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ON CONTINUOUS SOLUTIONS OF A
FUNCTIONAL EQUATION OF ITERATIVE TYPE

ZEQING LIU AND JEONG SHEOK UME

ABSTRACT. Properties of continuous solutions of the func-
tional equation

∑n

i=1
λif

2i−1(x) = F (x) are discussed. Un-

der some conditions we prove the existence, uniqueness and
stability of the continuous solutions of the equation.

1. Introduction. The iterative equation

(1.1) fn(x) = F (x),

is an important form of functional equations, where f : I = [a, b] → I
is an unknown function, fn denotes the n-th iterate of f . Abel
[1], Bödewadt [2], Dubbey [4], Fort [6], Kuczma [7, 8] and others
established the existence of solutions for equation (1.1). It is well known
that equation (1.1) has a continuous solution for any n if F is a strictly
increasing continuous function and equation (1.1) has no continuous
solutions for even n if F is a strictly decreasing continuous function.
Recently, a few elegant results for equation

(1.2)
n∑

i=1

λif
i(x) = F (x)

have been obtained in [3] and [9 12]. In particular, Zhang [10,11]
discussed the existence, uniqueness and stability of continuous solutions
of equation (1.2), where F is a strictly increasing continuous function
in [a, b] and has fixed points a, b.
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The purpose of this paper is to study the properties of continuous
solutions of the functional equation

(1.3)
n∑

i=1

λif
2i−1(x) = F (x),

where F is a strictly decreasing continuous function in [a, b], n ≥ 2 and

(1.4) λ1 ∈ (0, 1), λ2, λ3, . . . , λn ≥ 0, and
n∑

i=1

λi = 1.

Under some conditions we prove the existence, uniqueness and stability
of continuous solutions of equation (1.3).

Throughout this paper, let R = (−∞,∞), I = [a, b] ⊆ R and N
denote the set of all positive integers. iI stands for the identity mapping
on I. For X,Y ⊆ R, C0(X,Y ) denotes the set of all continuous
functions from X into Y . Obviously, (C0(I, R), ‖ · ‖0) is a Banach
space, where ‖f‖0 = max{|f(x)| : x ∈ I} for any f ∈ C0(I, R). Given
r, s > 0, let

A(r, s) = {F : F ∈ C0(I, I), F (a) = b, F (b) = a and (1.5) is satisfied},
B(I, s) = {t : t ∈ C0(I, I), t(a) = b, t(b) = a and (l.6) is satisfied},

(1.5) r(y − x) ≤ F (x)− F (y) ≤ λ1s(y − x)

for all x, y ∈ I with x < y, and

(1.6) 0 ≤ t(x)− t(y) ≤ s(y − x)

for all x, y ∈ I with x < y.

2. The existence and uniqueness of continuous solutions.
Our main results are as follows:

Theorem 2.1. Suppose that F is in A(r, s) and (1.4) holds. Then
equation (1.3) has a solution in B(I, s).
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Proof. It is clear that φ 
= B(I, s) ⊆ C0(I, I) ⊆ C0(I, R). Set

(2.1) hg(x) =
n∑

i=1

λig
2i−2(x)

for any g ∈ B(I, s) and x ∈ I, where g0 = iI . Note that g2i−2(a) =
a, g2i−2(b) = b, and

(2.2)
0 ≤ g2i(y)− g2i(x) ≤ s

(
g2i−1(x)− g2i−1(y)

)
≤ s2

(
g2i−2(y)− g2i−2(x)

) ≤ · · · ≤ s2i(y − x)

for any g ∈ B(I, s), x, y ∈ I with x < y, and i ∈ N . Using (2.1) and
(2.2), we conclude easily that hg(a) = a, hg(b) = b, hg ∈ C0(I, I) and
for all x, y ∈ I with x < y,

(2.3)

0 < λ1(y − x) ≤ hg(y)− hg(x)

=
n∑

i=1

λi

(
g2i−2(y)− g2i−2(x)

)

≤
n∑

i=1

λis
2i−2(y − x) ≤ m(y − x),

where m = max{s2i−2 : 1 ≤ i ≤ n}. Thus (2.3) ensures that

(2.4)
1
m
(y − x) ≤ h−1

g (y)− h−1
g (x) ≤ 1

λ1
(y − x)

for all x, y ∈ I with x < y. Define a mapping D : B(I, s)→ B(I, s) by

(2.5) D
(
g(x)

)
= h−1

g F (x)

for any g ∈ B(I, s) and x ∈ I, where F ∈ A(r, s). Then D(g(a)) =
h−1

g F (a) = h−1
g b = b,D(g(b)) = a, and from (2.4) and (2.5) we have

(2.6)

0 <
1
m

r(y − x) ≤ 1
m

(
F (x)− F (x)

)
≤ D

(
g(x)

)−D
(
g(y)

)
= h−1

g F (x)− h−1
g F (y)

≤ 1
λ1

(
F (x)− F (y)

) ≤ s(y − x)
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for all x, y ∈ I with x < y. That is, D(B(I, s)) ⊆ B(I, s). We
claim that D is continuous in B(I, s). For any g, t ∈ B(I, s), let
u = D(g), v = D(t) and k ∈ N . By virtue of (1.6), we have

(2.7)

‖uk − vk‖0 ≤ max{|uuk−1(x)− uvk−1(x)| : x ∈ I
}

+max
{|uvk−1(x)− vvk−1(x)| : x ∈ I

}
≤ s‖uk−1 − vk−1‖0 + ‖u− v‖0

≤ s
(
s‖uk−2 − vk−2‖0 + ‖u− v‖0

)
+ ‖u− v‖0

≤ s2‖uk−2 − vk−2‖0 + s‖u− v‖0 + ‖u− v‖0

≤ · · ·

≤
k∑

i=1

si−1‖u− v‖0.

In view of(1.5), we have

(2.8)
1
λ1s

(y − x) ≤ F−1x− F−1y ≤ 1
r
(y − x)

for all x, y ∈ I with x < y. From (2.5), (2.6), (2.1), (2.7) and (2.8), we
conclude that
(2.9)

‖D(g)−D(t)‖0 = ‖u− v‖0 = ‖u− uu−1v‖0

≤ s‖iI − u−1v‖0 = s max
{|iI(x)− u−1v(x)| : x ∈ I

}
= s max

{|v−1(y)− u−1(y)| : y = v(x) and x ∈ I
}

= s‖u−1 − v−1‖0 = s‖F−1hg − F−1ht‖0

≤ s

r
‖hg − ht‖0 ≤ s

r

n∑
i=2

λi‖g2i−2 − t2i−2‖0

≤ s

r

n∑
i=2

(
λi

2i−2∑
k=1

sk−1

)
‖g − t‖0.

That is, D is continuous in B(I, s). We now assert that B(I, s)
is a compact convex subset of C0(I, R). Given p, q ∈ B(I, s) put
w = cp+ (1− c)q for c ∈ [0, 1]. Then w(a) = b, w(b) = a, w ∈ C0(I, I)
and

(2.10)
0 ≤ w(x)− w(y) = c

(
p(x)− p(y)

)
+ (1− c)

(
q(x)− q(y)

)
≤ cs(y − x) + (1− c)s(y − x) = s(y − x)
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for any x, y ∈ I with x < y. Hence w ∈ B(I, s). That is, B(I, s) is
convex. It is easy to verify that B(I, s) is closed from the definition
of B(I, s). Let {tn}n∈N be a sequence in B(I, s). Since ‖tn‖0 ≤
max{|a|, |b|} for all n ∈ N, so {tn}n∈N is uniformly bounded on I.
Note that for any ε > 0, there exists δ = ε/s > 0 such that

|tn(x)− tn(y)| ≤ s|x− y| < ε

for all n ∈ N and x, y ∈ I with |x − y| < δ. Therefore, {tn}n∈N

is equicontinuous in I. It follows from the Ascoli-Arzela lemma that
there is a uniformly convergent subsequence of {tn}n∈N . Thus B(I, s)
is sequentially compact. Consequently, B(I, s) is a compact subset
of the Banach space C0(I, R). It follows from Schauder’s fixed point
theorem that there exists f ∈ B(I, s) satisfying

f(x) = D
(
f(x)

)
= h−1

f F (x)

for all x ∈ I. That is,

n∑
i=1

λi f
2i−1(x) = hff(x) = F (x)

for all x ∈ I. This completes the proof.

We now give sufficient conditions for the uniqueness of the continuous
solution of equation (1.3).

Theorem 2.2. Suppose that F is in A(r, s) and (1.4) holds. Assume
that the following condition

(2.11) (1− λ1)
2n−2∑
k=1

sk −
n−1∑
i=2

( i∑
k=2

λk

)(
s2i−1 + s2i

)
< r

is satisfied, where n ∈ N − {1, 2}. Then equation (1.3) has a unique
solution in B(I, s).
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Proof. Let D be as in the proof of Theorem 2.1 and n ∈ N − {1, 2}.
It follows from (2.9) and (2.11) that

‖D(g)−D(t)‖0

≤ s

r

n∑
i=2

(
λi

2i−2∑
k=1

sk−1

)
‖g − t‖0

=
s

r

[( n∑
i=2

λi

)2n−2∑
k=1

sk−1+
n−1∑
i=2

( i∑
k=2

λk

)( 2i−2∑
k=1

sk−1−
2i∑

k=1

sk−1

)]
‖g−t‖0

=
1
r

[(
1− λ1

) 2n−2∑
k=1

sk −
n−1∑
i=2

( i∑
k=2

λk

)(
s2i−1+s2i

)]‖g−t‖0

< ‖g − t‖0,

for all distinct g, t ∈ B(I, s). That is, D is contractive from a compact
metric space B(I, s) into itself. Theorem 1 of Edelstein [5] ensures that
D has a unique fixed point in B(I, s). Therefore, equation (1.3) has a
unique solution in B(I, s). This completes the proof.

Theorem 2.3. Assume that F is in A(r, s) and (l.4) holds. If n = 2
and

(2.12) (1− λ1)s(1 + s) < r,

then equation (1.3) has a unique solution in B(I, s).

Proof. Let D be as in the proof of Theorem 2.1 and n = 2. It follows
from (2.9) and (2.12) that

‖D(g)−D(t)‖0 ≤ s

r
λ2(1 + s)‖g − t‖0 < ‖g − t‖0

for all distinct g, t ∈ B(I, s). The rest of the proof is identical with the
proof of Theorem 3.2. This completes the proof.

From Theorem 2.2 , we have
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Corollary 2.1. Assume that F is in A(r, s) and (1.4) holds. If the
following condition

(2.13) (1− λ1)
2n−2∑
k=1

sk < r, n ∈ N − {1, 2}

is satisfied, then equation (1.3) has a unique solution in B(I, s).

Next we consider the existence and uniqueness of the solution of the
functional equation

(2.14) −c0(b+ a− x) +
n∑

k=1

ck f
2k−1(x) = 0, x ∈ I,

where n ∈ N − {1} and the ck’s are given real numbers satisfying the
condition
(2.15)

n∑
k=1

ck = c0, 1 <
c0
c1

< 21/(2n−2),
ck

c0
≥ 0 for all k∈{2, 3, . . . , n}.

Theorem 2.4. The solution of equation (2.14) which is continuous
and decreasing in I, and maps a, b into b, a, respectively, is only b+a−x.

Proof. Obviously b+a−x belongs to B(I, s) for all s ≥ 1 and it is also
a solution of equation (2.14). Set λk = ck/c0 for each k ∈ {2, 3, . . . , n},
F (x) = b + a− x for all x ∈ I and r = 1 = λ1s. Then F (x) ∈ B(I, s),
(1.4) holds and equation (2.14) is changed into the form

(2.16)
n∑

k=1

λk f
2k−1(x) = F (x), x ∈ I.

Suppose that there exists a decreasing and continuous solution f(x) of
equation (2.16) with f(a) = b and f(b) = a. For any x, y ∈ I with
x < y, by (2.16) we have

y − x = (b+ a− x)− (b+ a− y)

=
n∑

k=1

λk

(
f2k−1(x)− f2k−1(y)

)
≥ λ1

(
f(x)− f(y)

) ≥ 0,
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which implies that

0 ≤ f(x)− f(y) ≤ 1
λ1
(y − x) = s(y − x).

That is, f ∈ B(I, s). We now consider two cases.

Case 1. Suppose that n ∈ N − {1, 2}. It follows from (2.15) that

(1− λ1)
2n−2∑
k=1

sk =
(
1− 1

s

) 2n−2∑
k=1

sk = s2n−2 − 1

=
(
c0
c1

)2n−2

− 1 < 1 = r.

Case 2. Suppose that n = 2. Then (2.15) implies that

(1− λ1)s(1 + s) =
(
1− 1

s

)
s(1 + s) = s2 − 1 = r.

Thus Corollary 2.1 and Theorem 2.2 ensure that equation (2.16) for
each n ∈ N − {1} has a unique solution in B(I, s). Therefore, the
continuous and decreasing solution of equation (2.14) which maps a, b
into b, a, respectively, is only f(x) = b + a − x. This completes the
proof.

3. The stability of continuous solution.

Lemma 3.1. Let f and g be bijections from I into itself. Suppose
that there is a positive constant c satisfying the following condition

(3.1) |f(x)− f(y)| ≤ c|x− y|

for all x, y ∈ I. Then

‖f − g‖0 ≤ c‖f−1 − g−1‖0.
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Proof. Note that ff−1 = iI and g−1(I) = I. It follows from (3.1)
that

‖f − g‖0 = ‖f − ff−1g‖0 ≤ c‖iI − f−1g‖0

= c max
{|iI(x)− f−1g(x)| : x ∈ I

}
= c max

{|g−1(y)− f−1(y)| : y ∈ I
}

= c‖f−1 − g−1‖0.

This completes the proof.

Now we establish the conditions to guarantee the stability of the
continuous solution of equation (1.3)

Theorem 3.1. Assume that (1.4) and (2.11) hold. Then the solution
of equation (1.3) in B(I, s) is continuously dependent on the given
function F ∈ A(r, s).

Proof. Let F and G be arbitrary elements in A(r, s). Theorem 2.2
ensures that there exist f and g in B(I, s) such that

(3.3) f(x) = h−1
f F (x) and g(x) = h−1

g G(x)

for each x ∈ I. In view of (2.8), we conclude that

(3.4) max
{∣∣F−1(x)− F−1(y)

∣∣, ∣∣G−1(x)−G−1(y)
∣∣} ≤ 1

r
|x− y|

for all x, y ∈ I. Lemma 3.1 and (3.4) yield that

(3.5) ‖F−1 −G−1‖0 ≤ 1
r
‖F −G‖0.

Using Lemma 3.1 and (2.6), we have

(3.6) ‖f − g‖0 ≤ s‖f−1 − g−1‖0.

It follows from (3.4), (3.5) and (3.6) that

(3.7)

‖f − g‖0 ≤ s‖f−1 − g−1‖0 = s‖F−1hf −G−1hg‖0

≤ s‖F−1hf − F−1hg‖0 + s‖F−1hg −G−1hg‖0

≤ s

r
‖hf − hg‖0 +

s

r
‖F −G‖0.
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Thus (2.5), (2.7) and (3.3) ensure that

(3.8) ‖hf − hg‖0

≤
n∑

i=2

λi‖f2i−2 − g2i−2‖0

≤
n∑

i=2

(
λi

2i−2∑
k=1

sk−1

)
‖f − g‖0

=
[
(1−λ1)

2n−2∑
k=1

sk−1 −
n−1∑
i=2

(
i∑

k=2

λk

)(
s2i−2 − s2i−1

)]‖f−g‖0.

It follows from (3.7) and (3.8) that

‖f − g‖0

≤ s

r

[
(1−λ1)

2n−2∑
k=1

sk−1 −
n−1∑
i=2

( i∑
k=2

λk

)(
s2i−2 + s2i−1

)]‖f−g‖0

+
s

r
‖F −G‖0,

which implies that

‖f − g‖0 ≤ s

rm
‖F −G‖0,

where

m = 1− 1
r

[
(1− λi)

2n−2∑
k=1

sk −
n−1∑
i=2

( i∑
k=2

λk

)(
s2i−1 + s2i

)]
> 0.

That is,the solution of equation (1.3) in B(I, s) is continuously depen-
dent on the given function in A(r, s). This completes the proof.

Theorem 3.2. Assume that (1.4) and (2.12) hold for n = 2. Then
the solution of equation (1.3) in B(I, s) is continuously dependent on
the given function F ∈ A(r, s).

Proof. Let F and G be arbitrary elements in A(r, s). Theorem 2.3
ensures that there exist f and g in B(I, s) satisfying (3.3) As in the
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proof of Theorem 3.1, we infer that

‖f − g‖0 ≤ s

r
‖hf − hg‖0 +

s

r
‖F −G‖0

≤ s

r
λ2(1 + s)‖f − g‖0 +

s

r
‖F −G‖0,

which implies that

‖f − g‖0 ≤ s

rq
‖F −G‖0,

where
q = 1− s

r
(1 + s)λ2 > 0.

That is, the solution of equation (1.3) in B(I, s) is continuously depen-
dent on the given function in A(r, s). This completes the proof.

4. Examples. In this section we give two examples in support of
our results.

Example 4.1. Let r ∈ (0, 1) be fixed and I = [0, 1]. Define F : I → I
by

F (x) = 1 + (2r − 3)x+ 3(1− r)x2 + (r − 1)x3 for all x ∈ I.

Then F (0) = 1, F (1) = 0, and for x, y ∈ I

F (x)−F (y) = (2r− 3)(x− y) + 3(1−r)(x2 − y2) + (r − 1)(x3 − y3)
= (x−y)

[
2r− 3 + 3(1−r)(x+ y) + (c− 1)(x2 + xy + y2)

]
= (y−x)

{
r + (1−r)[3− 3(x+ y) + x2 + xy + y2]

}
= (y−x)

{
r + (1−r)[(1− x)2 + (1− x)(1− y) + (1− y)2]

}
,

which implies that

r(y − x) ≤ F (x)− F (y) ≤ (3− 2r)(y − x)

for all x, y ∈ I with x < y. Therefore F ∈ A (r, (3− 2r)/(λ1)). Theo-
rem 2.1 ensures that equation (1.3) has a solution inB (I, (3− 2r)/(λ1)).
Now suppose that n = 2. Note that

(1− λ1)
3− 2r
λ1

(
1 +

3− 2r
λ1

)
< r
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is equivalent to

(3− r)λ2
1 − 2(r − 1)(3− 2r)λ1 − (3− 2r)2 > 0.

Thus for

λ1 ∈
(
(3− 2r)(r − 1 +√

4− 3r + r2 )
3− r

, 1
)
,

by Theorem 2.3 we conclude that equation (1.3) with n = 2 has exactly
one solution in B (I, (3− 2r)/(λ1)).

Example 4.2. Let I = [0, c], F (x) = t(ec−x − 1) for all x ∈ I, and
c = t(ec − 1) > 0, where t ∈ (0, 1) is fixed. Then

F (c) = 0, F (0) = t(ec − 1) = c.

Given x, y ∈ I with x < y, by the mean value theorem there exists
ξ ∈ (x, y) such that

t(y − x) ≤ F (x)− F (y) = −tec−ξ(x− y) ≤ tec(y − x).

Since

lim
λ→1−

λ = 1 > 1− 1
ec(1 + tec)

= lim
λ→1−

[
1− t

((tec)/λ) [1 + ((tec)/λ)]

]
,

so there exists p ∈ (0, 1) satisfying for all λ ∈ [p, 1),

λ > 1− t

((tec)/λ) [1 + ((tec)/λ)]
.

Thus F belongs to A [t, ((tec)/λ1)] for any λ1 ∈ [p, 1). It follows from
Theorem 3.2 that the following equation

λ1f(x) + (1− λ1)f3(x) = F (x), λ1 ∈ [p, 1)

has a unique solution in B [I, ((tec)/λ1)] and it is continuously depen-
dent on

F (x) = t(ec−x − 1).
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