ON ABSOLUTE SUMMABILITY FACTORS

E. SAVAŞ

ABSTRACT. The purpose of this paper is to determine the conditions for which $\sum a_n \lambda_{\nu}$ is summable $|T|_s$ whenever $\sum a_n$ is summable $|\overline{N}, p_n|_k$ where T is a lower triangular matrix with positive entries and row sums one. As special cases we obtain inclusion theorems for pairs of weighted mean matrices.

In [5], Sarigöl obtained necessary and sufficient conditions for $|N, p_n|_k \Rightarrow |N, q_n|_s$ for the case $1 \le k \le s$.

The concept of absolute summability of order k was defined by Flett [3] as follows. Let $\sum a_n$ be a given infinite series with partial sums s_n , and let σ_n^{α} denote the nth Cesaro means of order α , $\alpha > -1$, of the sequence $\{s_n\}$. The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \geq 1$, $\alpha > -1$, if

(1)
$$\sum_{n=1}^{\infty} n^{k-1} |\Delta \sigma_{n-1}^{\alpha}|^k < \infty,$$

where, for any sequence $\{b_n\}$, $\Delta b_n = b_n - b_{n+1}$.

In defining absolute summability of order k for weighted mean methods, Bor [1] and others used the definition

(2)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\Delta u_{n-1}|^k < \infty,$$

where

$$u_n := \sum_{\nu=0}^n p_{\nu} s_{\nu}.$$

In using (2) as the definition, it was apparently assumed that the n in (1) represented the reciprocal of the nth main diagonal term of (C, 1).

Copyright ©2003 Rocky Mountain Mathematics Consortium

But this interpretation cannot be correct. For, if it were, then the Cesaro methods (C, α) for $\alpha \neq 1$ would have to satisfy the condition

$$\sum_{n=1}^{\infty} (n^{\alpha})^{k-1} |\Delta_{n-1}^{\alpha}|^k < \infty.$$

However, Fleet [3] stays with n for all values of $\alpha > -1$.

Let T denote a lower triangular matrix with nonzero entries and row sums 1. Define

$$\bar{t}_{n\nu} = \sum_{i=\nu}^{n} t_{\nu i}, \quad n, \nu = 0, 1, \dots$$

and

$$\hat{t}_{n\nu} = \bar{t}_{n\nu} - \bar{t}_{n-1,\nu}, \quad n = 1, 2, \dots$$

It is the purpose of this paper to prove the following generalization of the necessary part of the theorem in [5], using definition (1).

Theorem 1. Let $1 < k \le s < \infty$. Suppose that $\{p_n\}$ is a positive sequence such that $P_n \to \infty$ as $n \to \infty$ and

(3)
$$\sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n P_{n-1}}\right)^k = O\left(\frac{1}{P_{\nu}}\right)^k.$$

If $\sum a_n \lambda_{\nu}$ is summable $|T|_s$ whenever $\sum a_n$ is summable $|\overline{N}, p_n|_k$, then

(i)
$$t_{\nu\nu}\lambda_v = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)\nu^{1/s-1/k}\right)$$

(ii)
$$\sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu})|^{s} = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{s-s/k}\right).$$

Proof. Let $\{t_n\}$ denote the sequence of (\overline{N}, p_n) means of the series $\sum a_n$. Then

(4)
$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu},$$

$$X_n = t_n - t_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^n P_{\nu-1} a_{\nu}; \quad P_{-1} = 0$$

and

$$T_n = \sum_{\nu=0}^n \sum_{i=\nu}^n t_{n\nu} \lambda_{\nu} a_{\nu} = \sum_{\nu=0}^n \bar{t}_{n\nu} \lambda_{\nu} a_{\nu}$$

and

(5)
$$Y_n = T_n - T_{n-1} = \sum_{\nu=0}^n (\bar{t}_{n\nu} - \bar{t}_{n-1,\nu}) \lambda_{\nu} a_{\nu}$$

since $\hat{t}_{n0} = 0$.

We are given that

(6)
$$\sum_{n=1}^{\infty} n^{s-1} |Y_n|^s < \infty$$

whenever

(7)
$$\sum_{n=1}^{\infty} n^{k-1} |X_n|^k < \infty.$$

Now the space of sequences $\{a_n\}$ satisfying (7) is a Banach space if normed by

(8)
$$||X|| = \left(|X_0|^k + \sum_{n=1}^{\infty} n^{k-1} |X_n|^k\right)^{1/k}.$$

We also consider the space of those sequences $\{Y_n\}$ that satisfy (6). This is also a BK-space with respect to the norm

(9)
$$||Y|| = \left(|Y_0|^s + \sum_{n=1}^{\infty} n^{s-1} |Y_n|^s\right)^{1/s}.$$

Observe that (5) transforms the space of sequences satisfying (7) into the space of sequences satisfying (6). Applying the Banach-Steinhaus theorem, there exists a constant K > 0 such that

$$||Y|| \le K||X||.$$

Applying (4) and (5) to $a_{\nu} = e_{\nu} - e_{\nu+1}$, where e_{ν} is the ν th coordinate vector, we have

$$X_{n} = \begin{cases} 0, & \text{if } n < \nu, \\ \frac{p_{\nu}}{P_{\nu}}, & \text{if } n = \nu, \\ \frac{-p_{\nu}p_{n}}{P_{n}P_{n-1}}, & \text{if } n > \nu; \end{cases}$$

and

$$Y_n = \begin{cases} 0, & \text{if } n < \nu, \\ \hat{t}_{n\nu}\lambda_{\nu}, & \text{if } n = \nu, \\ \Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu}), & \text{if } n > \nu. \end{cases}$$

By (8) and (9) it follows that

$$||X|| = \left\{ \nu^{k-1} \left(\frac{p_{\nu}}{P_{\nu}} \right)^k + \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_{\nu} p_n}{P_n P_{n-1}} \right)^k \right\}^{1/k}$$

and

$$||Y|| = \left\{ \nu^{s-1} |t_{\nu\nu} \lambda_{\nu}|^{s} + \sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta_{\nu}(\hat{t}_{n\nu} \lambda_{\nu})|^{2} \right\}^{1/s},$$

recalling that $\hat{t}_{\nu\nu} = \bar{t}_{\nu\nu} = t_{\nu\nu}$.

Using (10) and (3),

$$\nu^{s-1}|t_{\nu\nu}\lambda_{\nu}|^{s} + \sum_{n=\nu+1}^{\infty} n^{s-1}|\Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu})|^{s}$$

$$\leq K^{s} \left(\nu^{k-1} \left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} + \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_{\nu}p_{n}}{P_{n}P_{n-1}}\right)^{k}\right)^{s/k}$$

$$\leq K^{s} \left(\nu^{k-1} \left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} + \left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}\right)^{s/k}$$

$$= O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)^{s/k}.$$

The above inequality will be true if and only if each term on the left-hand side is $O((p_{\nu}/P_{\nu})^k \nu^{k-1})^{s/k}$. Taking the first term

$$\nu^{s-1}|t_{\nu\nu}\lambda_{\nu}|^{s} = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}\nu^{k-1}\right)^{s/k}$$
$$|t_{\nu\nu}\lambda_{\nu}|^{s} = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s}\nu^{1-s/k}\right)$$
$$|t_{\nu\nu}\lambda_{\nu}| = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s}\nu^{1-s/k}\right)^{1/s}$$
$$= O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)\nu^{1/s-1/k}\right),$$

which verifies that (i) is necessary.

Using the second term we have

$$\sum_{n=\nu+1}^{\infty} n^{s-1} |\Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu})|^{s} = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)^{s/k}$$
$$= O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{s-s/k}\right),$$

which is condition (ii).

Applications.

Corollary 1. Suppose that $\{p_n\}, \{q_n\}$ are positive sequences with $\{p_n\}$ satisfying $P_n \to \infty$ and condition (3). If $\sum a_n \lambda_n$ is summable $|\overline{N}, q_n|_s$, whenever $\sum a_n$ is summable $|\overline{N}, p_n|_k$, then

(i)
$$\lambda_{\nu} = O\left(\frac{p_{\nu}Q_{\nu}}{q_{\nu}P_{\nu}}\right) (\nu^{1/s-1/k}).$$

$$(ii) |\Delta_{\nu}(Q_{\nu-1}\lambda_{v})|^{s} \left(\sum_{n=\nu+1}^{\infty} n^{s-1} \left(\frac{q_{n}}{Q_{n}Q_{n-1}} \right)^{s} \right) = O\left(\left(\frac{p_{\nu}}{P_{\nu}} \right)^{s} \nu^{s-s/k} \right).$$

Proof. Apply the theorem with $T = (t_{n\nu})$ a weighted mean matrix (\overline{N}, q_n) . It is easy to see that

$$\hat{t}_{n\nu} = -\frac{q_n Q_{\nu-1}}{Q_n Q_{n-1}}$$

1484 E. SAVAŞ

and

$$\Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu}) = \hat{t}_{n\nu} - \hat{t}_{n,\nu+1} = -\frac{q_n}{Q_n Q_{n-1}} \Delta(Q_{\nu-1}\lambda_{\nu}).$$

Corollary 2. Let $\{p_n\}$ be a positive sequence satisfying $P_n \to \infty$ and (3). If $\sum a_n \lambda_n$ is summable, $|T|_k$ whenever $\sum a_n$ is summable $|\overline{N}, p_n|_k$, $k \ge 1$, then

(i)
$$t_{\nu\nu}\lambda_{\nu} = O\left(\frac{p_{\nu}}{P_{\nu}}\right)$$

$$\text{(ii)} \sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_{\nu}(\hat{t}_{n\nu}\lambda_{\nu})|^k = O\bigg(\bigg(\frac{p_{\nu}}{P_{\nu}}\bigg)^k \nu^{k-1}\bigg).$$

To prove Corollary 2, simply set s = k in Theorem 1.

Corollary 3. Suppose that $\{p_n\}, \{q_n\}$ are positive sequences with $\{p_n\}$ satisfying $P_n \to \infty$ and condition (3). If $\sum a_n \lambda_n$ is summable $|\overline{N}, q_n|_k$ whenever $\sum a_n$ is summable $|\overline{N}, p_n|_k$, $k \ge 1$, then

(i)
$$\lambda_{\nu} = O\left(\frac{p_{\nu}Q_{\nu}}{q_{\nu}P_{\nu}}\right)$$

(ii)
$$|\Delta_{\nu}(Q_{\nu-1}\lambda_{\nu})|^k \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{q_n}{Q_n Q_{n-1}}\right)^k = O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^k \nu^{k-1}\right).$$

To prove Corollary 3, simply set s = k in Corollary 1.

Acknowledgments. This paper was written while the author was a visiting professor at Indiana University, Bloomington, IN. The author offers his sincerest gratitude to Professor B.E. Rhoades, for his kind interest and valuable advice in the preparation of this paper.

REFERENCES

- ${\bf 1.}$ H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. ${\bf 98}$ (1985), 147–149.
- 2. ——, On absolute weighted mean summability methods, Bull. London Math. Soc. 25 (1993), 265–268.
- 3. T.M. Flett, On an extention of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113–141.

- $\bf 4.$ B.E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. $\bf 238$ (1999), 82–90.
- ${\bf 5.}$ M.A. Sarigöl, On inclusion relations for absolute weighted mean summability, J. Math. Anal. Appl. ${\bf 181}$ (1994), 762–767.

YÜZÜNCÜ YIL UNIVERSITY, VAN, TURKEY $E\text{-}mail\ address:}$ ekremsavas@yahoo.com