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AN OSCILLATION THEOREM FOR
DISCRETE EIGENVALUE PROBLEMS

MARTIN BOHNER, ONDŘEJ DOŠLÝ AND WERNER KRATZ

ABSTRACT. In this paper we consider problems that con-
sist of symplectic difference systems depending on an eigen-
value parameter, together with self-adjoint boundary con-
ditions. Such symplectic difference systems contain as im-
portant cases linear Hamiltonian difference systems and also
Sturm-Liouville difference equations of second and of higher
order. The main result of this paper is an oscillation theo-
rem that relates the number of eigenvalues to the number of
generalized zeros of solutions.

1. Introduction. Consider the symplectic difference system

(S) zk+1 = Skzk, k ∈ Z,

where the 2n× 2n matrices Sk are symplectic, i.e.,

ST
k JSk = J with J =

(
0 I
−I 0

)
.

Symplectic difference systems (S) cover a large variety of difference
equations and systems, among them also linear Hamiltonian difference
systems

∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 − AT
k uk,

where the n × n matrices Bk and Ck are symmetric and I − Ak is
nonsingular, as discussed, e.g., in the monograph by Ahlbrandt and
Peterson [2]. This means, in turn, that systems (S) also cover higher
order Sturm-Liouville difference equations

n∑
µ=0

(−∆)µ{rµ(k)∆µyk+1−µ} = 0 with rn(k) �= 0,
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in particular its special case, Sturm-Liouville second order difference
equations

∆(rk∆xk) + pkxk+1 = 0 with rk �= 0,
which are well studied in the recent literature, see [1, 9].

The principal aim of our paper is to investigate an eigenvalue problem
where various boundary conditions are associated with the system

(SE) zk+1 = (Sk − λŜk)zk,

where λ is a real parameter and

Sk =
(Ak Bk

Ck Dk

)
and Ŝk =

(
0 0

WkAk WkBk

)
,

Wk being nonnegative definite n × n matrices. Observe that (SE) is
still a symplectic system of the form (S) for every λ ∈ R, as can be
verified by a direct computation. Our investigation can be viewed as
a discrete counterpart of some results from the monograph by Kratz
[14]. There the eigenvalue problem for linear Hamiltonian differential
systems

(H) x′ = A(t)x+B(t)u, u′ = (C(t)− λĈ(t))x−AT (t)u,

where B(t) and C(t) are symmetric n× n matrices for t ∈ R with the
boundary condition

(B) R1

(−x(a)
x(b)

)
+R2

(
u(a)
u(b)

)
= 0,

R1 and R2 being 2n×2n matrices, was investigated (in a more general
setting than presented here). A formula is proved there, which relates
the number of focal points of a conjoined basis of (H) to the number
of eigenvalues of (H), (B), which are less than a given λ, and the index
(i.e., the number of negative eigenvalues) of a certain symmetric matrix
associated with the boundary condition (B). For more details, see [14,
Chapter 7].

In our paper we derive results which are in a certain sense discrete
versions of this investigation, but under more restrictive assumptions
on the dependence of the matrices in the investigated system on the
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parameter λ than those in [14]. The reason for the more restrictive
assumptions is that some of the phenomena connected with oscillation
theory of the discrete system are considerably more complicated than
those associated with the continuous system (although often the theory
in the discrete case is “easier” than in the continuous case). One
just needs to compare the complicated definition of a focal point in
the discrete case (see Definition 1 (iii) and (iv)) which has first been
introduced in [4, 5], with its continuous counterpart (see [14, Definition
1.1.1 (ii)]) which is simply explained in terms of invertibility of the first
part of the solution matrix. Because of the discrepancies between the
continuous and the discrete, it will be of interest to eventually unify
our results by using the concept of time scales (see [8, 11]) but this
will be a topic of future research.

The paper is organized as follows. In the next section we recall some
results from oscillation theory of (S), and we also present some basic
facts of matrix theory (the Moore-Penrose generalized inverse) needed
in our investigation. In this section we also state the main result of
this paper, Theorem 1, the so-called oscillation theorem, which states
that the number of focal points (i.e., “generalized” zeros) of a conjoined
basis of (SE) (i.e., a matrix-valued solution) is equal to the number of
eigenvalues less than λ of (SE) with x0 = xN+1 = 0. The most technical
part of this paper is contained in Section 3, where the proof of our main
result is presented, via the so-called local oscillation theorem. Finally, in
Section 4, we consider an eigenvalue problem consisting of (SE) together
with more general boundary conditions. First a result corresponding
to Theorem 1 is proved for separated boundary conditions, and in fact
Theorem 1 is utilized to prove this more general oscillation theorem.
Finally we use this theorem to derive the oscillation theorem for the
case of (SE) together with arbitrary self-adjoint boundary conditions.

2. Notion and main result. We consider the 2n-dimensional
vector symplectic difference system

(1) zk+1 = Sk(λ)zk with Sk(λ) = Sk − λŜk for k ∈ Z,

where λ is a real parameter. Here

Sk =
(Ak Bk

Ck Dk

)
, Ŝk =

(
0 0

WkAk WkBk

)
, J =

(
0 I
−I 0

)
,
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where Ak,Bk, Ck,Dk,Wk ∈ Rn×n (i.e., they are real n×n matrices for
each k ∈ Z), I denotes the n× n identity matrix, and we put

zk = (xk, uk) with vectors xk, uk ∈ Rn.

With this notation our difference system reads as follows:

(1′) xk+1 = Akxk+Bkuk, uk+1 = Ckxk −λWkxk+1+Dkuk for k ∈ Z.

Note that the first equation of (1′), the so-called equation of motion,
does not depend on the parameter λ based on the special form of Ŝk.
Because of analogies to the calculus of variations, we call the second
equation of (1′) the Euler equation. Throughout we will assume that
Sk is symplectic, i.e.,

ST
k JSk = J for k ∈ Z,

and that Wk is symmetric and nonnegative definite, i.e., Wk ≥ 0. In
summary our assumptions in terms of the matrices Ak,Bk, Ck,Dk,Wk

read as follows (cf. [6, Remark 1]):

(A1)
AT

k Ck = CT
k Ak, BT

k Dk = DT
k Bk, AT

k Dk − CT
k Bk = I,

Wk ≥ 0 for k ∈ Z.

A simple calculation shows that, under these assumptions, the matrix
Sk(λ) is symplectic for all λ ∈ R.

Next we want to introduce the main notion where we use the follow-
ing.

Notation. Let M be any (real) matrix. By KerM , ImM , rankM ,
defM , indM , detM and M†, respectively, we denote the kernel of M ,
the image of M , the rank of M , the defect of M (i.e., the dimension
of KerM), the index of M provided M is symmetric (i.e., the number
of negative eigenvalues of M), the determinant of M provided M is a
square matrix, and the Moore-Penrose inverse of M , cf. [3]. We write
M ≥ 0, as already above, M > 0 if the (real) matrix M is symmetric
and nonnegative definite, positive definite, respectively.

Assume (A1) and let λ ∈ R be fixed. As above we denote vector-
valued solutions z = (zk)k∈Z = (x, u) = (xk, uk)k∈Z of (1) or (1′) by
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small letters and we use capital letters for 2n×nmatrix-valued solutions
Z = (X,U) = (Xk, Uk)k∈Z of (1) or (1′) so that Xk, Uk ∈ Rn×n

for k ∈ Z. For the symplectic system (1) the Wronskian identity
(cf. [6]) holds, i.e., if z = (x, u) and z̃ = (x̃, ũ) solve (1), then
zT
k J z̃k = xT

k ũk − uT
k x̃k is constant, in particular it equals zero for

all k ∈ Z if it is zero for one k ∈ Z.

Definition 1. Assume (A1) and let λ ∈ R be fixed.

(i) A 2n × n matrix-valued solution Z = (X,U) = (Xk, Uk)k∈Z is
called a conjoined basis of (1) or (1′) if

XT
k Uk − UT

k Xk = 0, rank
(
Xk

Uk

)
= n for k ∈ Z.

(ii) The conjoined basis Z = (X,U) of (1) or (1′) with X0 = 0,
U0 = I is called the principal solution of (1) at 0, while the solution
Z̃ = (X̃, Ũ) of (1) with X̃0 = −I, Ũ0 = 0 is called the associated
solution of (1) at 0.

(iii) A conjoined basis Z = (X,U) of (1) has no focal point in the
interval (k, k + 1] for some k ∈ Z if

KerXk+1 ⊂ KerXk and XkX
†
k+1Bk ≥ 0.

(iv) If a conjoined basis Z = (X,U) of (1) has a focal point in the
interval (k, k+1) for some k ∈ Z and if k+ 1 is not a focal point of Z,
i.e., if

KerXk+1 ⊂ KerXk but XkX
†
k+1Bk �≥ 0,

then indXkX
†
k+1Bk is called the multiplicity of the focal point.

Remark 1. Assume (A1), let λ ∈ R be fixed, and let Z = (X,U) be
a conjoined basis of (1). We shall use the notation

(2) Qk := XkX
†
kUkX

†
k and Dk := XkX

†
k+1Bk

for k ∈ Z. Note that Dk is the same as Pk[Q] in the notation of [6].

(i) First we repeat some facts from [6] and note some formulas.
Using Definition 1 (i) and that XkX

†
k is symmetric because of the

properties of Moore-Penrose inverses, it follows that Qk is symmetric.
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From the difference equation (1) and our assumption (A1) we easily
obtain the formula

(3) Xk = (DT
k − λBT

k Wk)Xk+1 − BT
k Uk+1.

This identity leads to the next formula (cf., [6, Lemma 3])

(4) Dk = BT
k (Dk − λWkBk)− BT

k Qk+1Bk if KerXk+1 ⊂ KerXk,

so that, by (A1),

Dk is symmetric if KerXk+1 ⊂ KerXk;

because, by [6, Remark 1], Bk = Xk+1X
†
k+1Bk in this case.

(ii) Our Definition 1 (i), (ii) and (iii) is the same as in [6], while
part (iv), the definition of the multiplicity of focal points, is new.
But note that this is defined only if the “kernel condition” (i.e.,
KerXk+1 ⊂ KerXk) is satisfied. Otherwise the problem of defining
the multiplicity remains an open problem. Actually this lack of the
definition leads to the “exceptional finite set” in our results below. We
shall count the number of focal points in some interval always, as usual,
including multiplicities.

(iii) Of course, the conjoined basis (X,U) depends in general on
λ. If, for example, as for the principal and associated solutions at
0, the “initial” matrices X0, U0 do not depend on λ, then the matrix
elements of Xk = Xk(λ), Uk = Uk(λ) are polynomials in λ for k ∈ Z.
Thus, as can easily be seen via suitable representations of Moore-
Penrose inverses (cf. [14, Remark 3.3.2]) the matrix elements of the
corresponding matricesQk = Qk(λ),Dk = Dk(λ) are rational functions
in λ.

We shall study the oscillatory behavior of the following eigenvalue
problem (E), where N ∈ N is a given fixed integer:

(E)



xk+1 = Akxk + Bkuk, uk+1 = Ckxk − λWkxk+1 +Dkuk

for 0 ≤ k ≤ N

with the boundary conditions x0 = xN+1 = 0.

As usual, λ is an eigenvalue of (E) if a nontrivial solution z = (x, u) =
(xk, uk)N+1

k=0 exists, a corresponding eigenvector of (E), i.e., z solves (E)
and k ∈ {0, . . . , N + 1} exists with (xk, uk) �= (0, 0).



AN OSCILLATION THEOREM 1239

Remark 2. Let us make here some comments on the eigenvalue
problem (E). To do this, assume (A1) and let Z = (X,U) be the
principal solution of (1) at 0 according to Definition 1 (ii).

(i) As can easily be seen, a number λ is an eigenvalue of (E) if and
only if

detXN+1(λ) = 0,

and then the dimension of the kernel of XN+1(λ) (i.e., defXN+1(λ)) is
its multiplicity. Similarly, as for focal points, we shall count the number
of eigenvalues always including multiplicities.

(ii) Let z = (x, u) and z̃ = (x̃, ũ) solve (1) or (1′) for reals λ = λ0

and λ = λ1, respectively. Then using the assumption (A1), a simple
computation leads to the formula

(λ0 − λ1)xT
k+1Wkx̃k+1 = αk+1 − αk,

where αk := xT
k ũk − uT

k x̃k for k ∈ Z. Hence, by the formula for a
telescope sum,

(λ0 − λ1)〈z, z̃〉 = αN+1 − α0

for a given N ∈ N, where the product 〈·, ·〉 is defined by

〈z, z̃〉 :=
N∑

k=0

xT
k+1Wkx̃k+1.

Therefore, if λ0 and λ1 are eigenvalues of (E) with corresponding
eigenvectors z and z̃, it follows that

(λ0 − λ1)〈z, z̃〉 = 0,

because x0 = xN+1 = x̃0 = x̃N+1 = 0, so that α0 = αN+1 = 0. Thus
we have shown that eigenvectors of (E) belonging to distinct eigenvalues
are orthogonal.

(iii) Assume additionally that detXN+1(λ) �≡ 0 (i.e., not every λ is
an eigenvalue of (E) by part (i)); see assumption (A2) of Theorem 1
and Remark 3 (i) below. We prove that all eigenvalues of (E) are
real. In view of this statement and of part (ii), the eigenvalue problem
(E) is self-adjoint. Now let λ0 ∈ C (of course, we have to deal with
complex eigenvalues and eigenvectors here in contrast to the rest of
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this paper) be an eigenvalue of (E) with corresponding eigenvector
z = (x, u) = (xk, uk)N+1

k=0 �= 0, where xk, uk ∈ C. Define

αk := x̄T
k uk − ūT

k xk, βk := x̄T
k+1Wkxk+1.

Since x0 = xN+1 = 0 by (E), we have that α0 = αN+1 = 0. It follows
from the difference equation (1′) of (E) and the assumption (A1) by a
simple calculation that

(λ̄0 − λ0)βk = αk+1 − αk for 0 ≤ k ≤ N.

Since α0 = αN+1 = 0, we obtain that

(λ̄0 − λ0)
N∑

k=0

βk = 0.

If
∑N

k=0 βk = 0, then βk = 0 for 0 ≤ k ≤ N because βk ≥ 0 by (A1) for
all k. Hence, Wkxk+1 = 0 for 0 ≤ k ≤ N , and therefore z �= 0 satisfies
(E) for all λ ∈ C, so that every λ is an eigenvalue, which contradicts
our additional assumption detXN+1(λ) �≡ 0. Thus

∑N
k=0 βk �= 0, so

that λ̄0 − λ0 = 0 (i.e., λ0 is real) which is what we wanted to show.
Note finally that we have also proven the following: if z = (xk, uk)N+1

k=0

solves (E) for some number λ and if Wkxk+1 = 0 for 0 ≤ k ≤ N , then
z = 0.

The main result of this paper reads as follows.

Theorem 1 (Oscillation theorem). Assume (A1) and let Z =
(X,U) = (Xk(λ), Uk(λ))k∈Z be the principal solution at 0 of (1).
Moreover, suppose that

(A2) lim
λ→−∞

n1(λ) = 0 and lim
λ→−∞

n2(λ) = 0

holds, where

n1(λ) denotes the number of focal points of (X,U) in the interval
(0, N + 1],

n2(λ) denotes the number of eigenvalues of (E), which are less
than or equal to λ.
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Then

(5) n1(λ) = n2(λ) for all λ ∈ R \ N ,

where the “exceptional” set
(6)

N := R \ {µ ∈ R : rankXk(µ) = max
λ∈R

rankXk(λ)for 0 ≤ k ≤ N + 1}
is finite.

Remark 3. First let us comment on the assumption (A2). To do so,
assume (A1), and let (X,U) be the principal solution at 0 of (1), i.e.,
X0 = 0, U0 = I.

(i) The second part of (A2) (i.e., limλ→−∞ n2(λ) = 0) simply means
that λ0 ∈ R exists such that n2(λ) = 0 for λ ≤ λ0 and, by Remark 2,
this is equivalent with

detXN+1(λ) �= 0 for all λ ≤ λ0.

By Remark 1 (iii), detXN+1(λ) is a polynomial in λ, and this is in turn
equivalent with detXN+1(λ) �≡ 0 so that the eigenvalue problem (E) is
nondegenerate, i.e., not every λ ∈ R is an eigenvalue of (E).

(ii) The first part of (A2) (i.e., limλ→−∞ n1(λ) = 0) means that
λ0 ∈ R exists such that n1(λ) = 0 for λ ≤ λ0, and by Definition 1 (iii)
this means that

(7) KerXk+1(λ) ⊂ KerXk(λ) and Dk(λ) = Xk(λ)X
†
k+1(λ)Bk ≥ 0

holds for all 0 ≤ k ≤ N and all λ ≤ λ0. Moreover, we shall see in
the next section that the kernel condition holds for all 0 ≤ k ≤ N and
λ /∈ N , so that n1(λ) is well defined by Definition 1 (iv) for λ /∈ N .
The following representations of n1(λ) and n2(λ) follow directly from
Definition 1 (ii), (iv) and Remark 2:

(8)

n1(λ) =
N∑

k=0

indDk(λ), n2(λ) =
∑
µ∈N
µ≤λ

defXN+1(µ) for all λ ∈ R \N .
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Finally it follows from the Reid roundabout theorem for symplectic
systems [6, Theorem 1] that the second part of (A2), which is the same
as assertion (7), is equivalent to

(9)




F0(z, λ) :=
∑N

k=0{xT
k CT

k Akxk + uT
k DT

k Bkuk + 2uT
k BT

k Ckxk}
−λ∑N

k=0 x
T
k+1Wkxk+1 > 0

for all λ ≤ λ0 and for all admissible z = (xk, uk)N+1
k=0 , i.e.,

xk+1 = Akxk + Bkuk for 0 ≤ k ≤ N

and x0 = xN+1 = 0 with x = (xk)Nk=1 �= 0.
Note that this positivity of F0(z, λ) holds for all λ ≤ λ0 if it is true just
for λ = λ0, because Wk ≥ 0 for all k ∈ Z by (A1).

(iii) Next we discuss the form of Ŝk in our difference system (1).
We shortly prove that the assumptions on Ŝk are necessary in the
following sense. First we require that the “equation of motion,” that is
the equation for xk+1 resulting from (1), does not depend on λ (which
is important when considering the quadratic form in (ii)). Hence Ŝk

must be of the form

Ŝk =
(
0 0
Ĉk D̂k

)
with certain n× n matrices Ĉk, D̂k.

Next we impose that Sk(λ) is symplectic, i.e., ST
k (λ)JSk(λ) = J for

all λ ∈ R. Since −JJ T = J 2 = −I, we obtain that (ST
k (λ)J )−1 =

Sk(λ)J T and therefore Sk(λ)JST
k (λ) = J for all λ ∈ R. Altogether

we obtain the following formulas, see also (A1), for all k ∈ Z:

AT
k Ck = CT

k Ak, BT
k Dk = DT

k Bk, AT
k Dk − CT

k Bk = I,

AT
k Ĉk = ĈT

k Ak, AT
k D̂k = ĈT

k Bk, BT
k D̂k = D̂T

k Bk;
AkBT

k = BkAT
k , CkDT

k = DkCT
k , AkDT

k − BkCT
k = I,

AkD̂T
k = BkĈT

k , CkD̂T
k = DkĈT

k , ĈkD̂T
k = D̂kĈT

k .

Hence AkDT
k − BkCT

k = I and rank (Ak,Bk) = n so that the matrix

Kk := AkAT
k + BkBT

k is invertible.

Next def (Ak,Bk) = n = rank
(

BT
k

−AT
k

)
and AkBT

k = BkAT
k so that

Ker (Ak,Bk) = Im
(

BT
k

−AT
k

)
. Since AkD̂T

k = BkĈT
k , a matrix Wk ∈

Rn×n exists such that

D̂T
k = BT

k Wk and ĈT
k = AT

k Wk.
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Finally we obtain from the above formulas that

KT
k (WT

k −Wk)Kk

= (Ak,Bk)
( AT

k Ĉk − ĈT
k Ak AT

k D̂k − ĈT
k Bk

D̂T
k Ak − BT

k Ĉk BT
k D̂k − D̂T

k Bk

)(AT
k

BT
k

)
= 0.

Thus WT
k =Wk because Kk is invertible, and therefore

Wk is symmetric for all k ∈ Z.

As we shall see in the next section, the nonnegativity of Wk is needed
for the monotonicity of Dk(λ), which is crucial for the whole theory,
and which corresponds to the comment after statement (9) in Remark 3
(ii) above.

(iv) We conclude this remark with pointing out one of the applications
of formula (5) (a similar comment also applies to the statements of
Theorems 3 and 4 below; see formula (12)). Let λ0 ∈ R be given. If
we want to know how many eigenvalues of (E) are less than or equal
to λ0, we could calculate the principal solution (X,U) at 0 of (1) and
determine the number of zeros of detXN+1(λ) that are less than or
equal to λ0 (observe part (i) of this remark). However, detXN+1(λ)
is a polynomial in λ, and hence it might be difficult to calculate the
number of its zeros that are less than or equal to λ0. Alternatively, if the
assumptions of Theorem 1 are satisfied, then we just need to calculate
the principal solution of (1) at 0 for the particular λ0 in question
and count the number of its focal points in the interval (0, N + 1].
Both calculating the principal solution recursively and counting the
number of its focal points are easy tasks and can be done numerically.
Moreover, this procedure may be used to treat numerically the algebraic
eigenvalue problem for symmetric, banded matrices via Sturm-Liouville
difference equations as discussed in Section 1 of [16], cf. also [15].

3. Proof of the main result. Assume (A1), let N ∈ N be fixed,
and suppose that (X,U) = (Xk(λ), Uk(λ))k∈Z is a conjoined basis of (1)
such that X0(λ) ≡ X0 and U0(λ) ≡ U0 do not depend on λ. Moreover,
we assume that a λ1 ∈ R exists such that, compare (6),
(A3){

rk := maxλ∈R rankXk(λ) = rankXk(λ1) for 0 ≤ k ≤ N + 1
and KerXk+1(λ1) ⊂ KerXk(λ1) for 0 ≤ k ≤ N.
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In the sequel we derive a number of conclusions, which will lead to
the “local oscillation theorem,” below, and our main result, Theorem 1,
is more or less a consequence of this local result.
(C1)
N := R\{λ ∈ R : rankXk(λ) = rk for 0 ≤ k ≤ N+1} is a finite set.

Proof. By definition, λ0 ∈ R exists such that rankXk(λ0) = rk.
Hence there is a submatrix of Xk(λ0) of size rk ×rk whose determinant
is not zero. Since this subdeterminant of Xk(λ) as a function of λ is a
polynomial, it has finitely many zeros. Hence, N is a finite set.

(C2) KerXk(λ) = Vk := KerXk(λ1) for all λ ∈ R \ N and Vk ⊂
KerXk(λ) for all λ ∈ R and all 0 ≤ k ≤ N + 1.

Proof. Let k ∈ {0, . . . , N + 1}, c ∈ Vk and put xµ(λ) = Xµ(λ)c,
uµ(λ) = Uµ(λ)c, xµ = xµ(λ1), uµ = uµ(λ1) for 0 ≤ µ ≤ k. Then, by
(A3), x0 = · · · = xk = 0. We prove by induction that

xµ(λ) = xµ = 0, uµ(λ) = uµ for 0 ≤ µ ≤ k.

This is clear for µ = 0, because X0 and U0 do not depend on λ. It
follows inductively for 0 ≤ µ < k, using (1′), that

xµ+1(λ) = Aµxµ(λ) + Bµuµ(λ) = Aµxµ + Bµuµ = xµ+1 = 0,
uµ+1(λ) = Cµxµ(λ)− λWµxµ+1(λ) +Dµuµ(λ) = Dµuµ = uµ+1.

Hence, c ∈ KerXk(λ) for all λ ∈ R so that Vk ⊂ KerXk(λ). Moreover,
Vk = KerXk(λ) if λ /∈ N because

dimVk = n− rk = dimKerXk(λ) for λ /∈ N

by the definition of rk in (A3).

Based on statement (C2), we can undertake the following.

Construction. Starting with an orthonormal basis of VN+1 =
KerXN+1(λ1) we successively supplement an orthonormal basis of Vk+1
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to such a basis of Vk for k = N, . . . , 0. This is possible because
Vk+1 ⊂ Vk by (A3). Using (C2) we can conclude that an orthogonal
matrix P ∈ Rn×n exists such that

Xk(λ)P = ( ∗︸ ︷︷ ︸
rk

0) for all λ ∈ R and 0 ≤ k ≤ N + 1.

Note that, by (A3), 0 ≤ r0 ≤ r1 ≤ · · · ≤ rN+1 ≤ n.

Next, using Gram-Schmidt orthogonalization, we may choose orthog-
onal matrices Qk ∈ Rn×n for 0 ≤ k ≤ N + 1 such that, use (A3),

X̃k := QkXk(λ1)P =
(
X11 0
0 0

)
,

where X11 = X11(k, λ1) ∈ Rrk×rk is invertible.

Let

Ũk := QkUk(λ1)P =
(
U11 U12

U21 U22

)
, where U11 ∈ Rrk×rk .

Then, by Definition 1 (i),

X̃T
k Ũk =

(
XT

11U11 XT
11U12

0 0

)
= PTXT

k (λ1)Uk(λ1)P is symmetric.

Hence, U12 = 0 because X11 is invertible. Moreover,

n = rank (XT
k (λ1), UT

k (λ1)) = rank
(
XT

11 UT
11 UT

21

0 0 UT
22

)
,

and therefore U22 is invertible. By [12, page 114, Exercise on QR
factorization], an orthogonal matrix Q exists such that U−1

22 Q is lower
triangular, and then, of course, QTU22 is also. Hence, we may choose
the orthogonal matrices Qk in such a way that U22 is lower triangular.
This completes our construction.

Now we define new matrices X̃k(λ), Ũk(λ), etc., and we arrange a
block structure with the agreement that certain blocks do not occur
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if rk = 0 or rk = n, which was already presupposed above. For
0 ≤ k ≤ N + 1, respectively, ≤ N and λ ∈ R, we put

X̃k(λ) := QkXk(λ)P =
(
X11(k, λ) X12(k, λ)
X21(k, λ) X22(k, λ)

)

=
(
X̃11(k, λ) X̃12(k, λ)
X̃21(k, λ) X̃22(k, λ)

)
where

X11(k, λ) ∈ Rrk×rk and X̃11(k, λ) ∈ Rrk+1×rk+1

and Ũk(λ) := QkUk(λ)P = (Uµν(k, λ)) = (Ũµν(k, λ)) with the same
block structure. Moreover, we define

Ãk := Qk+1AkQT
k =

(
A11(k) A12(k)
A21(k) A22(k)

)
where A11(k) ∈ Rrk+1×rk+1 ,

and with the same block structure

B̃k : = Qk+1BkQT
k = (Bµν(k)), C̃k : = Qk+1CkQT

k = (Cµν(k)),

D̃k : = Qk+1DkQT
k = (Dµν(k)), W̃k : = Qk+1WkQT

k+1 = (Wµν(k)).

We continue with our conclusions and with the understanding that
they are valid for all 0 ≤ k ≤ N + 1, respectively ≤ N .

(C3) (X̃, Ũ) = (X̃k, Ũk)N+1
k=0 is a conjoined basis of the symplectic

difference system{
X̃k+1(λ) = ÃkX̃k(λ) + B̃kŨk(λ),
Ũk+1(λ) = C̃kX̃k(λ)− λW̃kX̃k+1(λ) + D̃kŨk(λ),

and W̃k ≥ 0.

Proof. X̃T
k (λ)Ũk(λ) = PTXT

k (λ)Uk(λ)P is symmetric,

rank (X̃T
k (λ), Ũ

T
k (λ)) = rank (X

T
k (λ), U

T
k (λ)) = n

by Definition 1 (i). The system is symplectic, because by (A1),

ÃT
k C̃k = QkAT

k CkQT
k , B̃T

k D̃k = QkBT
k DkQT

k are symmetric,
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and ÃT
k D̃k − C̃T

k B̃k = Qk(AT
k Dk − CT

k Bk)QT
k = QkQT

k = I.

(C4) X12(k, λ) = 0, X22(k, λ) = 0 for all λ ∈ R.

Proof. This holds by the construction of P.

(C5) X11(k) := X11(k, λ1) is invertible, X21(k, λ1) = 0, U12(k, λ1) =
0, and U22(k) := U22(k, λ1) is an invertible, lower triangular matrix.

Proof. This is true by the construction of Qk and the corresponding
calculations.

(C6) X̃11(k) := X̃11(k, λ1) =
(

X11(k) 0

0 0

)
, X̃21(k, λ1) = 0, X̃12(k, λ) =

0 and X̃22(k, λ) = 0 for all λ ∈ R, Ũ12(k, λ1) = 0, Ũ22(k) := Ũ22(k, λ1)
is an invertible, lower triangular matrix. Moreover,

Ũk(λ1) =
(
U11(k, λ1) 0
U21(k, λ1) U22(k)

)
where U22(k) ∈ R(n−rk)×(n−rk),

U22(k) =
( ˜̃U22(k) 0

∗ Ũ22(k)

)
where ˜̃U22(k) ∈ R(rk+1−rk)×(rk+1−rk),

such that ˜̃U22(k) is also an invertible, lower triangular matrix.

Proof. This follows directly from (C5) and the arranged block
structure.

(C7) B12(k) = D12(k) = 0, A21(k) = B21(k) = 0, B22(k) = 0,
AT

22(k)D22(k) = I so that A22(k) and D22(k) are invertible.

Proof. It follows from (C3), (C4), (C5) and (C6) that

0 = X12(k + 1, λ1) = B12(k)Ũ22(k)

so that B12(k) = 0 (since Ũ22(k) is invertible),

0 = X22(k + 1, λ1) = B22(k)Ũ22(k) so that B22(k) = 0,

0 = U12(k + 1, λ1) = D12(k)Ũ22(k) so that D12(k) = 0.
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Hence by (C3), in particular simplecticity, and from what we have
shown, we have(

I 0
0 I

)
=

(
AT

11 AT
21

AT
12 AT

22

)
(k)

(
D11 0
D21 D22

)
(k)

−
(
CT

11 CT
21

CT
12 CT

22

)
(k)

(
B11 0
B21 0

)
(k),

and this implies that

I = AT
22(k)D22(k), 0 = AT

21(k)D22(k) so that A21(k) = 0,

because D22(k) is invertible by the first equation. Moreover,(
BT

11 BT
21

0 0

)
(k)

(
D11 0
D21 D22

)
(k) is symmetric,

and therefore BT
21(k)D22(k) = 0 so that B21(k) = 0.

(C8) The matrix
(

A11(k) B11(k)

C11(k) D11(k)

)
− λ

(
0 0

W11(k)A11(k) W11(k)B11(k)

)
is

symplectic for all λ ∈ R and W11(k) ≥ 0.

Proof. We have to prove (A1) for the corresponding matrices. First
W11(k) ≥ 0 by (C3) and its definition. By (A1) and using (C3) and
(C7), we have that

ÃT
k C̃k =

(
AT

11(k) 0
AT

12(k) AT
22(k)

) (
C11(k) C12(k)
C12(k) C22(k)

)
and

B̃T
k D̃k =

(
BT

11(k) 0
0 0cr

)(
D11(k) 0
D12(k) D22(k)

)
are symmetric,

and ÃT
k D̃k − C̃T

k B̃k = I. Hence AT
11(k)C11(k) and BT

11(k)D11(k) are
symmetric, and AT

11(k)D11(k)− CT
11(k)B11(k) = I.

(C9) U12(k, λ) and U22(k, λ) do not depend on λ so that U12(k, λ) =
U12(k, λ1) = 0 and U22(k, λ) = U22(k) is an invertible, lower triangular
matrix for all λ ∈ R.
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Proof. This assertion is true for k = 0 by our construction, see (C5).
It follows inductively, using (C3), (C6) and (C7) that

U12(k + 1, λ) = D11(k)Ũ12(k, λ) +D12(k)Ũ22(k, λ)

= D11(k)Ũ12(k, λ) = 0,

U22(k + 1, λ) = D21(k)Ũ12(k, λ) +D22(k)Ũ22(k, λ)

= D22(k)Ũ22(k, λ) = U22(k + 1, λ1) = U22(k + 1)

for all λ ∈ R.

(C10) X21(k, λ) = 0 for all λ ∈ R and X11(k, λ) is invertible for all
λ ∈ R \ N .

Proof. It follows from (C3), (C4) and (C9) that

X̃T
k (λ)Ũk(λ) =

( ∗ XT
21(k, λ)U22(k)

0 0

)
is symmetric.

Hence XT
21(k, λ)U22(k) = 0 so that X21(k, λ) = 0 for all λ ∈ R because

U22(k) is invertible. This last conclusion, (A3), and (C2) imply that

rankX11(k, λ) = rank X̃k(λ) = rankXk(λ) = rankXk(λ1) = rk

so that X11(k, λ) is invertible for all λ ∈ R \ N .

(C11) We have for all λ ∈ R:

X̃k(λ) =
(
X11(k, λ) 0

0 0

)
, Ũk(λ) =

(
U11(k, λ) 0
U21(k, λ) U22(k)

)
,

X̃11(k, λ) =
(
X11(k, λ) 0

0 0

)
, Ũ11(k, λ) =

(
U11(k, λ) 0

∗ ˜̃U22(k)

)
,

X11(k + 1, λ) = A11(k)X̃11(k, λ) +B11(k)Ũ11(k, λ),

U11(k + 1, λ) = C11(k)X̃11(k, λ)− λW11(k)X11(k + 1, λ)

+D11(k)Ũ11(k, λ),

XT
11(k, λ)U11(k, λ) and X̃T

11(k, λ)Ũ11(k, λ) are symmetric,
rank (XT

11(k, λ), U
T
11(k, λ)) = rk.
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Proof. Besides the last assertion, the other statements follow
from what we have shown so far, more precisely from (C4), (C10),
(C9), (C6), (C7) and (C3). The last assertion follows by induction:
rank (XT

11(0), UT
11(0)) = rankX11(0) = r0, and

rank (XT
11(k + 1, λ), U

T
11(k + 1, λ))

= rank (X̃T
11(k, λ), Ũ

T
11(k, λ))

= rank
(
XT

11(k, λ) UT
11(k, λ) ∗

0 0 ˜̃U22(k)

)

= rank (XT
11(k, λ), U

T
11(k, λ)) + rank

˜̃U22(k)

= rk + (rk+1 − rk) = rk+1,

because ˜̃U22(k) is invertible by (C6).

(C12) Q11(k + 1, λ) := U11(k + 1, λ)X−1
11 (k + 1, λ) is symmetric and

d

dλ
Q11(k + 1, λ) ≤ −W11(k) ≤ 0 for all λ ∈ R \ N .

Proof. First Q11(k + 1, λ) is symmetric by (C11). In the following
calculation we omit the arguments (k), (k, λ), (k + 1, λ), respectively,
and we put ′ = (d/dλ). Using (C11) we obtain that

d

dλ
Q11(k + 1, λ) = U ′

11X
−1
11 − U11X

−1
11 X

′
11X

−1
11

= (XT
11)

−1(XT
11U

′
11 − UT

11X
′
11)X

−1
11

= (XT
11)

−1(XT
11{C11X̃

′
11 − λW11X

′
11

−W11X11 +D11Ũ
′
11} − UT

11X
′
11)X

−1
11

= −W11 + (XT
11)

−1[∗]X−1
11 ,
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where, using (C11), (C8) and (A1) for the matrix in (C8),

[∗] = {X̃T
11A

T
11 + ŨT

11B
T
11}{C11X̃

′
11 +D11Ũ

′
11}

− λXT
11W11X

′
11 − {X̃T

11C
T
11 + ŨT

11D
T
11}{A11X̃

′
11 +B11Ũ

′
11}

+ λXT
11W11X

′
11

= X̃T
11(A

T
11C11 − CT

11A11)X̃ ′
11

+ X̃T
11(A

T
11D11 − CT

11B11)Ũ ′
11 + ŨT

11(B
T
11D11 −DT

11B11)Ũ ′
11

+ ŨT
11(B

T
11C11 −DT

11A11)X̃ ′
11

= X̃T
11Ũ

′
11 − ŨT

11X̃
′
11

=
(
XT

11 0
0 0

) (
U ′

11 0
∗ ∗

)
−

(
UT

11 ∗
0 ∗

)(
X ′

11 0
0 0

)

= X̃T
11

(
U ′

11X
−1
11 − U11X

−1
11 X

′
11X

−1
11 0

0 0

)
X̃11

= X̃T
11

(
Q′

11(k, λ) 0
0 0

)
X̃11 ≤ 0

by induction on k because (d/dλ)Q11(0, λ) ≡ 0. Hence, (C12) holds.

(C13) Dk(λ) := Xk(λ)X
†
k+1(λ)Bk = QT

k

(
D̃k(λ) 0

0 0

)
Qk with

D̃k(λ) := X̃11(k, λ)X−1
11 (k + 1, λ)B11(k),

indDk(λ) = ind D̃k(λ) and
D̃k(λ) = BT

11(k)(D11(k)−λW11(k)B11(k))−BT
11(k)Q11(k+1, λ)B11(k)

for all λ ∈ R \ N .

Proof. It follows from easy properties of the Moore-Penrose inverse
as, for example, the behavior under orthogonal transformations (note
that P and Qk are orthogonal matrices), and from (C11) and (C7) that

Dk(λ) = QT
k X̃k(λ)PT (QT

k+1X̃k+1(λ)PT )†QT
k+1B̃kQk

= QT
k X̃k(λ)PTPX̃†

k+1(λ)Qk+1QT
k+1B̃kQk

= QT
k

(
X̃11(k, λ) 0

0 0

) (
X−1

11 (k + 1, λ)B11(k) 0
0 0

)
Qk

= QT
k

(
D̃k(λ) 0
0 0

)
Qk.
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Hence, indDk(λ) = ind D̃k(λ). Moreover, the last formula for D̃k(λ)
follows from (3), (C8) and (C11), because X11(k+1, λ) is invertible for
all λ ∈ R \ N .

A similar calculation as in the proof above shows that

Qk(λ) := Xk(λ)X
†
k(λ)Uk(λ)X

†
k(λ) = QT

k

(
Q11(k, λ) 0

0 0

)
Qk

for all λ ∈ R \ N , see (2) and (C12).
Altogether, the above conclusions lead to the following local result.

Theorem 2 (Local oscillation theorem). Assume (A1), let N ∈ N
and suppose that (X,U) = (Xk(λ), Uk(λ))k∈Z is a conjoined basis of (1)
such that X0(λ) ≡ X0 and U0(λ) ≡ U0 do not depend on λ. Moreover
assume that λ1 ∈ R exists such that (A3) holds. Then for all λ0 ∈ R
and 0 ≤ k ≤ N ,

indDk(λ0+)− indDk(λ0−) = defXk+1(λ0)− defXk(λ0) + rk+1 − rk,

where Dk(λ) := Xk(λ)X
†
k+1(λ)Bk, as in (2) or (C13).

Proof. Let k ∈ {0, . . . , N} and λ0 ∈ R. By (C8) and (A1), the
matrix BT

11(k)D11(k) is symmetric and rank (BT
11(k), DT

11(k)) = rk+1.
Hence, by [14, Corollary 3.1.3], a symmetric matrix S̃1 and a matrix
S2 exist such that

DT
11(k) = BT

11(k)S̃1+S2, rank (BT
11(k), S2) = rk+1,KerS2 = ImB11(k).

We apply [14, Theorem 3.4.1, Index Theorem] (cf. also [13]) with the
same notation. To do so, we put m = rk+1, t = λ0 − λ,

R1 := DT
11(k)− λ0B

T
11(k)W11(k), R2 := BT

11(k),
X := X11(k + 1, λ0), U := −U11(k + 1, λ0),

X(t) := X11(k + 1, λ0 − t), U(t) := −U11(k+1, λ0−t), and

R1(t) := R2S1(t) + S2 with S1(t) := S̃1 + (t− λ0)W11(k).
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By (C1) and (C10), there exists ε > 0 such that [λ0−ε, λ0+ε]\{λ0} ⊂
R \ N so that

X(t) is invertible for t ∈ [−ε, ε] \ {0}.

Moreover, by (C11), XT (t)U(t) = UT (t)X(t) for t ∈ [−ε, ε] and, of
course, X(t)→ X and U(t)→ U as t → 0. Finally by (C12),

S1(t) + U(t)X−1(t) = S̃1 − λW11(k)− U11(k + 1, λ)X−1
11 (k + 1, λ)

decreases for t = λ0 − λ ∈ [−ε, 0) and for t ∈ (0, ε]. Hence the
assumptions of [14, Theorem 3.4.1] are satisfied. If we denote

M(t) = R1(t)RT
2 +R2U(t)X−1(t)RT

2 ,

Λ(t) = R1(t)X(t) +R2U(t), Λ = R1X +R2U,

thenM(t) = D̃k(λ0− t) by (C13), Λ(t) = X̃11(k, λ0− t) by (C11), (C8)
and (3). It follows from (C10) and (C11) that

def Λ(0+) = rk+1 − rk and defΛ = rk+1 − rk + defX11(k, λ0),

i.e., ind D̃k(λ0−) − ind D̃k(λ0+) = defX11(k, λ0) − defX11(k + 1, λ0),
so that by (C13) and (C11),

indDk(λ0+)−indDk(λ0−) = def X̃k+1(λ0)−n+rk+1−def X̃k(λ0)+n−rk,

which yields our assertion by the definitions of X̃k(λ) and X̃k+1(λ).

Remark 4. Note that, by (C1), for 0 ≤ k ≤ N ,

indDk(λ0+) = indDk(λ0−) for all λ0 ∈ R \ N .

Proof of Theorem 1. First the assumptions (A1) and (A2) imply
via the conclusions (7) of Remark 3 and (C1) that (A3) holds. Since
n1(λ) = n2(λ) for sufficiently small λ by (A1), we have to show that
(see Remark 4)

n1(λ0+)− n1(λ0−) = n2(λ0+)− n2(λ0−) for all λ0 ∈ N ,
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where N is a finite set by (C1). Since r0 = 0 by Definition 1 (ii),
i.e., X0 = 0 and rN+1 = n by Remark 3 (i), it follows from (8) and
Theorem 2 that

n1(λ0+)− n1(λ0−) =
N∑

k=0

{indDk(λ0+)− indDk(λ0−)}

=
N∑

k=0

{defXk+1(λ0)− defXk(λ0) + rk+1 − rk}

= defXN+1(λ0)− defX0(λ0) + rN+1 − r0

= defXN+1(λ0)− n+ n− 0
= defXN+1(λ0)
= n2(λ0+)− n2(λ0−),

which completes the proof.

Remark 5. In view of the results in [16] (see also [15]), in particular
because of [16, Remark 11, Lemma 12 and Theorem 16], Theorem 1
can be considered as a generalization of an old result of Jacobi [10,
Section 3].

4. General boundary conditions.

4.1 Separated boundary conditions. Now we consider discrete
eigenvalue problems with more general boundary conditions. First we
deal with so-called separated boundary conditions. This leads to the
following eigenvalue problem (Es), where N ∈ N is a given fixed integer
as before.

(Es){
xk+1 = Akxk+ Bkuk, uk+1 = Ckxk− λWkxk+1+Dkuk for 0≤k≤N

with R∗
0x0 +R0u0 = 0, R∗

N+1xN+1 + RN+1uN+1 = 0,

where R∗
0, R0, R

∗
N+1 and RN+1 are real n× n matrices such that

(A4)
{
rank (R∗

0, R0) = rank (R∗
N+1, RN+1) = n,

R∗
0R

T
0 = R0R

∗T
0 , R∗

N+1R
T
N+1 = RN+1R

∗T
N+1
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holds. Note that (Es) is the same as (E) if

R∗
0 = R∗

N+1 = I and R0 = RN+1 = 0.

By [14, Theorem 3.1.2], a matrix SN+1 ∈ Rn×n exists such that

(10) R∗
N+1R

T
N+1 = RN+1SN+1R

T
N+1 and SN+1 is symmetric.

Theorem 3.

Assume (A1), (A4), and let Z = (X,U) = (Xk(λ), Uk(λ))k∈Z be the
conjoined basis of (1) with

X0 = X0(λ) ≡ −RT
0 and U0 = U0(λ) ≡ R∗T

0 .

Moreover, suppose that

(A5) lim
λ→−∞

n1(λ) = 0, lim
λ→−∞

n2(λ) = 0 and lim
λ→−∞

n3(λ) = 0

holds, where n1(λ) denotes the number of focal points of (X,U) in the
interval (0, N + 1], n2(λ) denotes the number of eigenvalues of (Es)
which are less than λ and n3(λ) = indDN+1(λ) with DN+1(λ) :=
XN+1(λ)X

†
N+2(λ)BN+1 with

(11){
XN+2(λ) := (BN+1SN+1+I−BN+1B†

N+1)XN+1(λ)+BN+1UN+1(λ),
BN+1 := RT

N+1RN+1and SN+1 as in (10).

Then

(12) n1(λ) + n3(λ) = n2(λ) for all λ ∈ R \ N ,

where the exceptional set

(13)

N := R \ {µ ∈ R : rankXk(µ) = max
λ∈R

rankXk(λ) for 0 ≤ k ≤ N+1

and detΛ(µ) �= 0} is finite,
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with

(14) Λ(λ) := R∗
N+1XN+1(λ) +RN+1UN+1(λ).

Proof. Since X0 and U0 satisfy the first boundary condition of (Es),
i.e., R∗

0X0 +R0U0 = 0, it follows easily that λ is an eigenvalue of (Es)
if and only if

detΛ(λ) = 0,

and then def Λ(λ) is its multiplicity.

It follows from [14, Corollary 3.1.3] that R∗
N+1d1 + RN+1d2 = 0

if and only if d1 ∈ ImRT
N+1 and d2 + SN+1d1 ∈ KerRN+1 if and

only if R̃1d1 + R̃2d2 = 0 for R̃1 := BN+1SN+1 + I − BN+1B†
N+1,

R̃2 := BN+1, because Ker R̃2 = KerRN+1, Im R̃T
2 = ImRT

N+1 and
rank (R̃1, R̃2) = n, R̃1R̃

T
2 = BN+1SN+1BT

N+1 is symmetric. Hence
(R̃1, R̃2) = C(R1, R2) where C is an invertible matrix, so that for
λ ∈ R,

(15) XN+1(λ) = CΛ(λ) with an invertible matrix C ∈ Rn×n.

Now we construct an equivalent eigenvalue problem (Ẽ) to which
Theorem 1 applies (cf. [7]):

(Ẽ)(
xk+1

uk+1

)
= S̃k(λ)

(
xk

uk

)
for − 1≤k≤N+1 with x−1 = xN+2 = 0.

We define for all λ ∈ R,

S̃k(λ) := Sk(λ) for 0 ≤ k ≤ N − 1 (see Section 2),
S̃−1(λ) :=

(
R∗T

0 K −RT
0

RT
0 K R∗T

0

)
with K := (R∗

0R
∗T
0 +R0R

T
0 )

−1,

S̃N (λ) := SN (λ) +
(

0 0
(SN+1 − B†

N+1)AN (SN+1 − B†
N+1)BN

)
,

S̃N+1(λ) :=
(
I BN+1

0 I

)
.
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By (A4) and (A1), K exists and the matrices S̃k(λ) are symplectic for
−1 ≤ k ≤ N+2 and λ ∈ R. Let Z̃ = (X̃k, Ũk)N+2

k=−1 denote the principal
solution at −1 of this symplectic difference system, i.e., X̃−1 = 0 and
Ũ−1 = I. Then X̃0 = −RT

0 = X0 and Ũ0 = R∗T
0 = U0, so that

X̃k = Xk and Ũk = Uk for 0 ≤ k ≤ N . Moreover,

X̃N+1 = XN+1 and ŨN+1 = UN+1 + (SN+1 − B†
N+1)XN+1,

and X̃N+2 = XN+2 as defined in (11). If ñ1(λ) and ñ2(λ) are
defined according to Theorem 1 for the eigenvalue problem (Ẽ), then
ñ1(λ) = ñ2(λ) for all λ ∈ R \ N by Theorem 1 using (15), because
the definitions of N by (6) and (13) coincide. Moreover, again by (11),
Definition 1 (iv) and our notation,

n2(λ) = ñ2(λ) and n1(λ) + n3(λ) = ñ1(λ) for λ ∈ R \ N ,

which completes the proof.

Of course, Remark 3 (i) and (ii) apply here accordingly. We summa-
rize the conclusions. The assumption limλ→−∞ n2(λ) = 0 means that
detΛ(λ) �≡ 0, and limλ→−∞(n1(λ) + n3(λ)) = 0 means that (X,U)
has no focal points in the interval (0, N +2], where Λ(λ) and XN+2(λ)
are defined by (14) and (11). Using the above construction, the last
assertion is equivalent with the positivity of a corresponding quadratic
form via the Reid roundabout theorem [6, Theorem 1].

4.2 The general case. ForN ∈ N we consider the following discrete
eigenvalue problem

(Eg){
xk+1 = Akxk + Bkuk, uk+1 = Ckxk − λWkxk+1 +Dkuk for 0≤k≤N

with the boundary conditions R1

( −x0

xN+1

)
+R2

(
u0

uN+1

)
= 0,

where R1 and R2 are real 2n× 2n matrices such that
(A6) rank (R1, R2) = 2n and R1R

T
2 = R2R

T
1

holds. As in Section 4.1, a matrix S1 ∈ R2n×2n exists such that

(16) R1R
T
2 = R2S1R

T
2 and S1 is symmetric.
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Theorem 4. Assume (A1), (A6), and let Z = (X,U), Z̃ = (X̃, Ũ) be
the principal solution and the associated solution at 0 of (1) according
to Definition 1 (ii). Moreover, suppose that (A5) of Theorem 3 holds.
Then the assertion (12) of Theorem 3 holds, where N , n1(λ), n2(λ),
n3(λ), via the principal solution, are given as in Theorem 3, but we
consider the above eigenvalue problem (Eg) instead of (Es), and we
define Λ(λ) and DN+1(λ) instead of (14) and (11) by

(17)




Λ(λ) := R1X̄N+1(λ) +R2ŪN+1(λ) ∈ R2n×2n with

X̄k(λ) :=
(

0 I

Xk(λ) X̃k(λ)

)
, Ūk(λ) :=

(
I 0

Uk(λ) Ũk(λ)

)
for 0 ≤ k ≤ N + 1,

DN+1(λ) := X̄N+1(λ)X̄
†
N+2(λ)B and

X̄N+2(λ) := (BS1 + I − BB†)X̄N+1(λ) + BUN+1(λ),
B := RT

2 R2 and S1 as in (16).

Proof. We introduce a “big” eigenvalue problem (Ēs) of size 4n× 4n
with separated boundary conditions, which is equivalent with (Eg)

(Ēs)



xk+1 = Ākxk + B̄kuk, uk+1 = C̄kxk − λW̄kxk+1 + D̄kuk

for 0 ≤ k ≤ N,

with R∗
0x0 +R0u0 = 0, R∗

N+1xN+1 +RN+1uN+1 = 0,

where the 2n× 2n matrices occurring are defined as follows:

Āk =
(
I 0
0 Ak

)
, B̄k =

(
0 0
0 Bk

)
, C̄k =

(
0 0
0 Ck

)
,

D̄k =
(
I 0
0 Dk

)
, W̄k =

(
0 0
0 Wk

)
,

R∗
0 =

(
I I
0 0

)
, R0 =

(
0 0
−I I

)
, R∗

N+1 = R1, RN+1 = R2.

A simple calculation shows that (A1) holds for the big difference
system correspondingly. The definitions of R∗

0, R0, R
∗
N+1, RN+1 and

(A6) imply that (A4) holds. Moreover, by (17), X̄0(λ) ≡ −RT
0 ,

Ū0(λ) ≡ R∗T
0 and (X̄k(λ), Ūk(λ))N+1

k=0 satisfies the big difference sys-
tem of our eigenvalue problem (Ēs). Hence the assumptions of The-
orem 3 are satisfied for (Ēs). Since rankXk(λ) = rank X̄k(λ) and
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KerXk+1(λ) ⊂ KerXk(λ) if and only if Ker X̄k+1(λ) ⊂ Ker X̄k(λ), we
obtain Theorem 4 directly from Theorem 3, provided we prove that

(18) indDk(λ) = ind D̄k(λ) for all 0 ≤ k ≤ N, λ ∈ R \ N ,

where Dk(λ) = Xk(λ)X
†
k+1(λ)Bk, D̄k(λ) = X̄k(λ)X̄

†
k+1(λ)B̄k are

defined as usual. We show that

(19) D̄k(λ) =
(
0 0
0 Dk(λ)

)
for all 0 ≤ k ≤ N, λ ∈ R \ N

holds, which implies (18).

For the proof of (19), let 0 ≤ k ≤ N , λ ∈ R \ N , and put
X̄†

k(λ) =
( ∗ P

∗ Q

)
. Then, by our notation,

D̄k(λ) =
(

0 I
Xk(λ) X̃k(λ)

) (
0 PBk

0 QBk

)

=
(
0 QBk

0 XkPBk + X̃kQBk

)
=

(
0 0
0 XkPBk

)
,

since QBk = 0 by the symmetry of D̄k(λ) (cf. Remark 1). Since
KerXk+1(λ) ⊂ KerXk(λ) (see (C2)) we have the following formulas
(where we omit the argument λ): Bk = Xk+1X

†
k+1Bk (see Remark 1

(i)) Xk = XkX
†
k+1Xk+1 (see [6, Remark 1 (v)] or [4, Lemma A5])

and P = (S−1/2Xk+1)†S−1/2 with S = I + X̃X̃T (see [4, Lemma A6]
or [5, Remark 8]). Using these identities and the basic property of
Moore-Penrose inverses X = XX†X, we obtain that

XkPBk= XkX
†
k+1Xk+1((S−1/2Xk+1)†S−1/2)Xk+1X

†
k+1Bk

= XkX
†
k+1S

1/2(S−1/2Xk+1)(S−1/2Xk+1)†(S−1/2Xk+1)X
†
k+1Bk

= XkX
†
k+1S

1/2S−1/2Xk+1X
†
k+1Bk

= XkX
†
k+1Bk

= XkX
†
k+1Bk

= Dk(λ),

which completes the proof.
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