such
that

sup
λ∈Ωε

(1 + |λ|)−n
∣∣∣∣ d

k

dλk
F (λ)

∣∣∣∣ = ∞,

for every n ∈ N, and there exists l ∈ N for which

sup
λ∈Ωε

(1 + |λ|)−l
∣∣∣∣ d

j

dλj
F (λ)

∣∣∣∣ <∞, j = 0, 1, 2, . . . , k − 1.
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Hence, for every n ∈ N, we can choose λn ∈ Ωε satisfying

(1 + |λn|)−n
∣∣∣∣ d

k

dλk
F (λ)|λ=λn

∣∣∣∣ ≥ n.

Moreover, without loss of generality, we can suppose that |Reλn| ≤
|Reλn+1| − 1, n ∈ N.

Let us define, for every n ∈ N, the function

Φn(λ) =
Φ(λ− λn) + Φ(λ+ λn)

(1 + |λn|)n , λ ∈ Ωε,

where, as above, Φ(λ) = exp(−λ2). Note that, for every m,β ∈ N,

τm,β;ε(Φn) = sup
λ∈Ωε

(1 + |λ|)β
(1 + |λn|)n

∣∣∣∣ d
m

dλm
Φ(λ− λn)

∣∣∣∣
+ sup
λ∈Ωε

(1 + |λ|)β
(1 + |λn|)n

∣∣∣∣ d
m

dλm
Φ(λ+ λn)

∣∣∣∣
≤ 2 sup

λ∈Ω2ε

(1 + |λ| + |λn|)β
(1 + |λn|)n

∣∣∣∣ d
m

dλm
Φ(λ)

∣∣∣∣
≤ C(1 + |λn|)β−n sup

λ∈Ω2ε

(1 + |λ|)β
∣∣∣∣ d

m

dλm
Φ(λ)

∣∣∣∣.
Here C is not dependent on n ∈ N. Hence Φn → 0, as n→ ∞, in Sε.

However, Leibniz’s rule leads to

sup
λ∈Ωε

∣∣∣∣ d
k

dλk
(
F (λ)Φn(λ)

)∣∣∣∣
≥

∣∣∣∣ d
k

dλk
(
F (λ)Φn(λ)

)
|λ=λn

∣∣∣∣
≥

∣∣∣∣ d
k

dλk
F (λ)|λ=λn

∣∣∣∣
∣∣∣Φn(λn)

∣∣∣

−
k−1∑
j=0

(
k

j

)∣∣∣∣ d
j

dλj
F (λ)|λ=λn

∣∣∣∣
∣∣∣∣ d

k−j

dλk−j
Φ(λ)|λ=λn

∣∣∣∣
≥ (1 + |λn|)−n

∣∣∣ dk
dλk

F (λ)|λ=λn

∣∣∣
∣∣∣1 + e−4λ2

n

∣∣∣ − C
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≥ (1 + |λn|)−n
∣∣∣∣ d

k

dλk
F (λ)|λ=λn

∣∣∣∣
(
1 − e−4((Reλ2

n)2−(Imλn)2)
)
− C

≥ 1
2
n− C, n ∈ N.

Therefore, FΦn �→ 0, as n→ ∞, in Sε.

Thus we conclude that (iii) does not hold. The proof is now complete.

We present in the following assertion some important multipliers of
Sε.

Proposition 3.3. For every x ∈ (0,∞) and k, n ∈ N, we have
(∂k+n/∂xk∂λn)ϕλ(x) is a multiplier of Sε, provided that 0 < ε < ρ.

Proof. Since the mapping λ → ϕλ is entire, for every x ∈ (0,∞), we
can write

dn

dλn
ϕλ(x) =

n!
2πi

∫
Cλ

ϕη(x)
(η − λ)n+1

dη, n ∈ N,

where Cλ can be parametrized by η = λ + rλe
it, t ∈ [0,∞), and

rλ = ρ− |Imλ|.
Hence, proceeding as in the proof of [12, Lemma 3.6, (ii)] and of [1,

Proposition 2.3] and according to [4, Propositions 2.2, 2.3], we conclude
that, for certain m ∈ N and for all x ∈ (0,∞) and n, k ∈ N,

∣∣∣∣ ∂
k

∂xk
∂n

∂λn
ϕλ(x)

∣∣∣∣ ≤ C(1 + |λ|)m(ρ− |Imλ|)−n(1 + x)e−(ρ−|Imλ|)x.

Here C > 0 is not dependent on x ∈ (0,∞) and |Imλ| < ρ. Then,

(3.3) sup
λ∈Ωε

(1 + |λ|)−m
∣∣∣∣ ∂

k

∂xk
∂n

∂λn
ϕλ(x)

∣∣∣∣ ≤ C(1 + x), x ∈ (0,∞).

Thus, the proof is finished.

By S ′
ε we will denote the dual space of Sε. In the sequel some special

elements of S ′
ε will be described.
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Let F be a measurable function on (0,∞) such that

∫ ∞

0

|F (y)|(1 + y)−l
dy

|c(y)|2 <∞,

for some l ∈ N. Then, it is not hard to see that [4, p. 273] that the
functional TF defined on Sε by

(3.4) 〈TF ,Φ〉 =
∫ ∞

0

F (y)Φ(y)
dy

|c(y)|2 , Φ ∈ Sε,

is in S ′
ε.

In particular, every Ψ ∈ Sε can be identified with the element
TΨ ∈ S ′

ε. In fact, since |c(y)|−2 ∼ y2α+1, when y is large [30], provided
that α > −1/2, we have

∫ ∞

0

|Ψ(y)| dy

|c(y)|2 <∞.

As it was mentioned in Section 2 the generalized Fourier transfor-
mation is defined on S ′

p by (2.1). By invoking Fubini’s theorem and
taking into account the inversion formula for the generalized Fourier
transformation [12, Theorem 4.27] we can see that

〈TFψ,Fφ〉 = 〈Tψ, φ〉, φ ∈ Sp,

provided that ψ ∈ Sp. Here TFψ and Tψ are given by (3.4) and (3.2),
respectively. Thus, the generalized Fourier transformation on Sp is a
particular case of the transformation defined by (2.1) on S ′

p.

Henceforth, to simplify, we will write Hp instead of S(2/p−1)ρ.

4. The generalized #-convolution on the space S ′
p. Bloom

and Xu [12] have recently started the study of the #-convolution on
the space S ′

p. Specifically, they defined the #-convolution between a
functional in S ′

p and a function in Sp.
Throughout this section we assume that 0 < p ≤ 2. In [12, Lemma

5.2] it was proved that φ#ψ ∈ Sp, provided that φ, ψ ∈ Sp, and also it
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was established that τxφ ∈ Sp, for every φ ∈ Sp and x ∈ (0,∞). Then,
the convolution T#φ of T ∈ S ′

p and φ ∈ Sp is defined by

(4.1) (T#φ)(x) = 〈T, τxφ〉, x ∈ (0,∞).

Note if ψ ∈ Sp, then

Tψ#φ = ψ#φ, φ ∈ Sp,
when Tψ is given by (2.3).

Bloom and Xu proved in [12, Theorem 5.17] that T#φ ∈ C1(0,∞),
for every T ∈ S ′

p and φ ∈ Sp. Also, they established that if T ∈ S ′
p and

φ ∈ Sp, then T#φ ∈ S ′
p and

(4.2) 〈T#φ, ψ〉 = 〈T, φ#ψ〉, ψ ∈ Sp.
From (4.2) it is not hard to see that the interchange formula

(4.3) F(T#φ) = (FT )(Fφ)

holds for every T ∈ S ′
p and φ ∈ Sp, when the equality is understood in

H′
p.

In the following proposition we improve the result obtained in [12,
Theorem 5.17].

Proposition 4.1. Let T ∈ S ′
p and φ ∈ Sp. If ρ > 0 and 1 < p ≤ 2,

then T#φ ∈ Θ.

Proof. Assume that ρ > 0 and 1 < p ≤ 2. Firstly we prove that T#φ
is an even and C∞(R) function.

Since, for every x ∈ (0,∞), the mapping x → ϕλ(x) is even, T#φ is
an even function as well.

By virtue of Lemma 3.1 there exist r ∈ N and essentially bounded
(with respect to the Lebesgue measure on (0,∞)) functions fk on
(0,∞), k = 0, 1, . . . , r, such that

〈T, ψ〉 =
r∑

k=0

∫ ∞

0

fk(y)(1 + y)rϕ0(y)−2/p d
k

dyk
ψ(y) dy, ψ ∈ Sp.
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Then

(T#φ)(x) =
r∑

k=0

∫ ∞

0

fk(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy,

x ∈ (0,∞). Hence, we only need to prove that

(4.4)
∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy ∈ C∞(0,∞),

where f is an essentially bounded function on (0,∞) and r, k ∈ N.
Then, bearing in mind that (τxφ)(y) = F−1(ϕz(x)(Fφ)(z))(y), x, y ∈
(0,∞), we have

(4.5)
dl

dxl

( ∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy

)

=
∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
F−1

(
dl

dxl
ϕz(x)

(Fφ)
(z)

)
(y) dy,

for l ∈ N and all x ∈ (0,∞). The differentiation under the integral
sign is justified because, according to Proposition 3.3, (dl/dxl)ϕz(x) is
a multiplier of Hp, for every x ∈ (0,∞) and l ∈ N.

To finish the proof we will show that

∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy ∈ Θ.

In accordance with Proposition 3.3 the expression (dl/dxl)ϕx(z) is
a multiplier of the space Hp, for every l ∈ N. Hence, by taking into
account again that

(τxφ)(y) = F−1
(
ϕz(x)

(Fφ)
(z)

)
(y),

for every x, y ∈ (0,∞), we find

∣∣∣∣ d
l

dxl

( ∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy

)∣∣∣∣
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≤⊂ nt∞0 |f(y)|(1+y)rϕ0(y)−2/p

∣∣∣∣ d
k

dyk
F−1

((
dl

dxl
ϕx(z)

)(Fφ)
(z)

)
(y)

∣∣∣∣ dy
≤ ess sup |f |

∫ ∞

0

dy

(1 + y)2
μpk,r+2

(
F−1

(
dl

dxl
ϕz(x)

(Fφ)
(z)

))
,

for every x ∈ (0,∞) and l ∈ N.

From [12, Theorem 4.27] and by Proposition 3.3, we get for any
x ∈ (0,∞) and l ∈ N

(4.6)
∣∣∣∣ d

l

dxl

( ∫ ∞

0

f(y)(1+y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy

)∣∣∣∣ ≤ C(1+x).

Consequently,
∫ ∞
0
f(y)(1+y)rϕ0(y)−2/p(dk/dyk)(τxφ)(y) dy ∈ Θ.

The next result is similar to the above one. Now the operator �
replaces the derivative d/dx.

Proposition 4.2. Let T ∈ S ′
p. Then there exists l ∈ N such that for

every φ ∈ Sp and k ∈ N, we have supx∈(0,∞)(1 + x)−l
∣∣�k(T#φ)(x)

∣∣ <
∞, provided that 0 < p ≤ 2 and ρ ≥ 0.

Proof. As in the proof of Proposition 4.1, according to Lemma 3.1,
it is sufficient to prove the property when T ∈ S ′

p is given by

〈T, ψ〉 =
∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
ψ(y) dy, ψ ∈ Sp,

where f is an essentially bounded, with respect to the Lebesgue measure
on (0,∞), function on (0,∞), and r, k ∈ N.

Then, for every φ ∈ Sp and x ∈ (0,∞),we obtain

(T#φ)(x) =
∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
(τxφ)(y) dy.

By virtue of [12, Lemma 3.11], see also Proposition 3.3, the expression
(dj/dxj)ϕλ(x) is a multiplier of the space Hp, for j = 0, 1, 2, provided
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that 1 < p ≤ 2 and ρ > 0 or 0 < p ≤ 2 and ρ = 0. Consequently, since
�x(τxφ)(y) = τx(�φ)(y), x, y ∈ (0,∞), we have

�x(T#φ)(x) = −
(
d2

dx2
+
A′(x)
A(x)

d

dx

)
(T#φ)(x)

=
∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
τx(�φ)(y) dy.

for every x ∈ (0,∞).

Since �φ ∈ Sp, we conclude that

�s
x(T#φ)(x) =

∫ ∞

0

f(y)(1 + y)rϕ0(y)−2/p dk

dyk
τx(�sφ)(y) dy,

where x ∈ (0,∞) and s ∈ N.

By taking into account [12, Theorem 4.27, Lemma 3.4, (iv)], for every
s ∈ N, we can find l ∈ N and C > 0 for which

∣∣�s
x(T#φ)(x)

∣∣ ≤ ess sup |f |
∫ ∞

0

dy

(1 + y)2
μpk,r+2(τx�sφ)

≤ C(1 + x)l,

for all x ∈ (0,∞). Thus the proof is finished.

If T ∈ S ′
p and φ ∈ Sp we can not assure, in general, that T#φ ∈ Sp.

Indeed, if we consider the functional T defined on Sp by

〈T, φ〉 =
∫ ∞

0

ϕ0(y)φ(y)A(y) dy, φ ∈ Sp,

and we recall that A(y) ≤ A(1)yβe2ρy, when x is large enough [12,
(3.5)], then for certain β > 0, by resorting to [12, Lemma 3.4 (iii)], we
get

∣∣∣∣
∫ ∞

0

e−
2ρ
p y(1 + y)−l+2/pϕ0(y)A(y) dy

∣∣∣∣
≤ C

∫ ∞

0

e−(2/p−1)ρy(1 + y)−l+2/p+β+1 dy <∞,



742 J.D. BETANCOR, J.J. BETANCOR AND J.M.R. MÉNDEZ

provided that l > 2/p+ β + 2, with C > 0. Accordingly, T ∈ S ′
p.

On the other hand, we can write, for every φ ∈ Sp and x ∈ (0,∞),

(T#φ)(x) =
∫ ∞

0

ϕ0(y)(τxφ)(y)A(y) dy

= F(τxφ)(0) = ϕ0(x)F(φ)(0)

= ϕ0(x)
∫ ∞

0

ϕ0(y)φ(y)A(y) dy.

Hence, if φ ∈ Sp, φ �≡ 0 and φ ≥ 0, then

ϕ0(x)−2/p|(T#φ)(x)| = ϕ0(x)1−2/p

∫ ∞

0

ϕ0(y)φ(y)A(y) dy �−→ 0,

as x→ ∞. Thus, we have proved that T#φ �∈ Sp.
Our next objective is to describe some elements of S ′

p that define
convolution operators on Sp. We are motivated by the classical results
about convolution operators on the Schwartz space S [25] and by the
studies about Hankel convolution in distribution spaces presented in
[10, 23].

As a consequence of [4, Proposition 2.2] we can complete the results
established in Propositions 4.1 and 4.2.

Proposition 4.3. Let T ∈ S ′
p and ρ > 0. Then, for every φ ∈ Sp,

one has that T#φ ∈ A−2.

Proof. By Proposition 4.1, T#φ ∈ C∞(R) and it is an even function,
for every φ ∈ Sp. Moreover, according to [4, Proposition 2.2], the
inequality (4.6) implies the desired result.

As we will immediately see, the elements of A′, the dual space of A,
give rise to convolution operators on Sp. With this aim, we previously
establish some characterizations of the functionals in A′.

Proposition 4.4. Let T ∈ S ′
p. We list the following statements

concerning T :
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(i) T ∈ A′.

(ii) FT is a pointwise multiplier of Hp.

(iii) For every m ∈ N, there exist l ∈ N and continuous functions fj
on (0,∞), j = 0, 1, . . . , l, such that

(4.7) T =
l∑

j=0

�jfj

and, for every j ∈ N, the function (1 + x)mϕ0(x)−2/pfj(x) is bounded
on (0,∞).

Then, (i) ⇒ (ii) and (ii) ⇒ (iii), whenever ρ = 0 and 0 < p ≤ 2 or
ρ > 0 and 1 ≤ p ≤ 2. Finally, under the assumptions ρ = 0 and
0 < p ≤ 2 or ρ > 0 and 0 < p ≤ 1, we have (iii) ⇒ (i) and (iii) ⇒ (ii).

Proof. Suppose that ρ = 0 and 0 < p ≤ 2 or ρ > 0 and 1 ≤ p ≤ 2.

(i) ⇒ (ii). Assume that T ∈ A′. Then T ∈ A′
m, for every m ∈ Z. In

the sequel, the restriction m < −3 is imposed. There exist r ∈ N and
essentially bounded functions fk on (0,∞), k = 0, 1, . . . , r, for which

〈T, φ〉 =
r∑

k=0

∫ ∞

0

fk(y)(1 + y)m+2�kφ(y) dy, φ ∈ Sp.

Indeed, there exist C > 0 and r ∈ N for which

(4.8) |〈T, φ〉| ≤ C max
0≤k≤r

sup
x∈[0,∞)

(1 + x)m|�kφ(x)|,

where φ ∈ Am.

Let φ ∈ Sp. We can write, for every k ∈ N and x ∈ (0,∞),

(4.9) (1 + x)m�kφ(x) = −
∫ ∞

x

d

dt

(
(1 + t)m�kφ(t)

)
dt,

and

(4.10)
d

dx
φ(x) = − 1

A(x)

∫ x

0

A(t)�φ(t) dt, x ∈ (0,∞).
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By combining (4.9) and (4.10), for every x ∈ (0,∞) and k ∈ N, we
obtain

|(1 + x)m�kφ(x)|
≤

∫ ∞

x

(
m(1 + t)m−1|�kφ(t)| + (1 + t)m

∣∣∣∣ ddt �kφ(t)
∣∣∣∣
)
dt

≤ m

∫ ∞

0

(1 + t)m−1|�kφ(t)| dt

+
∫ ∞

x

(1 + t)m
1

A(t)

∫ t

0

A(z)|�k+1φ(z)| dz dt

≤ C

(∫ ∞

0

(1 + t)m−1|�kφ(t)| dt+
∫ ∞

0

(1 + t)m+2|�k+1φ(t)| dt
)
.

Then, from (4.8) it follows

|〈T, φ〉| ≤ C max
0≤k≤r+1

∫ ∞

0

(1 + t)m+2|�kφ(t)| dt.

Hahn-Banach theorem, by using duality arguments, allows us to obtain
the desired representation for T . Hence, for all φ ∈ Sp, Fubini’s theorem
leads to

〈FT,Fφ〉 =
r∑

k=0

∫ ∞

0

fk(y)(1 + y)m+2�kF−1(Fφ)(y) dy

=
r∑

k=0

∫ ∞

0

fk(y)(1 + y)m+2F−1
(
(λ2 + ρ2)kF(φ)(λ)

)
(y) dy

=
r∑

k=0

∫ ∞

0

(λ2 + ρ2)kF(φ)(λ)

×
∫ ∞

0

fk(y)(1 + y)m+2ϕλ(y) dy
dλ

|c(λ)|2 .

Thus, we get

(4.11)

(FT )(λ) =
r∑

k=0

(λ2 + ρ2)k
∫ ∞

0

fk(y)(1 + y)m+2ϕλ(y) dy, |Imλ| ≤ ρ.
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Then FT is an even function.

Let l ∈ N. If we make use of the representation (4.11) for FT
associated to m ∈ Z satisfying that m + l < −4 and bear in mind
[12, Lemma 3.4 (iv)], we find

∣∣∣∣ d
l

dλl
(FT )(λ)

∣∣∣∣ ≤ C

r∑
k=0

l∑
j=0

∣∣∣∣ d
l−j

dλl−j
(λ2 + ρ2)k

∣∣∣∣
×

∫ ∞

0

|fk(y)|(1 + y)m+l+3e(|Imλ|−ρ)y dy

≤ C
r∑

k=0

l∑
j=0

(1 + |λ|2)kess sup |fk|
∫ ∞

0

(1 + y)m+l+3 dy,

for every λ such that |Imλ| ≤ ρ. Hence, according to Proposition 3.2,
FT is a pointwise multiplier of Hp.

(ii) ⇒ (iii). Let m ∈ N. Set F = FT , where T ∈ S ′
p, and assume

that F is a multiplier of the space Hp. Then, resorting again to
Proposition 3.2, for every k ∈ N exists nk ∈ N for which

sup
|Imλ|≤ρ((2/p)−1)

(1 + |λ|)−nk

∣∣∣∣ d
k

dλk
F (λ)

∣∣∣∣ <∞.

We denote by l a nonnegative integer that will be later specified. Now
we consider the function

G(λ) =
(
(ρ+ 1)2 + λ2

)−l
F (λ), |Imλ| ≤ ρ

(
2
p
− 1

)
.

Thus, G is holomorphic and even in |Imλ| < ρ((2/p) − 1). Moreover,
(dk/dλk)G(λ) can be continuously extended to |Imλ| ≤ ρ((2/p) − 1),
for every k ∈ N.

According to [30, p. 99], |c(λ)|−2 ∼ |λ|2α+1, for large |λ|, provided
that α>−1/2. Hence, if 2l > n0 + 2α+ 2, then

∫ ∞

0

|G(λ)| |ϕλ(x)| |c(λ)|−2dλ <∞,
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x ∈ (0,∞). Moreover, by applying Fubini’s theorem we are led to
∫ ∞

0

φ(x)F−1(G)(x)A(x) dx

=
∫ ∞

0

φ(x)
∫ ∞

0

G(λ)ϕλ(x)
dλ

|c(λ)|2 A(x) dx

=
∫ ∞

0

G(λ)
∫ ∞

0

φ(x)ϕλ(x)A(x) dx
dλ

|c(λ)|2

=
∫ ∞

0

G(λ)F(φ)(λ)
dλ

|c(λ)|2 ,

for all φ ∈ Sp. In other words, we have seen that the inverse Fourier
transform F−1(G) of G as an element of the space H′

p coincides with
the classical inverse Fourier transform of G.

Furthermore, for certain cj,l ∈ R, j = 0, 1, . . . , l, we get

T = F−1
{(

(ρ+ 1)2 + λ2
)l
G(λ)

}
=

l∑
j=0

cj,l�jF−1(G) =
l∑

j=0

�jfj ,

where fj = cj,lF−1G.

We now prove that (1+x)mϕ−2/p
0 (x)F−1(G)(x) is bounded on (0,∞)

provided that l is chosen large enough.

Set H = F−1(G) and define g = F−1
0 (G), where F0 denotes the

Euclidean Fourier transform

F0(g)(y) = G(y) =
1
2

∫ ∞

−∞
e−ixyg(x) dx,

its inverse being supplied by

F−1
0 (G)(x) = g(x) =

1
π

∫ ∞

−∞
eixyG(y) dy.

Note that if l is large enough, then the function g is absolutely
integrable on R. So H = F−1(F0g).

Now we introduce a sequence {fn}n∈N of even and smooth functions
on (0,∞) such that fn(x) = 1, |x| ≤ n and fn(x) = 0, |x| ≥ n + 1, for
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every n ∈ N. Assume also that, for every k ∈ N, there exists Ck > 0
satisfying that ∣∣∣∣ d

k

dxk
fn(x)

∣∣∣∣ ≤ Ck,

for n ∈ N and x ∈ [0,∞).

It is not difficult to find a sequence {fn}n∈N verifying all the above
properties.

We consider the decomposition

g = fng + (1 − fn)g, n ∈ N.

We write gn = (1 − fn)g and define Gn = F0(gn) and Hn = F−1(Gn),
for each n ∈ N. Note that fng = 0 outside [−n − 1, n + 1]. Hence,
according to [29], F−1F0(fng) = 0, outside [−n − 1, n + 1]. Then
Hn = H outside [−n − 1, n + 1]. We have taken into account the
inversion formula for the Fourier transformation.

Let 0 ≤ j ≤ m. Since |c(λ)|−2 ∼ |λ|2α+1, for large |λ| and α > −1/2,
one has

(4.12) sup
x∈[0,1]

ϕ
−2/p
0 (x)xj

∣∣∣∣
∫ ∞

0

G(λ)ϕλ(x)
dλ

|c(λ)|2
∣∣∣∣ ≤ C,

whenever 2l > n0 + 2α+ 2.

Moreover, we can write

(4.13) sup
x∈[n+1,n+2)

ϕ
−2/p
0 (x)xj

∣∣∣∣
∫ ∞

0

G(λ)ϕλ(x)
dλ

|c(λ)|2
∣∣∣∣

≤ Cnj+2e((2/p)−1)ρn sup
λ∈(0,∞)

∣∣(1 + λ2)rGn(λ)
∣∣, n ∈ N,

where r > α+ 1.

Suppose that we can choose l, r ∈ N such that l − n0/2 − α − 1 >
r > α+ 1. Then, for every n ∈ N, well-known operational rules for the
Fourier transform F0 lead to

(1 + λ2)rGn(λ) =
1
2

∫ ∞

−∞
gn(t)

(
1 − d2

dt2

)r
e−itλ dt

=
1
2

∫ ∞

−∞

(
1 − d2

dt2

)r
gn(t)e−itλ dt, λ ∈ (0,∞).
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The last equality can be established by partial integration. Indeed, let
n ∈ N. For every s ∈ N, 0 ≤ s ≤ 2r, since l > n0/2 + α + 1 + r, we
can write

ds

dts
gn(t) =

ds

dts
g(t) =

1
π

∫ ∞

−∞
G(y)(yi)setyi dy, t ≥ n+ 1.

Then, the Riemann-Lebesgue lemma implies that lim|t|→∞(dj/dtj)gn(t)
= 0, j ∈ N, 0 ≤ j ≤ 2r. Consequently, for every n ∈ N, we get

(4.14) sup
λ∈(0,∞)

∣∣(1 + λ2)rGn(λ)
∣∣ ≤ C

r∑
s=0

sup
t∈(0,∞)

(1 + t)2
∣∣∣∣ d

2s

dt2s
gn(t)

∣∣∣∣.
Here C is not dependent on n ∈ N.

By the properties of the functions fn, n ∈ N, mentioned above, from
(4.14), we arrive at

sup
λ∈(0,∞)

∣∣(1 + λ2)rGn(λ)
∣∣ ≤ C

2r∑
s=0

sup
t≥n

(1 + t)2
∣∣∣∣ d

s

dts
g(t)

∣∣∣∣, n ∈ N.

In this way we obtain

nj+2e((2/p)−1)ρn sup
λ∈(0,∞)

∣∣(1 + λ2)rGn(λ)
∣∣

≤ C
2r∑
s=0

sup
t≥n

(1 + t)j+3

∣∣∣∣ d
s

dts
g(t)

∣∣∣∣e((2/p)−1)ρt.

Now, taking into account (4.13), we conclude

(4.15) sup
x∈[1,∞)

ϕ
−2/p
0 (x)xj

∣∣∣∣
∫ ∞

0

G(λ)ϕλ(x)
dλ

|c(λ)|2
∣∣∣∣

≤ C
2r∑
s=0

sup
t∈(0,∞)

(1 + t)j+3

∣∣∣∣ d
s

dts
g(t)

∣∣∣∣e((2/p)−1)ρt.

Let s ∈ N, 0 ≤ s ≤ 2r. By using again operational rules for the
Euclidean Fourier transformation, it follows

(1 + t)j+3 ds

dts

∫ ∞

−∞
eityG(y) dy

= (1 + t)j+3

∫ ∞

−∞
eity(iy)sG(y)dy

=
∫ ∞

−∞
eity

(
1 − 1

i

d

dy

)j+3(
(iy)sG(y)

)
dy, t ∈ [0,∞),



CONVOLUTION OPERATORS ON SCHWARTZ SPACES 749

provided that l is large enough and t ∈ (0,∞). If, in addition, ρ > 0
and 1 ≤ p ≤ 2, by invoking Cauchy integral formula, we obtain

∫ ∞

−∞
eity

(
1 − 1

i

d

dy

)j+3(
(iy)sG(y)

)
dy

=
∫ ∞+i((2/p)−1)ρ

−∞+i((2/p)−1)ρ

eity
(

1 − 1
i

d

dy

)j+3(
(iy)sG(y)

)
dy, t ∈ (0,∞),

when l is sufficiently large.

Hence, we conclude that

sup
t∈(0,∞)

(1 + t)j+3e((2/p)−1)ρt

∣∣∣∣ d
s

dts
g(t)

∣∣∣∣ <∞.

By combining the above estimations we deduce that

sup
x∈(0,∞)

(1 + x)mϕ−2/p
0 (x)

∣∣∣F−1(G)(x)
∣∣∣ <∞,

when l is chosen conveniently large. Thus, (iii) is established.

Assume now ρ = 0 and 0 < p ≤ 2 or ρ > 0 and 0 < p ≤ 1.

(iii) ⇒ (i). Let m ∈ N. Suppose that T ∈ S ′
p and T admits

the representation (4.7), where fj is continuous on (0,∞) and (1 +
x)mϕ−2/p

0 (x)fj(x) is bounded on (0,∞), j = 0, 1, . . . , l. Then, we can
write

〈T, φ〉 =
l∑

j=0

∫ ∞

0

fj(x)�jφ(x)A(x) dx, φ ∈ Sp.

Note that, for every φ ∈ Sp, due to [12, (3.5)], we can infer

|〈T, φ〉| ≤ C
l∑

j=0

∫ ∞

0

|fj(x)|(1 + x)βe2ρx
∣∣�jφ(x)

∣∣ dx

≤ C

l∑
j=0

sup
x∈(0,∞)

(1+x)m|fj(x)|ϕ0(x)−2/p sup
x∈(0,∞)

(1+x)γ−m
∣∣�jφ(x)

∣∣,

for certain C, γ > 0.



750 J.D. BETANCOR, J.J. BETANCOR AND J.M.R. MÉNDEZ

Therefore, for every k ∈ Z, k < 0, by choosing m ∈ N for which
k > γ − m, we get, the functional T is continuous on Sp, when we
consider on Sp the topology of Ak. Under these hypotheses, T can be
extended to Ak as an element of A′

k. Moreover, we have

〈T, φ〉 =
l∑

j=0

∫ ∞

0

fj(x)�jφ(x)A(x) dx, φ ∈ Ak,p,

where fj , j = 0, 1, . . . , l, are associated to m ∈ N chosen as above.

Thus, we conclude that T ∈ A′
k, for every k ∈ Z, k < 0. Definitively,

T ∈ A′.

(iii) ⇒ (ii). Assume that f is a continuous function on (0,∞) such
that (1 + x)mϕ0(x)−2/pf(x) is bounded on (0,∞), where m ∈ N is
such that m > 1 + β + (4/p), β being given as in [12, (3.5)]. Then
f ∈ L1(m). Indeed, according to [12, Lemma 3.4 and (3.5)], we can
write

∫ ∞

0

|f(x)|A(x) dx ≤
∫ ∞

0

(1 + x)−m+β+4/pe2ρx(1−2/p) dx <∞.

Hence, the generalized Fourier transform Ff of f is bounded on the
strip {λ : |Imλ| ≤ ρ}. Moreover f defines an element Tf of S ′

p by

〈Tf , φ〉 =
∫ ∞

0

f(x)φ(x)A(x) dx, φ ∈ Sp.

By invoking the Fubini theorem, we get that

〈FTf ,Fφ〉 = 〈Tf , φ〉, φ ∈ Sp.

Let k ∈ N. Suppose now that T admits the representation (4.7) where,
for every j ∈ N, the function (1+x)mϕ0(x)−2/pfj(x) is continuous and
bounded on (0,∞), with m ∈ N and m > 2 + β + k+ (2/p). Then, we
have

FT =
l∑

j=0

(ρ2 + λ2)jFfj .
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Hence, by differentiation under the integral sign and by [12, Lemma
3.4 (ii), (iv)], one has
∣∣∣∣ d

k

dλk
(FT )(λ)

∣∣∣∣ ≤ C
k∑
s=0

l∑
j=0

∣∣∣∣ d
k−s

dλk−s
(ρ2 + λ2)j

∣∣∣∣
∣∣∣∣ d

s

dλs
(Ffj)(λ)

∣∣∣∣

≤ C

k∑
s=0

l∑
j=0

∣∣∣∣ d
k−s

dλk−s
(ρ2 + λ2)j

∣∣∣∣
×

∫ ∞

0

(1 + x)β+s+1−m+2/p dx, |Imλ| ≤ ρ.

Then, Proposition 3.2 implies that FT is a multiplier of Hp.

Remark 4.1. It is not hard to see that the hypothesis (1 + x)m×
ϕ0(x)−2/pfj(x) is bounded on (0,∞) could be replaced by (1 + x)m×
ϕ0(x)−2/pfj(x) is in the Lebesgue space Lq(0,∞), for each j ∈ N and
1 ≤ q <∞.

As a consequence of Proposition 4.4, we can describe some elements
of S ′

p that define convolution operators on Sp.

Proposition 4.5. Let 0 < p ≤ 2. Suppose that T ∈ S ′
p and that FT

is a multiplier of Hp. Then, the mapping φ→ T#φ is continuous from
Sp into itself.

Proof. Let T ∈ S ′
p such that FT is a multiplier of Hp. According to

(4.3), we can write

F(T#φ) = F(T )F(φ), φ ∈ S ′
p,

in the sense of the equality in H′
p. That is, since FT is a multiplier of

Hp, for every φ, ψ ∈ Sp, we obtain

〈T#φ, ψ〉 = 〈F(T#φ),Fψ〉
= 〈F(T )F(φ),Fψ〉 = 〈F−1

(
F(T )F(φ)

)
, ψ〉.

Hence, [12, Theorem 4.7] implies that, for every φ ∈ Sp, T#φ =
F−1(F(T )F(φ)) ∈ Sp and the mapping φ → T#φ is continuous from
the latter space into itself.
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To simplify in the sequel we will write T ∈ Mp, 0 < p ≤ 2, to say that
T ∈ S ′

p and FT is a multiplier of Hp. According to Proposition 4.4, if
one of the following two conditions

(i) T ∈ A′, and either ρ = 0 and 0 < p ≤ 2 or ρ > 0 and 1 ≤ p ≤ 2,

(ii) T ∈ S ′
p satisfies property (iii) in Proposition 4.4 and ρ = 0 and

0 < p ≤ 2 or ρ > 0 and 0 < p ≤ 1,

holds, then T ∈ Mp.

Next, suppose that T ∈ S ′
p and L ∈ Mp. Then we can define the

convolution T#L of T and L as the functional on Sp given by

(4.16) 〈T#L, φ〉 = 〈T, L#φ〉, φ ∈ Sp.
Note that T#L ∈ S ′

p according to Proposition 4.5.

As was proved by Bloom and Xu [12, Theorem 5.17, (iii)], for every
T ∈ S ′

p and ψ ∈ Sp, one has

〈T#ψ, φ〉 = 〈T, ψ#φ〉, φ ∈ Sp.
Inasmuch as Sp is contained in A′ and in Mp, definition (4.16) can be
seen as an extension of Definition (4.1).

Next we present the main algebraic properties of the #-convolution
defined by (4.16)

Proposition 4.6. Let 0 < p ≤ 2. Assume that T ∈ S ′
p and

L1, L2 ∈ Mp. Then

(i) F(T#L1) = (FT )(FL1).

(ii) The Dirac functional δ ∈ A′ ∩Mp and T#δ = T .

(iii) Δ(T#L1) = (ΔT )#L1 = T#(ΔL1).

(iv) L1#L2 ∈ Mp and L1#L2 = L2#L1.

(v) T#(L1#L2) = (T#L1)#L2.

Proof. To see the interchange formula (i) it is sufficient to note that
from Propositions 4.2, 4.3 and 4.5 we deduce

〈F(T#L1),Fφ〉 = 〈T#L1, φ〉 = 〈T, L1#φ〉
= 〈F(T ),F(L1#φ)〉 = 〈(FT )(FL1),Fφ〉,
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for all φ ∈ Sp. On the other hand, for each φ ∈ Am and m ∈ Z, we
obtain

|〈δ, φ〉| = |φ(0)| ≤ sup
x∈[0,∞)

(1 + x)m|φ(x)|

Therefore, δ ∈ A′. Furthermore, for every φ ∈ Sp, we get

〈Fδ,Fφ〉 = 〈δ, φ〉 = φ(0)

=
∫ ∞

0

ϕλ(0)(Fφ)(λ)
dλ

|c(λ)|2 = 〈ϕλ(0), (Fφ)(λ)〉.

Then, (Fδ)(λ) = ϕλ(0) = 1, |Imλ| ≤ ρ. Hence δ ∈ Mp. Property (i)
now allows us to derive (ii).

Equality (iii) is obtained by using (i) and taking into account that
F(ΔT ) = (λ2 + ρ2)F(T ).

Finally, (iv) and (v) can be deduced from (i).

Our next objective is to prove a converse of Proposition 4.5. Previ-
ously we need to show some results.

We firstly obtain a representation for the fundamental solution of the
operator (1 + Δ)r, for every r ∈ N.

Lemma 4.1. Let l ∈ N. The function hl defined by

hl(x) =
∫ ∞

0

ϕλ(x)(1 + ρ2 + λ2)−l
dλ

|c(λ)|2 , x ∈ R,

is even, bounded, and continuous on R and lies in C∞(R \ {0}) ∩ S ′
p,

provided that l > α+1. Also, for every k ∈ N, there exists lk ∈ N such
that hl ∈ Ck(R), provided that l ≥ lk.

Moreover, if δ denotes the Dirac functional, then

δ = (1 + Δ)lhl,

in the sense of equality in S ′
p, for each 0 < p ≤ 2, when l > α+ 1.

Proof. Since |ϕλ(x)| ≤ 1, x, λ ∈ R, [12, Lemma 3.4, (i)], by taking
into account that |c(λ)|−2 ∼ λ2α+1, when λ is large [30], it is not
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hard to see that hl is an even, bounded and continuous mapping on R,
provided that l > α+ 1. Moreover, if k ∈ N, according to [12, Lemma
3.6, (ii)], we can find lk ∈ N for which hl ∈ Ck(R), when l ≥ lk.

On the other hand, F = F0A, where A represents the Abel trans-
formation defined by [12, (4.9)], see also [29]. The inverse of A is
obtained in [29, Theorem 6.3].

Let x0 ∈ (0,∞). We choose an even function α ∈ C∞(R) such that
α(x) = 0, x ∈ (−x0/4, x0/4), and α(x) = 1, x ∈ (x0/2,∞). We can
write

hl(x) = A−1(αF−1
0 ((1 + ρ2 + λ2)−l))(x), x > x0.

Partial integration allows us to see that the function F−1
0 ((1 + ρ2

+λ2)−l) is in C∞(R\{0}) and that the function αF−1
0 ((1+ρ2+λ2)−l)

is in the Schwartz space on R. Moreover, the function αF−1
0 ((1 + ρ2

+ λ2)−l) is even.

Hence, according to [31, Corollary 6.II.4, (ii)], hl is smooth in
(x0/2,∞) and by [12, Lemma 3.6, (ii)] hl(x) ≤ Ce−ρx(1 + x), for
x ∈ (0,∞). Thus we show that hl ∈ C∞(R \ {0}) and hl ∈ S ′

p.

Let now 0 < p ≤ 2 and φ ∈ Sp. We can write that

〈(1 + Δ)mhl, φ〉
= 〈hl, (1 + Δ)mφ〉
=

∫ ∞

0

hl(x)(1 + Δ)mφ(x)A(x) dx

=
∫ ∞

0

∫ ∞

0

ϕλ(x)(1 + ρ2 + λ2)−m
dλ

|c(λ)|2 (1 + Δ)mφ(x)A(x) dx

=
∫ ∞

0

(1 + ρ2 + λ2)−m
∫ ∞

0

ϕλ(x)(1 + Δ)mφ(x)A(x) dx
dλ

|c(λ)|2

=
∫ ∞

0

ϕλ(0)
∫ ∞

0

ϕλ(x)φ(x)A(x) dx
dλ

|c(λ)|2
= 〈δ, φ〉.

Thus, the proof is finished.

In the following proposition we present families of semi-norms in Da
defining on Da the same topology as {γk}k∈N.
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Lemma 4.2. Let a > 0 and 1 ≤ q ≤ ∞. For every k ∈ N, ηqk is
defined on Da by

ηqk(φ) = ‖Δkφ‖q, φ ∈ Da,
where ‖.‖q denotes the usual norm in the Lebesgue space Lq(0,∞).

The system {ηqk}k∈N of semi-norms is equivalent to {γk}k∈N on Da.

Proof. By taking into account [12, Lemma 4.18], we can see that
{γk}k∈N defines on Da a topology stronger than the one induced in it
by {ηqk}k∈N.

On the other hand, for every k ∈ N, we find

(λ2+ρ2)k(Fφ)(λ) =
∫ a

0

ϕλ(x)Δkφ(x)A(x) dx, λ ∈ C and φ ∈ Da.

Then, according to [12, Lemma 3.4], we can write

|(λ2 + ρ2)k(Fφ)(λ)| ≤ Cea|Imλ|‖Δkφ‖q, λ ∈ C and φ ∈ Da.

Hence,
ρak(Fφ) ≤ Cηqk(φ), φ ∈ Da.

Thus, we have established that the generalized Fourier transformation
is continuous from Da, when we consider on Da the topology associated
to {ηqk}k∈N, into La.

By invoking now [29, Theorem 7.2] we can conclude that the topology
generated by {ηqk}k∈N on Da is stronger than the one induced on it by
{γk}k∈N.

We now establish a converse of Proposition 4.5.

Theorem 4.1. Let T ∈ S ′
p, where 0 < p ≤ 2. If T#φ ∈ Sp, for

every φ ∈ D, then, for each m ∈ N there exist l ∈ N and continuous
functions fj , j = 0, 1, . . . , l, such that

T =
l∑

j=0

Δjfj ,
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and, for every j ∈ N, j = 0, 1, . . . , l, (1+x)mϕ0(x)−2/pfj(x) is bounded
on (0,∞).

Proof. Assume that m ∈ N, m > 2. Let φ ∈ D. Since T#φ ∈ Sp,
one has

sup
x∈(0,∞)

(1 + x)mϕ0(x)−2/p|(T#φ)(x)|

= sup
x∈(0,∞)

|〈(1 + x)mϕ0(x)−2/pτxT, φ〉| <∞.

Hence the set {(1 + x)mϕ0(x)−2/pτxT}x∈(0,∞) is a weakly bounded
subset of D′.

Let a > 0. By using the Hanh-Banach theorem and duality arguments
we can see that there exist θ ∈ N and C > 0 such that, for every
x ∈ (0,∞), there exist fj,x ∈ L∞(0,∞), j = 0, 1, . . . , θ, for which
(4.17)

〈(1 + x)mϕ0(x)−2/pτxT, φ〉 =
θ∑
j=0

∫ ∞

0

fj,x(t)Δjφ(t) dt, φ ∈ Da,

where
∑θ
j=0 ‖fj,x‖∞ ≤ C. Hence, for every x ∈ (0,∞),

(1 + x)mϕ0(x)−2/pτxT

can be continuously extended to Dθ
a. Such an extension is given by

(4.17).

Moreover, if x ∈ (0,∞) and S ∈ (Dθ
a)′ for which

S = (1 + x)mϕ0(x)−2/pτxT

on Da, then S is given in the space Dθ
b by the right-hand side of (4.17),

for every 0 < b < a.

We now choose k ∈ N such that the fundamental solution hk of the
operator (1+Δ)k, obtained in Lemma 4.1, is in C2θ(R). Moreover, we
pick an even function ϕ ∈ C∞(R) such that ϕ(x) = 0, |x| > (3a)/4,
and ϕ(x) = 1, |x| < a/2. The Leibniz rule leads to

(1 + Δ)k(hkϕ) = ϕ(1 + Δ)khk + β,
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where β is in Da. Note also that, according to Lemma 4.1, we get

〈ϕ(1 + Δ)khk, φ〉 = 〈(1 + Δk)hk, φϕ〉 = φ(0), φ ∈ Sp.

Therefore, we can write

(4.18) δ = (1 + Δ)k(hkϕ) − β.

The function hkϕ belongs to Dθ
(3a/4). Consequently, hkϕ ∈ S ′

p and
the generalized Fourier transform F (hkϕ), given by

F(hkϕ)(λ) =
∫ a

0

ϕλ(x)hk(x)ϕ(x)A(x) dx, |Imλ| ≤ ρ(2/p− 1),

is a multiplier of Hp, or, in other words, hkϕ ∈ Mp. Indeed, for every
s ∈ N, by [12, Lemma 3.4, (iv)], we have

(4.19)∣∣∣∣ d
s

dλs
F(hkϕ)(λ)

∣∣∣∣ ≤ C

∫ a

0

|hk(x)| |ϕ(x)|A(x) dx, |Imλ| ≤ ρ(2/p− 1).

Hence, we can define the #-convolution T#(hkϕ) of T and hkϕ,
according to (4.16), as follows:

〈T#(hkϕ), φ〉 = 〈T, (hkϕ)#φ〉, φ ∈ Sp.

Our next objective is to see that

ϕ0(x)−2/p(1 + x)m(T#(hkϕ))(x) =
θ∑
j=0

∫ ∞

0

fj,x(t)Δj(hkϕ)(t) dt.

Since hkϕ ∈ Dθ
(3a/4), there exists a sequence {φν}ν∈N ⊂ Da such that

φν → hkϕ, as ν → ∞, in Dθ
a. Hence, because supx∈(0,∞) ‖fj,x‖ < ∞,

j = 0, . . . , θ, one infers

ϕ0(x)−2/p(1 + x)m(T#φν)(x) −→
θ∑
j=0

∫ ∞

0

fj,x(t)Δj(hkϕ)(t) dt,

as ν → ∞,

uniformly in x ∈ (0,∞).
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Moreover, for every φ ∈ Sp, φν#φ → (hkϕ)#φ, as ν → ∞, in Sp.
Indeed, let φ ∈ Sp. By taking into account [12, Lemma 3.4, (iv)] and
that φν → hkϕ, as ν → ∞, in Dl

a, we can deduce that

(F(φν) −F(hkϕ))F(φ) −→ 0, as ν → ∞,

in Hp.

Hence, by the interchange formula and by [12, Theorem 4.27], we
conclude that

φν#φ −→ (hkϕ)#φ, as ν → ∞,

in Sp.
Thus, we have, for every φ ∈ Sp,

〈T#φν , φ〉 = 〈T, φν#φ〉 −→ 〈T, (hkϕ)#φ〉 = 〈T#(hkϕ), φ〉,
as ν → ∞.

Therefore, we obtain

(4.20)

ϕ0(x)2/p(1 + x)−m
θ∑
j=0

∫ ∞

0

fj,x(t)Δj(hkϕ)(t) dt =
(
T#(hkϕ)

)
(x),

in the sense of equality in S ′
p.

Now, from (4.18) one infers that

T = (1 + Δ)k(T#(hkϕ)) − T#β

=
k∑
s=0

(
k

s

)
Δs(T#(hkϕ)) − T#β.

Since β ∈ Da, we have T#β ∈ Sp, and, in particular,

sup
x∈(0,∞)

ϕ0(x)−2/p(1 + x)m|(T#β)(x)| <∞.

Moreover, by (4.20) it follows that

sup
x∈(0,∞)

ϕ0(x)−2/p(1 + x)m|(T#(hkϕ))(x)| <∞.
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Thus, the proof is complete.

From Propositions 4.4 and 4.5 and Theorem 4.1, we can deduce the
following properties.

Corollary 4.1. Let T ∈ S′
p, where 0 < p ≤ 2 when ρ = 0, and

0 < p ≤ 1 when ρ > 0. The following assertions are equivalent.

(i) The mapping φ→ T#φ is continuous from Sp into itself.

(ii) For every m ∈ N, there exist l ∈ N and continuous functions fj,
j = 0, 1, . . . , l, such that

T =
l∑

j=0

Δjfj ,

and, for every j = 0, 1, . . . , l, (1 + x)mψ−2/p
0 (x)fj(x) is bounded on

(0,∞).

Corollary 4.2. Let T ∈ S′
p, where 0 < p ≤ 2 when ρ = 0, and let

p = 1 when ρ > 0. The following assertions are equivalent.

(i) The mapping φ→ T#φ is continuous from Sp into itself.

(ii) T ∈ A′.

(iii) F ′T is a multiplier of Hp.

(iv) For every m ∈ N, there exist l ∈ N and continuous functions
fj, j = 0, 1, . . . , l, such that

T =
l∑

j=0

Δjfj ,

and, for every j = 0, 1, . . . , l, (1 + x)mψ−2/p
0 (x)fj(x) is bounded on

(0,∞).

Remark 4.2. We do not know at this moment if the results in
Corollaries 4.1 and 4.2 are optimal in ρ and p. This is an open question.
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