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A REMARK ON DISCRETE QUADRATIC FUNCTIONALS
WITH SEPARABLE ENDPOINTS

ROMAN HILSCHER AND VERA ZEIDAN

ABSTRACT. A characterization of the positivity of a dis-
crete quadratic functional with separable state endpoint con-
straints is presented in terms of conjugate intervals to 0, var-
ious conjoined bases of the associated linear Hamiltonian dif-
ference system, and solutions of the implicit and explicit Ric-
cati difference equations. The boundary conditions are in the
form of either equalities or (strict) inequalities. Three sets of
results are derived under different underlying assumptions.

1. Introduction. Consider the discrete quadratic functional

I(η, q) := ηT
0 Γ0η0 + ηT

N+1ΓηN+1 +
N∑

k=0

{ηT
k+1Ckηk+1 + qT

k Bkqk}

subject to ∆ηk = Akηk+1 + Bkqk, k ∈ [0, N ], and the boundary
conditions

(1) M0η0 = 0, MηN+1 = 0.

The minimization problem for I will be denoted by (P). This type
of functional could be regarded as the second variation of a discrete
nonlinear control problem with separated state endpoints. Therefore,
studying the positivity of the quadratic form I would result in suffi-
ciency optimality conditions for nonlinear problems, see [6, 7, 8]. The
positivity of discrete quadratic functionals has been studied in [1, 2,
3, 4]. In [2, 4], the positivity of I was characterized in terms of a
specific conjoined basis, that is, the principal solution of the associate
linear Hamiltonian difference system. Furthermore, this characteriza-
tion was also done in terms of the augmented implicit Riccati difference
equation, see [2, Theorem 3] and [4, Theorem 2.3].
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In view of [5, Proposition 1.3] and [3, Theorem 4], the positivity
of I with fixed endpoints was characterized in terms of the existence
of a solution to the explicit Riccati equation. On the other hand, a
transformation was developed in [4, Lemma 3.1] in order to reduce
a separable endpoints problem to a problem with fixed endpoints by
extending the time interval to −1 and N + 2. However, as far as
we know, this transformation was not performed on the problem (P)
to obtain sufficiency results in terms of the data of (P), which is an
important issue in applications.

The positivity of I when the right endpoint is fixed (M = I) was
characterized in terms of the nonaugmented implicit Riccati equation
[6, Theorem 5] and in terms of the explicit Riccati equation with an
initial boundary condition of the form of an equality in [6, Theorem 6]
and inequality in [8, Theorem 10]. Note that the result [6, Theorem 6]
required a certain normality assumption.

In this paper we first extend in Theorems 1 and 2 the results in
[6] to the case where also the final state endpoint varies as in (1).
We provide in Theorem 1 a characterization of the positivity of I
in terms of conjugate intervals to 0, a natural conjoined basis, and
an implicit Riccati equation. This result extends [3, Theorem 3],
where an additional condition KerM ⊆ ImXN+1 is required, and also
completes [4, Theorem 3.2] in a sense that the corresponding implicit
Riccati equation solution and its boundary conditions are derived.
In Theorem 2 under a normality assumption, the positivity of I is
characterized via a conjoined basis (X,U) with X invertible and via
the explicit Riccati equation. This result is based on the perturbation
technique from [6]. Next we apply the transformation in [4] to reduce
the problem (P) to a transformed problem (TP) on the time interval
[0, N + 2]. Then we apply to (TP) the results in [6] and [8]. The
translation of these results in terms of the original data for (P) is not
a routine exercise. This task requires finding the right form of the
boundary conditions associated with each of the conjoined bases and
the Riccati equation solutions. The knowledge of the corresponding
continuous time results [9, 10] is a valuable inspiration in this search.
Another important issue that arises during the translation of the results
is to figure out the bare minimum conditions that characterizes the
positivity of I. The outcome of this method is given mainly in
Theorem 3 and also in Theorem 1(ii) where no normality is required.
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The difference between the various results of this paper resides in the
underlying hypotheses as well as in the form of the initial and final
boundary conditions of the conjoined bases and the Riccati equation
solutions. These boundary conditions have the form of an equality or
a (strict) inequality.

2. Preliminaries. Given n,N ∈ N with N ≥ 2, we denote by
J := [0, N ] and J∗ := [0, N + 1] the intervals of integers between
the indicated endpoints. We assume that Ak, Bk, Ck, k ∈ J and
Γ0,Γ,M0,M are n × n-matrices such that Bk, Ck,Γ0,M0,M are
symmetric and Ãk := (I − Ak)−1 exists. Without loss of generality,
both M0 and M are projections and Γ0 = (I − M0)Γ0(I − M0),
Γ = (I −M)Γ(I −M). All quantities are supposed to be real valued.
The forward difference operator is denoted by ∆, i.e., ∆yk = yk+1−yk.

The sequences {ηk}N+1
k=0 and {qk}N

k=0 of n-vectors form an admissible
pair (η, q) if they satisfy the equation of motion in (P), i.e., ∆ηk =
Akηk+1 + Bkqk, k ∈ J . The quadratic functional I is nonnegative,
I ≥ 0, if I(η, q) ≥ 0 for all admissible pairs (η, q) satisfying the
boundary conditions (1). The functional I is positive definite, I > 0,
if I(η, q) > 0 for all admissible (η, q) satisfying (1) and η 
≡ 0.

The corresponding linear Hamiltonian difference system is

(H) ∆ηk = Akηk+1 +Bkqk, ∆qk = Ckηk+1 −AT
k qk.

As usual, the vector solutions of (H) will be denoted by small letters
and the n× n-matrix solutions by capital ones. Let (X,U), (X̃, Ũ) be
solutions of (H). Then XT

k Ũk − UT
k X̃k ≡ W , where W is a constant

n × n-matrix, sometimes called a Wronskian of the solutions (X,U)
and (X̃, Ũ). If W = I, then these solutions are called normalized. A
solution (X,U) is said to be a conjoined basis if XTU is symmetric and
rank

(
X

U

)
= n. Following [2], a solution (X,U) of (H) is said to have

no focal points in (0, N + 1], provided

KerXk+1 ⊆ KerXk and Dk := XkX
†
k=1ÃkBk ≥ 0

holds for all k ∈ J , where Ker, † and ≥ 0 denote the kernel, Moore-
Penrose inverse and nonnegative definiteness of the given matrix, re-
spectively. We will also use Im, T and > 0 to denote the image, trans-
pose, and positive definiteness of a matrix. Observe that the matrices
Dk are symmetric when the kernel condition holds [2, Lemma 2].
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A solution (η, q) of (H) has a generalized zero in the interval (m,m+1],
provided

ηm 
= 0, ηm+1 ∈ Im ÃmBm and ηT
mB†

m(I −Am)ηm+1 ≤ 0.

When the right endpoint is fixed, the generalized zero concept is used
to define conjugate intervals to 0. Let m ∈ J . An interval (m,m+1] is
said to be conjugate to 0 if there exists a solution (η, q) of (H) having
(m,m + 1] as a generalized zero and, for some γ ∈ Rn satisfying the
initial boundary and transversality conditions

(2) M0η0 = 0 and q0 = Γ0η0 +M0γ.

With (H) the Riccati matrix difference system

(R) R[W ]k ≡ ∆Wk −Ck+AT
k Wk+(Wk+1 −Ck)Ãk(Ak+BkWk) = 0

is associated. Implicit Riccati equations, which use the operatorR[W ]k,
will also be considered.

In this paper the following normality concept will be used. A pair
(A,B) is called (M0 : I)-normal on J∗ if the system

−∆qk = AT
k qk, Bkqk = 0, k ∈ J, q0 =M0γ,

γ ∈ Rn, possesses only the zero solution qk ≡ 0 on J∗.

Next, similarly as in [2, Remark 3(ii)], we define the transition
matrices Ψk,m and controllability matrices G̃k as follows: set G̃N+1 :=
0, ΨN+1,N := I and, for k,m ∈ J , k ≤ m,

Ψk,m := (I −Ak)(I −Ak+1) . . . (I −Am),

G̃k := (Bk Ψk,kBk+1 . . . Ψk,N−1BN ) .

Then a pair (η, q) with MηN+1 = 0 is admissible if and only if for all
k ∈ J

(3)

ηk = −G̃k




qk
...
qN


+Ψk,NηN+1 = (−G̃kPk Ψk,N (I −M) )

(
q
α

)
,
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where q := (qT
0 . . . qT

N )
T , α := ηN+1 and Pk : R(N+1)n → R(N−k+1)n is

the restriction operator onto the last N −k+1 entries of q, i.e., cutting
the first k entries. Note that P0 is the identity (matrix). Moreover, if
(X,U) is a conjoined basis of (H) with KerXk=1 ⊆ KerXk on J , then

(4) ηk ∈ ImXk implies ηk+1 ∈ ImXk+1.

In order to transform the variable endpoint at N + 1 to a fixed
endpoint at N + 2, we use the result of [4]. We define the matrices
AN+1 := 0, ÃN+1 := I, BN+1 := I − M, Ck := Ck, k ∈ [0, N − 1],
CN := CN + Γ − (I −M) and CN+1 := 0. Then consider the discrete
quadratic functional

(TP) J (η, q) := ηT
0 Γ0η0 +

N+1∑
k=0

{ηT
k+1Ckηk+1 + qT

k Bkqk}

subject to J -admissible pairs (η, q), i.e., ∆ηk = Akηk+1+Bkqk, k ∈ J ∗,
satisfying the boundary conditions

(5) M0η0 = 0, ηN+2 = 0.

The relation between the definiteness of I and J is stated next.

Proposition 1 [4, Lemma 3.1]. I > 0 (I ≥ 0) over admissible pairs
(η, q) satisfying (1) if and only if J > 0 (J ≥ 0) over J -admissible
pairs (η, q) satisfying (5).

Naturally we need to describe also the relation between the solutions
(X,U) of the Hamiltonian system (H) corresponding to I and the solu-
tions (Y, V ) of the transformed Hamiltonian system (H) corresponding
to J , i.e.,

(H) ∆ηk = Akηk+1 +Bkqk, ∆qk = Ckηk+1 −AT
k qk, k ∈ J∗.

Lemma 1. Let (X,U) be a solution of (H) on J . Then for
a solution (Y, V ) of the transformed Hamiltonian system (H) with
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(Y0, V0) = (X0, U0) we have that Yk = Xk for all k ∈ J∗, Vk = Uk

for all k ∈ J and

YN+2 = (Γ +M)XN+1 + (I −M)UN+1,

VN+1 = UN+1 + [Γ− (I −M)]XN+1.

Proof. For k ∈ [0, N ] the first equations of (H) and (H) are the same.
Also, for k ∈ [0, N − 1] the second equations of (H) and (H) are the
same. Thus, Yk = Xk on J∗ and Vk = Uk on J . Finally the second
equation of (H) at k = N yields the expression for VN+1 and then the
first equation of (H) at k = N + 1 yields YN+2.

3. Main results. The following result is obtained via a direct
approach with the exception of the conjugate intervals condition (ii),
which will require using the transformation in Proposition 1. This con-
jugate intervals condition can also be derived by applying [4, Theorem
2.3 (ii)] to a transformed problem on the interval [−1, N + 1]. Note
that such transformations do not produce a coupled intervals condition
as is known in [7] for the discrete calculus of variations case. Such a
condition must be derived independently in a future work.

Theorem 1 (Characterization of I > 0). The following are equiva-
lent.

(i) I > 0, i.e., I(η, q) > 0 for all admissible (η, q) with M0η0 = 0,
MηN+1 = 0 and η 
≡ 0.

(ii) There is no interval (m,m+ 1] ⊆ (0, N + 1] conjugate to 0, i.e.,
the Jacobi sufficient condition holds and any solution (η, q) of (H) with

M0η0 = 0, q0 = Γ0η0 +M0γ, MηN+1 = 0, ηN+1 
= 0

satisfies

(6) ηT
N+1(ΓηN+1 + qN+1) > 0.

(iii) The conjoined basis (X,U) of (H) given by the initial conditions

(7) X0 = I −M0, U0 = Γ0 +M0
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has no focal points in (0, N + 1] and satisfies

X
T

N+1(ΓXN+1 + UN+1) ≥ 0 on KerMXN+1,(8)

Ker (I −M)(ΓXN+1 + UN+1) ∩KerMXN+1 ⊆ KerXN+1.(9)

(iv) The implicit Riccati matrix equation

(10)

R[W ]k(−G̃kPk Ψk,N (I−M)) = 0 on KerM0(−G̃0 Ψ0,N (I−M)),

k ∈ J , has a symmetric solution W k on J∗ such that

Dk = Bk −Bk −BkÃ
T
k (W k+1 − Ck)ÃkBk ≥ 0

holds for all k ∈ J , and

W 0 = Γ0,(11)
Γ +WN+1 > 0 on KerM∩ ImXN+1.(12)

Remark 1. When we attempted to derive the conjoined basis and
Riccati equation conditions (iii) and (iv) via the transformation in
Proposition 1, we obtained conditions that are stronger and more
complicated than (iii) and (iv).

Lemma 2. Suppose that (iv) of Theorem 1 is true without (12).
Then

KerXk+1 ⊆ KerXk for all k ∈ J,

where (X,U) is the conjoined basis of (H) given by the initial conditions
(7).

Proof. If there exists m ∈ J such that KerXm+1 
⊆ KerXm, then
there is a d ∈ Rn, d 
= 0, such that Xm+1d = 0 and Xmd 
= 0.
Define the pair (η, q) as (Xkd, Ukd) for k ∈ [0,m] and (0, 0) for
k ∈ [m+1, N+1]. Then it follows that (η, q) is admissible and satisfies
the boundary conditions M0η0 = 0, ηN+1 = 0. Hence, by (3),

ηk = (−G̃kPk Ψk,N (I −M))
(
q
0

)
for all k ∈ J.
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Then M0η0 = 0 implies that
( q

0

) ∈ Ker (−G̃0 Ψ0,N (I − M)) which
by (10) yields R[W ]kηk = 0 for all k ∈ J . Using [2, Lemma 2(i)],
ηN+1 = 0 and (11) we get

I(η, q) = ηT
0 (Γ0 −W 0)η0 + ηT

N+1(Γ +WN+1)ηN+1 +
N∑

k=0

zT
k Dkzk

=
N∑

k=0

zT
k Dkzk.

On the other hand, by the definition of (η, q) we have I(η, q) = 0.
Hence, for all k ∈ J , Dkzk = 0. By [2, Lemma 2(i)] again we get that
η satisfies the identity of the form Zkηk+1 = ηk for all k ∈ J . Since
ηm+1 = 0, we obtain that ηm = Xmd = 0 that yields a contradiction.

Proof of Theorem 1. (i) ⇔ (ii). By Proposition 1 we know that (i) is
equivalent to

(i)′ J > 0 over M0η0 = 0 and ηN+2 = 0, η 
≡ 0.

Apply to (i)′ the results of [6, Theorem 5] to obtain that (i)′ is
equivalent to

(ii)′ there is no interval (m,m + 1] ⊆ (0, N + 1] conjugate to 0 and
(N + 1, N + 2] is not conjugate to 0.

Condition (N + 1, N + 2] being not conjugate to 0 is equivalent to the
fact that every solution (η, q) of (H) with the initial conditions (2),
ηN+1 
= 0 and ηN+2 ∈ Im ÃN+1BN+1 = Im (I −M) satisfies

(13) ηT
N+1B

†
N+1(I −AN+1)ηN+2 > 0.

Since ηN+2 must also be a multiple of

XN+2 = (Γ +M)XN+1 + (I −M)UN+1

from Lemma 1, it follows that MηN+1 = MηN+2 = 0. Since
B†

N+1 = I −M, condition (13) is equivalent to (6).

(i)⇒ (iii). Since (i) implies that I > 0 over all admissible pairs (η, q)
with M0η0 = 0 and ηN+1 = 0, we have from [6, Theorem 5] that the
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conjoined basis (X,U) has no focal points in (0, N + 1]. Suppose now
that β ∈ KerMXN+1 and define an admissible pair (η, q) := (Xβ,Uβ).
Then η satisfies the boundary conditions (1) and it follows from (i)
that I(η, q) ≥ 0. On the other hand, as (η, q) is a solution of (H),
I(η, q) = βTX

T

N+1(ΓXN+1 + UN+1)β, so that (8) is shown. Finally,
to prove (9) let β ∈ Rn be such that (I −M)(ΓXN+1 + UN+1)β = 0
andMXN+1β = 0. It follows that the admissible pair (η, q) defined as
above satisfies I(η, q) = 0. If XN+1β 
= 0, then ηN+1 
= 0, i.e., η 
≡ 0
and thus (i) would imply that I(η, q) > 0, which is a contradiction.
Therefore, XN+1β = 0 and (9) is shown.

(iii) ⇒ (iv). Let (X,U) be the conjoined basis from (iii) and let
(X̃, Ũ) be the conjoined basis of (H) completing (X,U) to normalized
conjoined bases of (H), i.e.,

X̃0 = −(Γ0 +M0)(I + Γ2
0)

−1, Ũ0 = (I −M0)(I + Γ2
0)

−1.

For k ∈ J∗ define the n× n-matrices

W k = UkX
†
k + (UkX

†
kX̃k − Ũk)(I −X

†
kXk)U

T

k .

Then R[W ]kXk = 0, W kXk = UkX
†
kXk and Dk ≥ 0 for all k ∈ J , by

[2, Lemma 2(ii)]. Let
( q

α

)
be arbitrary in KerM0(−G̃0 Ψ0,N (I−M)).

Define ηN+1 := (I−M)α and {ηk}N
k=0 by (3). Then (η, q) is admissible

and satisfies the boundary conditions (1). From (4) we obtain that
ηk = Xkck for some ck ∈ Rn, k ∈ J∗. Therefore,

R[W ]k(−G̃kPk Ψk,N (I −M))
(

q
α

)
= R[W ]kηk = R[W ]kXkck = 0,

and since
( q

α

)
was arbitrary, (10) holds true. Initial condition (11)

follows from (iii)⇒ (iv) in [6, Theorem 5]. To show (12), let γ ∈ KerM,
γ = XN+1δ for some δ ∈ Rn. Then MXN+1δ = 0 and (8) with the
equality X

T
WX = X

T
U yield

γT (Γ +WN+1)γ = δTX
T

N+1(Γ +WN+1)XN+1δ

= δTX
T

N+1(ΓXN+1 + UN+1)δ ≥ 0.
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If γT (Γ +WN+1)γ = 0, then (I −M)(Γ +WN+1)γ = 0. For a vector
β := X

†
N+1γ we have that XN+1β = XN+1δ = γ, MXN+1β = 0, and

(I −M)(ΓXN+1 + UN+1)β = (I −M)(ΓXN+1 + UN+1)X
†
N+1XN+1δ

= (I −M)(Γ +WN+1)γ = 0.

Thus, (9) implies that γ = XN+1β = 0 and so condition (12) is proven.

(iv) ⇒ (i). By Lemma 2, KerXk+1 ⊆ KerXk holds for all k ∈ J .
Let (η, q) be an admissible pair satisfying the boundary conditions (1).
Then η0 ∈ ImX0 and (4) yield ηN+1 ∈ ImXN+1. Also, by (3) with
α := ηN+1,

( q

α

) ∈ KerM0(−G̃0 Ψ0,N (I −M)) and, for all k ∈ J ,

R[W ]kηk = R[W ]k(−G̃kPk Ψk,N (I −M))
(

q
α

)
= 0.

Whence, by [2, Lemma 2(i)] with zk := qk −W kηk and by using (12)
we get

I(η, q) = ηT
0 (Γ0 −W 0)η0 + ηT

N+1(Γ +WN+1)ηN+1 +
N∑

k=0

zT
k Dkzk ≥ 0,

so that we showed that I ≥ 0. If now I(η, q) = 0 for some admissible
(η, q) satisfying (1), then ηN+1 ∈ ImXN+1, Dkzk = 0 for all k ∈ J ,
and

ηT
N+1(Γ +WN+1)ηN+1 = 0.

Hence, condition (12) implies that ηN+1 = 0. Via the identity of the
form Zkηk+1 = ηk, k ∈ J , from [2, Lemma 2] we then get that ηk ≡ 0
on J∗. Hence I > 0 and the proof is complete.

Remark 2. If XN+1 is invertible, then (8) (9) and (12) are rephrased,
respectively, as

X
T

N+1(ΓXN+1 + UN+1) > 0 on KerMXN+1,(14)

Γ +WN+1 > 0 on KerM.

Remark 3. In (iv) of Theorem 1, the implicit Riccati equation (10)
may take the equivalent form
(15)

R[W ]k(Φk,0(I−M0) GkP̃k) = 0 on KerM(ΦN+1,0(I−M0) GN+1),
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where Φk,m and Gk are the transition and controllability matrices, see
[2, Remark 3].

Proof. Similarly as in (3), a pair (η, q) with M0η0 = 0 is admissible
if and only if for all k ∈ [1, N + 1]

ηk = Φk,0η0 +Gk




q0
...

qk−1


 = (Φk,0(I −M0) GkP̃k)

(
α
q

)
,

where α = η0. The matrix P̃k is the restriction operator onto the first k
entries of q, i.e., P̃kq = (qT

0 , . . . , qT
k−1)

T . Note that P̃N+1 is the identity
(matrix). Thus, condition R[W ]kηk = 0 is equivalent to (15), which is
what we needed to show.

The following result represents an extension of [6, Theorem 6] to
the case where also the right endpoint varies. As in Theorem 1 the
initial conditions of the conjoined basis (X,U) and the Riccati equation
solution W are in the form of equalities. However, X is now invertible
and W solves the explicit Riccati equation. The price for this richer
result is the assumption of (M0 : I)-normality, which incidentally does
not yield that Xk in Theorem 1 is invertible for all k. However, when
I > 0, the (M0 : I)-normality implies that XN+1 is invertible, as it is
shown in [6, Lemma 4].

Let the two conjoined bases (X,U) and (X̂, Û) of (H) be given by
the initial values (7) and

X̂N+1 = 0, ÛN+1 = −I,

respectively.

Theorem 2 (Characterization of I > 0). Assume that (A,B) is
(M0 : I)-normal on J∗. Then the following are equivalent.

(i) I > 0, i.e., I(η, q) > 0 for all admissible pairs (η, q) satisfying
M0η0 = 0, MηN+1 = 0, η 
≡ 0.
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(ii) There exists a conjoined basis (X,U) of (H) with no focal points
in (0, N + 1], Xk invertible for all k ∈ J∗, and satisfying

(I −M0)(Γ0X0 − U0) = 0,
XT

N+1(ΓXN+1 + UN+1) > 0 on KerMXN+1.(16)

This conjoined basis is given explicitly for all k ∈ J∗ by

(17) Xk := εX̂kX
T−1

N+1M0 +Xk, Uk := εÛkX
T−1

N+1M0 + Uk,

where ε is small enough.

(iii) There exists a symmetric solutionWk on J∗ of the explicit Riccati
matrix equation (R) with I+BkWk nonsingular and (I+BkWk)−1Bk ≥
0 for all k ∈ J , and satisfying

(I −M0)W0 − Γ0 = 0,
Γ +WN+1 > 0 on KerM.(18)

Proof. (i)⇒ (ii). We know from [6, Theorem 6] that (ii) holds except
of (16). Since XN+1 is invertible and I > 0, condition (14) holds, see
Remark 2. On the other hand, condition (16) where ε = 0 reduces to
(14). Thus, by perturbing (X,U) as in (17) we obtain that, for ε small
enough, (16) is valid as well.

(ii) ⇒ (iii). This is automatic by Wk := UkX
−1
k , k ∈ J∗.

(iii) ⇒ (i). Via the Picone identity [2, Theorem 1] we obtain I ≥ 0.
Now, if I(η, q) = 0 for some admissible pair (η, q) satisfying (1), then
(Γ +WN+1)ηN+1 = 0. Hence, by (18), ηN+1 = 0. Via the identity of
the form Zkηk+1 = ηk, k ∈ J , from [2, Lemma 2], we get ηk ≡ 0 on J∗.

Remark 4. When the left endpoint is free (M0 = 0), then (A,B) is
automatically (M0 : I)-normal, and since in this case (17) implies
(X,U) ≡ (X,U), the corresponding conditions of Theorem 2 and
Theorem 1 coincide.

Next a characterization of the positivity of I in terms of the explicit
Riccati equation is given without any normality assumption. Note
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that the initial conditions are now in the form of strict inequalities,
as opposed to the equalities in Theorems 1 and 2. The proof of this
result is via the transformation technique in Proposition 1.

Theorem 3 (Characterization of I > 0). The following are equiva-
lent.

(i) I > 0, i.e., I(η, q) > 0 for all admissible pairs (η, q) with
M0η0 = 0, MηN+1 = 0, η 
≡ 0.

(ii) There exists a conjoined basis (X,U) of (H) with no focal points
in (0, N + 1], Xk invertible for all k ∈ J∗ and satisfying

XT
0 (Γ0X0 − U0) > 0 on KerM0X0,

XT
N+1(ΓXN+1 + UN+1) > 0 on KerMXN+1.(19)

(iii) There exists a symmetric solutionWk on J∗ of the explicit Riccati
matrix equation (R) with I+BkWk invertible and (I+BkWk)−1Bk ≥ 0
for all k ∈ J , and satisfying

Γ0 −W0 > 0 on KerM0,

Γ +WN+1 > 0 on KerM.

Proof. (i) ⇒ (ii). By Proposition 1, I > 0 is equivalent to J > 0.
Our results in [8, Theorem 10] then yields that there exists a conjoined
basis (X,U), k ∈ [0, N + 2] of (H) satisfying all the conditions in (ii)
except of (19), but instead DN+1 := XN+1X

−1
N+2ÃN+1BN+1 ≥ 0.

We will show that this implies (19). By Lemma 1, it follows that
XN+2 = (Γ+M)XN+1+(I−M)UN+1. Thus, DN+1 ≥ 0 is equivalent
to

(I −M)XT−1
N+1[(Γ +M)XN+1 + (I −M)UN+1]T ≥ 0,

which in turn, by transposing, is equivalent to

(I −M)(Γ + UN+1X
−1
N+1)(I −M) ≥ 0.

Multiplying from the left by XT
N+1 and from the right by XN+1, we

obtain the condition

XT
N+1(ΓXN+1 + UN+1) ≥ 0 on KerMXN+1.
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If now MXN+1α = 0 with αTXT
N+1(ΓXN+1 + UN+1)α = 0, then

XT
N+1(ΓXN+1 + UN+1)α = 0, so that (ΓXN+1 + UN+1)α = 0 by the

invertibility of XN+1. It follows that

XN+2α = [(Γ +M)XN+1 + (I −M)UN+1]α

= [ΓXN+1 + (I −M)UN+1]α

= (I −M)(ΓXN+1 + UN+1)α = 0.

The invertibility of XN+2 now yields that α = 0. Thus (19) holds true.

(ii) ⇒ (iii). This is straightforward by Wk = UkX
−1
k for all k ∈ J∗.

(iii) ⇒ (i). This follows by the Picone identity as in the proof of
Theorem 2.
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