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TRUNCATED ERGODIC THEOREMS
FOR NON-SINGULAR AUTOMORPHISMS

CESAR E. SILVA

1. Introduction. In this paper we study ergodic theorems for invert-
ible measurable non-singular transformations. We use a skew product
construction introduced by Maharam in [6] to show the convergence
of some new ergodic ratios and the existence of subsequences of in-
tegers for which a known ergodic ratio converges. We then look at
limits of truncated ergodic ratios, and study these limits as the con-
stants that bound the Radon-Nikodym derivatives increase to infin-
ity. The study of these limits is motivated by an attempt to obtain
the Hurewicz-Halmos-Oxtoby ergodic theorem for non-singular trans-
formations (Theorem 1.2) from the Hopf ergodic theorem for measure
preserving transformations (Theorem 1.1). We obtain some partial re-
sults in this direction. For example, we show (Theorem 3.2) that, for
type III1 automorphisms, a truncated limit of Maharam (Theorem 3.1)
is in fact equal to the Hurewicz-Halmos-Oxtoby limit. (Theorem 3.2
has also been obtained independently by D. Maharam (unpublished).)
The last section studies other related truncated limits.

Henceforth (X, B, μ) will denote a σ-finite measure space; sometimes
we shall simply write X or (X, μ) to denote this space. A non-singular
automorphism of (X, B, μ) is an invertible transformation T such that
A is measurable if and only if TA is measurable and A is null if and
only if TA is null. For any integer n, μTn is a measure and there exist
Radon-Nikodym derivatives ωn(x) = dμTn/dμ(x). We usually write
ω1 as ω. One can show that the following relation holds a.e.:

(1.1) ωi+j(x) = ωj(x) ωi(T jx).

A non-null set W is said to be wandering if T−nW ∩ W = ∅ for
n > 0. An automorphism T is conservative (or incompressible) if it
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admits no wandering sets; it is measure preserving if μT−1A = μA, for
all measurable sets A, and it is ergodic if, whenever A is T -invariant,
i.e., T−1A = A, then A = ∅ (mod 0) or A = X (mod 0).

Our results are in the spirit of obtaining ergodic theorems for non-
singular transformations from the Hopf ergodic theorem for measure
preserving transformations, by an appropriate use of the Maharam skew
product (cf. [6]). For completeness we state the classical results that
are used, and sketch a proof of the Hopf ergodic theorem.

We introduce some notation to be used throughout. All functions
are measurable by definition or by construction. For a function f and
integer n, write

f (n)(x) =
n∑

i=0

f(T ix)ωi(x)

(Note that, when T is measure preserving, f (n)(x) =
∑n

i=0 f(T ix).)

LEMMA 1.1. (MAXIMAL ERGODIC LEMMA). Let T be a measure
preserving automorphism of a σ-finite measure space X, and f be such
that f+ or f− is integrable in X. If E = ∪∞

n=0{x : f (n)(x) > 0}, then
∫

E

f dμ ≥ 0.

PROOF. An elementary proof for f ∈ L1 can be found in [2]. (Jones
assumes that μX < ∞ but one can easily adapt the proof to the infinite
σ-finite case. If f− is integrable choose a non-decreasing sequence of
integrable gk converging to f+. Let fk = gk − f−; then fk ∈ L1 and
they converge monotonically to f . Let Ek = ∪∞

n=0{x : f
(n)
k (x) > 0}

and E = lim Ek (the Ek are monotone). Then χEk
→ χE . By the

part already proved we have
∫

Ek
fkdμ ≥ 0, which, by taking limits as

k → ∞, gives the desired result. The case when f+ is integrable is
similar.

COROLLARY 1.1. Let T be a measure preserving automorphism of
a σ-finite measure space X. Let f be integrable and g measurable
and non-negative. If Eα = ∪∞

n=0{x : f (n)(x) > αg(n)(x)}, then
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∫
Eα

f dμ ≥ α
∫

Eα
g dμ. If Eβ = ∪∞

n=0{x : f (n)(x) < βg(n)(x)},
then

∫
Eβ f dμ ≤ β

∫
Eβ g dμ.

The original form of the following theorem is due to Hopf, but we
state Maharam’s version of Halmos’ improvement of the theorem (cf.
[1, 6]). Since, in many of our statements below, we are going to consider
a pair of functions f, g such that f is integrable and g is measurable
non-negative such that g(x) = 0 implies f(x) = 0, we decide to call
such a pair (f, g) a Hopf pair.

THEOREM 1.1. (HOPF ERGODIC THEOREM). Let T be a measure
preserving automorphism of a σ-finite measure space and (f, g) a Hopf
pair. If T is conservative, then

h(x) = lim
n→∞

n∑
i=0

f(T ix)/
n∑

i=0

g(T ix)

exists and is finite and invariant a.e. Furthermore, for every invariant
set A with

∫
A

g dμ < ∞,

∫
A

f dμ =
∫

A

h g dμ.

PROOF. Let Z be the union of all T -invariant sets of positive measure
where g vanishes. Clearly Z is invariant (and measurable). The theo-
rem is obviously true for z ∈ Z (with the convention 0/0 = 0). Now
restrict T to X−Z, here g does not vanish on any invariant set of posi-
tive measure (it is invariantly positive). When g is invariantly positive,
the conservativity of T implies that limn g(n)(x) = ∞ a.e. [1, Theorem
3]. This gives that lim inf f (n)(x)/g(n)(x) and lim sup f (n)(x)/g(n)(x)
are invariant and standard arguments deduce the theorem from Corol-
lary 1.1.

The following theorem is originally due to Hurewicz but it is stated
as improved by Halmos and Oxtoby (cf. [1]). One can obtain it
from Lemma 1.1 and Corollary 1.1 which are also true for non-singular
automorphisms.
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REMARK 1.1. Lemma 1.1 for the case of non-singular automorphisms
(in fact, even for non-singular endomorphisms) can be obtained from
the Hopf maximal lemma for positive contractions (see, e.g., [4, p. 8]).
One could then deduce the following Theorem 1.2 from the version
of Corollary 1.1 for non-singular automorphisms in a similar way as
Theorem 1.1.

THEOREM 1.2. (HUREWICZ-HALMOS-OXTOBY ERGODIC THEOREM)
Let T be a conservative non-singular automorphism of a σ-finite mea-
sure space and (f, g) be a Hopf pair. The following limit exists and is
finite and T -invariant a.e.:

h(x) = lim
n→∞ f (n)(x)/g(n)(x).

Furthermore, for every invariant set A with
∫

A
g dμ < ∞,

∫
A

f dμ =
∫

A

h g dμ.

The author is indebted to Dorothy Maharam for several helpful
discussions and to the referee for suggesting several improvements. This
work is based on part of the author’s Ph.D. thesis written under the
direction of Professor Maharam.

2. Some ergodic theorems. We begin this section by outlining the
skew product introduced in [6]. Let T be a non-singular automorphism
of X. Let X∗ = X × R+ and define T ∗ on X∗ by T ∗(x, y) =
(Tx, y/ω(x)). Let μ∗ = μ × dy, where dy is Lebesgue measure on
R, be the measure on the product X∗. It readily follows that T ∗ is a
measure preserving automorphism of X∗. Also, from (1.1), it follows
that

(2.1) T ∗i(x, y) = (T ix, y/ωi(x)),

for all integers i. In the proofs below we shall make use of the following
theorem.
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THEOREM 2.1. [6] The automorphism T ∗ is measure preserving
on (X∗, μ∗). Furthermore, T ∗ is conservative if and only if T is
conservative.

Now we define some other products and transformations. One can
show that they are all isomorphic to T ∗, and thus have the same
properties as T ∗. In the proofs below we shall make use of the
product that makes the proof more apparent. The product measure
to be considered is indicated in each case. (Skew products isomorphic
to T ∗ were discovered independently after [6] and have been used
extensively see, e.g., [5, 7].)

T+ : X × R, μ × e−ydy → X × R, μ × e−ydy

(x, y) 	→ (Tx, y + ln ω(x))
T− : X × R, μ × eydy → X × R, μ × eydy

(x, y) 	→ (Tx, y − ln ω(x))
Tα : X × R+, μ × d(y1/α) → X × R+, μ × d(y1/α)

(x, y) 	→ (Tx, y/ωα(x)) (α > 0)

THEOREM 2.2. Let T be a conservative non-singular automorphism
of a σ-finite measure space (X, μ), and let (f, g) be a Hopf pair. Then,
for every α > 1, 0 < β < 1, and almost all c > 0, the following limits
exist and are finite a.e.:

lim
n→∞

∑n
i=0 f(T ix)ωα

i (x) : ωi(x) < c∑n
i=0 g(T ix)ωα

i (x) : ωi(x) < c

lim
n→∞

∑n
i=0 f(T ix)ωβ

i (x) : ωi(x) > c∑n
i=0 g(T ix)ωβ

i (x) : ωi(x) > c

(The sums are to be interpreted so that a term is included only when
the condition after the colon is satisfied.)

PROOF. Without loss of generality we may assume that f is non-
negative. Below α may be > 1 or < 1. Write
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fα(x, y) = (1/y) f(x)χCα(x, y)

gα(x, y) = (1/y)g(x)χCα(x, y)

Cα = X × Dα, Dα =
{

(a,∞) if α > 1
(0, a) if α < 1 (some a > 0).

It follows that fα, gα are finite and measurable, gα is non-negative, and
gα(x, y) = 0 implies fα(x, y) = 0. We show that fα is integrable over
X× R+ with respect to the product measure μ×d(y1/α). This follows
from Fubini’s theorem, since

∫
X×R+

fα d(μ × y1/α) =
∫

X

f(x) dμ(x)
∫

Dα

y−1(1/α)y1/α−1 dy.

One notes that, for α > 1, the second integral becomes
∫ ∞

a
( 1

α )y1/α−2 dy

< ∞. If 0 < α < 1 one obtains
∫ a

0
(1/α)y1/α−2dy < ∞. The

summability of f completes the proof. Now apply Theorem 1.1 to
X ×R+, Tα, fα, gα to obtain that there exists a null set N∗ in X ×R+

such that, for every (x, y) ∈ X × R+ − N∗,
∑n

i=0 fα(T i
α(x, y))∑n

i=0 gα(T i
α(x, y))

converges to a finite limit. One can choose y0 such that, for almost all
x, (x, y0) /∈ N∗. Note that T i

α(x, y) = (T ix, y/ωα
i (x)). For α > 1, we

have

f∗
α(T ∗i

α (x, y0)) =
{

(1/y0)f(T ix)ωα
i (x), if ωi(x) < (y0/a))1/α,

0, otherwise.

We have a similar expression for gα(T i
α(x, y0)). Choose a so that

(y0/a)1/α = c. Then the above ratio becomes

(1/y0)
∑n

0 f(T ix)ωα
i (x) : ωi(x) < c

(1/y0)
∑n

0 g(T ix)ωα
i (x) : ωi(x) < c,

which gives the limit of part (a). The case of 0 < α < 1 is similar.

REMARK 2.1. Notice that g in the statement of Theorem 1.1 is
not required to be integrable so that gα in the proof above need
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not be integrable. Therefore, by letting gα(x, y) = (1/y1/α)g(x),
one can obtain the sum

∑n
0 g(T i)ωi(x) (no restriction on the ωi) in

the denominators of the limits above. Likewise, one could obtain∑n
0 g(T i)ωα

i (x) by taking gα(x, y) = (1/y)g(x). This remark plays
an important role in the theorems of §4.

We observe that the difficulty in obtaining the Hurewicz-Halmos-
Oxtoby ergodic theorem from the Hopf ergodic theorem (Theorem 1.1)
by means of skew products lies in that the measure of the space X∗

is always infinite. One can only obtain expressions where the Radon-
Nikodym derivatives are truncated at some constant c; the study of
these expressions, which we call c-truncated Hurewicz ratios, as the
constants c → ∞ is taken up in §3 and §4. Now we obtain some other
results in an attempt to overcome this difficulty.

Before proving the next theorem we recall the construction of the
induced transformation of Kakutani [3]. Let T be a conservative
automorphism of a σ-finite measure space (X, μ), and let A be a subset
of X of positive measure. By Poincaré recurrence, for almost all x ∈ A
there exists a least positive integer l(x) such that T l(x)x ∈ A. The
induced transformation TA on A is defined by TAx = T l(x)x. Then
TA is a measurable transformation on A that preserves the induced
measure on A whenever T is measure preserving. Furthermore, the
function l(x) is measurable.

THEOREM 2.3. Let T be a conservative non-singular automorphism
of (X, μ) and f an integrable function. There exists an integer-valued
function l(i, x), measurable in x for each i and with l(i, x) → ∞ as
i → ∞ such that the following limit exists and is finite a.e.:

lim
n→∞

1
n

n−1∑
i=0

f(T l(i,x)x)ωl(i,x)(x).

Furthermore, when T ∗ is ergodic (i.e., T is type III1, cf. [8]) the limit
is 0 if μX = ∞, and if μX < ∞, then, for any 0 < c < 1, one can
choose l(i, x) so that the limit equals (c/μX)

∫
f dμ.

PROOF. Let f∗(x, y) = e−yf(x) and let T− be as defined before. Take
any subset A of finite positive measure in R and write A∗ = X × A.
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The induced automorphism S∗ = T−
A is measure preserving on the

space (A∗, μ × eydy). Furthermore, it can be readily checked that
f∗ ∈ L1(A∗). Note that

S∗(x, y) = (T−)n(x,y)(x, y)

for some integer-valued measurable function n(x, y). The exponent for
S∗2 in T− is n(x, y) + n(Tn(x,y)(x), y − ln ωn(x,y)(x)). Let p(i, x, y) be
the exponent for S∗i

, i.e.,

S∗i

(x, y) = (T−)p(i,x,y)(x, y);

then p(i, x, y) goes to ∞ with i. Now observe that

f∗(S∗i

(x, y)) = e−yf(T p(i,x,y)x)ωp(i,x,y)(x).

The Birkhoff ergodic theorem applied to S∗, f∗ (restricted to A∗)
implies that there exists a set B∗ = A∗(mod 0) such that, for all
(x, y) ∈ B∗, the following limit exists and is finite:

lim
n−>∞(1/n)

n−1∑
0

f∗(S∗i

(x, y)).

One can choose y0 so that, for μ-a.e. x ∈ X, (x, y0) ∈ B∗. Put
l(i, x) = p(i, x, y0). Then f∗(S∗i

(x, y0)) = f∗(T l(i,x)x, y0-ln ωl(i,x)(x))
= e−y0ωl(i,x)(x)f(T l(i,x)x). It follows that the limit above gives the
desired result.

When T ∗ is ergodic, then the limit above will equal

(
λA

/∫
A

eydy

)
(1/μX)

∫
f dμ.

If A = (0, a), a > 0, then
(
λA/

∫
A

ey dy
)

ranges between 0 and 1.

Finally we mention the following result whose interest lies in the fact
that it can be deduced from Theorem 1.1.
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THEOREM 2.4. Let T be a conservative non-singular automorphism
of (X, μ), and let (f, g) be a Hopf pair. Then there exists a positive
function γ(x, i) such that the following limit exists and is finite a.e.:

lim
n→∞

n∑
i=0

f(T ix)ωi(x)γ(x, i)
/ n∑

i=0

g(T ix)ωi(x)γ(x, i),

PROOF. In order to show that we can obtain this proof from Theorem
1.1 we recall briefly a well-known technique (cf. [1]) for deriving the
Hurewicz theorem from the Hopf theorem in the case when T admits an
invariant measure ν equivalent to μ. Let h = dμ/dν; then one can see
that ωi(x) = h(T ix)/h(x). Now fh is ν-summable and thus Theorem
1.1 implies the existence of the limit

lim
n→∞

n∑
i=0

f(T ix)h(T ix)
/ n∑

i=0

g(T ix)h(T ix).

Dividing both terms by h(x) one obtains the limit of Theorem 1.2.

Now the proof of the theorem. Let f∗(x, y) = (1/y)f(x), g∗(x, y) =
(1/y)g(x). We define a measure on X∗ equivalent to μ × λ so that f∗

is integrable with respect to this measure. Let ν on R+ be given by
ν(A) = ν1(A∩ I) + ν2(A∩ Ic), where I is the unit interval, Ic its com-
plement and ν1(y) = ydy (so that

∫ 1

0
(1/y)dν1 < ∞), ν2(y) = (1/y)dy

(so that
∫ ∞
1

(1/y)dν2 < ∞). Let ν∗ = μ × ν. Then ν∗ is equivalent to
μ∗ and f∗ is ν∗-summable. Now consider X∗, T ∗, f∗, g∗, ν∗ and note
that even though T ∗ does not preserve ν∗ it does admit an invariant
measure (namely μ∗) equivalent to ν∗. Therefore the remark at the
beginning of the proof applies and we obtain the existence of the limit

∑
f∗(T ∗i

(x, y))h(T ∗i

(x, y))∑
g∗(T ∗i(x, y))h(T ∗i(x, y))

,

where h = dν∗/dμ∗. The proof is completed by noting that f∗(T ∗i

(x, y))
= 1/y ωi(x)f(T ix) and letting γ(x, i) = h(T ∗i

(x, y0))/h(x, y0), where
y0 is chosen as in the proof of Theorem 2.2.

3. The limit of a truncated Hurewicz ratio. In [6] Maharam
showed the existence of the following limit and asked if one can obtain
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the Hurewicz-Halmos-Oxtoby ergodic theorem from this limit as m goes
to ∞:

lim
n→∞

∑n
i=0 f(T ix)ωi(x) : ωi(x) ∈ C∑n
i=0 g(T ix)ωi(x) : ωi(x) ∈ C

(where C = [y0/m, y0m], for some constant y0 > 0, and (f, g) is a Hopf
pair).

In this section we show that, in the case of type III1 transformations,
this limit equals the limit of the Hurewicz-Halmos-Oxtoby theorem. To
this end we first go back to the space X∗ where we make use of the
Hopf ergodic theorem. We introduce notation:

ωm
i (x, y) = ωi(x)χ[1/m,m](y/ωi(x)) (m > 1)

fm(x, y) = (1/y)f(x)χ[1/m,m](y)

It follows that

f (n)
m (x, y) =

n∑
i=0

fm(T ∗i(x, y)) = (1/y)
n∑

i=0

f(T ix)ωm
i (x, y).

REMARK 3.1. The notation above is in agreement with the fact that,
when T is measure preserving and h is any function, h(n)(x) denotes∑n

i=0 h(T ix). It is important to note that in f
(n)
m (x, y) one is applying

this operation to the function fm, which perhaps should be denoted by
f∗

m. Also, without loss of generality, we may and do assume that all
functions in §3 and §4 are non-negative.

From the proof of Theorem 3 (c) in [6] one obtains the following result
(cf. proof of Theorem 2.2).

THEOREM 3.1. [6] Let T be a conservative non-singular automor-
phism of a σ-finite measure space (X, μ) and let (f, g) be a Hopf pair.
The following limit exists and is finite a.e. in X∗:

lim
n→∞ f (n)

m (x, y)/g(n)
m (x, y).

Denote this limit by {f/g}m(x, y).
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The following well-known technical result will be used in several of
the proofs below.

LEMMA 3.1. If T is a conservative non-singular automorphism and
g≥0, then limn→∞ g(x)/g(n)(x)=0 and limn→∞ g(x)/g(n−1)(Tx)= 0.

PROOF. Let Z be the union of all invariant sets of positive measure
where g vanishes. On Z the limit above is 0 (under the convention
0/0 = 0). On X − Z, g is invariantly positive and hence

lim
n→∞ g(n)(x) = ∞ and lim

n→∞ g(n−1)(Tx) = ∞ [1, Theorem 3].

COROLLARY 3.1. If T is conservative and g ≥ 0, then

lim
n→∞ g(x)χ[1/m,m](y)/g(n−1)

m (T ∗(x, y)) = 0.

PROOF. Apply Lemma 3.1 to T ∗ and gm(x, y) = (1/y)g(x)χ[1/m,m](y).

LEMMA 3.2. If T ∗ is conservative then the function {f/g}m is T ∗-
invariant a.e.

PROOF. Let χ denote χ[1/m,m]. We have

f (n)
m (x, y)/ω(x) = (1/yω(x))

n∑
i=0

f(T ix)ωm
i (x, y)

= (1/yω(x))
[
f(x)χ(y) +

n−1∑
i=0

f(T i+1x)ωm
i+1(x, y)

]
.

Since
ωm

i+1(x, y)/ω(x) = ωi(Tx)χ(y/ωi+1(x)),
we have

f
(n)
m (x, y)

g
(n)
m (x, y)

=
f(x)χ(y)/ω(x) +

∑n−1
i=0 f(T i+1x)ωi(Tx)χ(y/ωi+1(x))

g(x)χ(y)/ω(x) +
∑n−1

i=0 g(T i+1x)ωi(Tx)χ(y/ωi+1(x))
.(3.1)
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Observe that

ωi(Tx)χ(y/ωi+1(x)) = ωi(Tx)χ(y/ω(x)ωi(Tx)) = ωm
i (Tx, y/ω(x)).

Therefore, a general term in one of the sums above has the form

f(T i(Tx))ωm
i (Tx, y/ω(x)).

Now we note that

f (n−1)
m (T ∗(x, y)) = f (n−1)

m (Tx, y/ω(x))

= (1/y)
n−1∑
i=0

f(T i(Tx))ωm
i (Tx, y/ω(x)).

So, after replacing and simplifying in (3.1), one obtains

f
(n)
m (x, y)

g
(n)
m (x, y)

=
f

(n−1)
m (T ∗(x, y))(y + f(x)χ(y)/ω(x)f (n−1)

m (T ∗(x, y)))

g
(n−1)
m (T ∗(x, y))(y + g(x)χ(y)/ω(x)g(n−1)

m (T ∗(x, y)))
.(3.2)

Since T ∗ is conservative, Corollary 3.1 gives

lim
n→∞ f(x)χ(y)/f (n−1)

m (T ∗(x, y))

= lim
n→∞ g(x)χ(y)/g(n−1)

m (T ∗(x, y)) = 0.

It follows from (3.2) that {f/g}m is T ∗-invariant.

We now give an application of Lemma 3.2 to the case when T ∗ is
ergodic. Before stating the next theorem we introduce some additional
notation. Recall that

ωm
i (x, y) = ωi(x)χ[1/m,m](y/ωi(x)) = ωi(x)χC(ωi(x)),

where C = [y/m, ym]. When it is clear from context that y has been
fixed, we omit writing the dependence on y and write simply ωm

i (x) for
ωm

i (x, y). For a given function f defined on X, write

f (n)
m (x) =

n∑
i=0

f(T ix)ωm
i (x).
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Note that f
(n)
m (x, y) = (1/y) f

(n)
m (x) and that, for fixed y0,

f (n)
m (x, y0)/g(n)

m (x, y0) = f (n)
m (x)/g(n)

m (x).

As mentioned in the introduction, Theorem 3.2 has been obtained
independently by D. Maharam.

THEOREM 3.2. Let T be a conservative non-singular automorphism
of non-atomic σ-finite measure space (X, μ), and let (f, g) be a Hopf
pair such that g is integrable. If T is type III1, then

lim
n→∞ f (n)

m (x)/g(n)
m (x) =

∫
X

f(x)dμ(x)
/∫

X

g(x) dμ(x).

PROOF. Since T ∗ is conservative ergodic, {f/g}m(x, y) is constant for
each fixed m (Lemma 3.2). Then, since

∫
X∗ g∗m < ∞, the Hopf ergodic

theorem applied to T ∗ obtains
∫

X∗
f∗

mdμ∗ =
∫

X∗
{f/g}m g∗m dμ∗.

This gives {f/g}m(x, y) =
∫

X
f(x)dμ(x)/

∫
X

g(x)dμ(x), for all m and
y; then one chooses y0 as in Theorem 2.2.

4. The limit of another truncated Hurewicz ratio. In this
section we investigate another truncated ratio. We use this new
ratio to define a class of transformations which we call of Hurewicz
type. This class includes those transformations admiting an invariant
measure (type II), but does not include type III1 transformations. If
it turns out Hurewicz type is the same as type II we would have a
new characterization of transformations admiting an invariant measure.
Finally, for Hurewicz type transformations, we show that the Hurewicz-
Halmos-Oxtoby ergodic theorem can be deduced from the Hopf ergodic
theorem.

Since we are not able to prove Theorem 4.2 below in the context of
X∗ (and hence in the context of measure preserving automorphisms),
we are forced to use the version of Corollary 1.1 for non-singular
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automorphisms. However, to use notation already introduced in §3,
we prove Theorem 4.1 and Lemma 4.2 in X∗ although they are used in
the proof of Theorem 4.2 only when restricted to X.

Our starting point is a slight modification of Theorem 3(c) in [6]. The
modification is obtained by redefining g∗ in the proof of Theorem 3(c)
of [6] by g∗(x, y) = (1/y)g(x) (cf. proof of Theorem 2.2 and Remark
2.1).

Thus, for any function g, write g∗(x, y) = (1/y)g(x) and

g
(n)
∗ (x, y) =

n∑
i=0

g∗(T ∗i

(x, y)) = (1/y)
n∑

i=0

g(T ix)ωi(x).

Hence g
(n)
∗ (x, y) = (1/y)g(n)(x).

THEOREM 4.1. Let T be a conservative automorphism of a σ-finite
measure space and (f, g) a Hopf pair. The following limit exists and is
finite for all (x, y) outside a null set N :

lim
n→∞ f (n)

m (x, y)/g
(n)
∗ (x, y).

Furthermore, we can assume the set NT ∗-invariant and fixed from now
on. Denote this limit by [f/g]m(x, y).

LEMMA 4.1. For every (x, y) /∈ N and m > 1,

[f/g]m(x, y) = [f/g]m(T ∗(x, y)) a.e.

PROOF. Let χ denote χ[1/m,m]. As in the proof of Lemma 3.2 we
have

f
(n)
m (x, y)

g
(n)
∗ (x, y)

=
f(x)χ(y)/ω(x) +

∑n−1
i=0 f(T i+1x)ωi(Tx)χ(y/ωi+1(x))

g(x)χ(y)/ω(x) +
∑n−1

i=0 g(T i+1x)ωi(Tx)

and, therefore,

f
(n)
m (x, y)

g
(n)
∗ (x, y)

=
f

(n−1)
m (T ∗(x, y))(y + f(x)χ(y)/ω(x)f (n−1)

m (T ∗(x, y)))

g
(n−1)
∗ (T ∗(x, y))(y + g(x)χ(y)/ω(x)g(n−1)

∗ (T ∗(x, y)))
.(4.1)
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From Lemma 3.1 and Corollary 3.1,

lim
n→∞ f(x)χ(y)/ω(x)f (n−1)

m (T ∗(x, y))

= lim
n→∞ g(x)χ(y)/ω(x)g(n−1)

∗ (T ∗(x, y)) = 0,

which gives T ∗-invariance.

REMARK 4.1. As mentioned before, the results above are used when
restricted to X. Now we restate them in this new context. We can
choose y0 almost arbitrarily so that Theorem 4.1 and Lemmas 4.1 hold
for all x outside a null set N0 in X. Note that, according to our
notation,

f (n)
m (x) = y0f

(n)
m (x, y0)

g(n)(x) = y0g
(n)
∗ (x, y0).

Therefore, for fixed y0,

f (n)
m (x, y0)/g

(n)
∗ (x, y0) = f (n)

m (x)/g(n)(x).

It follows that the following limit exists and is finite a.e.:

[f/g]m(x) = lim
n→∞ f (n)

m (x)/g(n)(x)

(for some fixed y0).

We now need a technical lemma.

LEMMA 4.2.

lim
m→∞[f/g]m(Tx, y0/ω(x)) = lim

m→∞[f/g]m(Tx, y0).

PROOF. Recall that

f (n)
m (x, y) = (1/y)

n∑
i=0

f(T ix)ωi(x)χ(y/ωi(x)),
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(where χ = χ[1/m,m]). Define

f
(n)
〈m〉(Tx, y) = (ω(x)/y)

n∑
i=0

f(T i+1x)ωi(Tx)χ(y/ω(x)ωi(Tx))

= f (n)
m (Tx, y/ω(x))

It suffices to show

lim
m→∞ lim

n→∞ f
(n)
〈m〉(Tx, y0)/g

(n)
∗ (Tx, y0)

= lim
m→∞ lim

n→∞ω(x)f (n)
m (Tx, y0)/g

(n)
∗ (Tx, y0).

This equality is a consequence of the following inequalities (Note that
the denominators in the two limits above are the same.):

(a) If ω(x) ≥ 1, then

ω(x)f (n)
m/ω(x)(Tx, y) ≤ f

(n)
〈m〉(Tx, y) ≤ ω(x)f (n)

mω(x)(Tx, y).

(b) If ω(x) < 1, then

ω(x)f (n)
mω(x)(Tx, y) ≤ f

(n)
〈m〉(Tx, y) ≤ ω(x)f (n)

m/ω(x)(Tx, y).

The inequalities can be established directly from the definitions. We
prove one inequality as an illustration. Assume ω(x) ≥ 1. Suppose
y/mω(x) < ωi(Tx) < ym/ω(x). Then

y/mω(x) < ωi(Tx) < ymω(x),

which means f
(n)
〈m〉(Tx, y) ≤ ω(x)f (n)

mω(x)(Tx, y).

LEMMA 4.3. Write [f/g](x) = limm→∞[f/g]m(x, y0). Then [f/g](x)
is T -invariant.

PROOF. We have

lim
m→∞[f/g]m(x) = lim

m→∞[f/g]m(x, y0)

= lim
m→∞[f/g]m(T ∗(x, y0)) = lim

m→∞[f/g]m(Tx, y0/ω(x))

= lim
m→∞[f/g]m(Tx, y0) = lim

m→∞[f/g]m(Tx).
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A transformation T is said to be of Hurewicz type if, for every
integrable f > 0,

hT (x) = lim
m→∞ lim

n→∞ f (n)
m (x)/f (n)(x) > 0 a.e.

Since limn→∞ f
(n)
m (x)/f (n)(x) is non-decreasing in m and f

(n)
m (x)/

f (n)(x) ≤ 1, the double limit above always exists.) It is immediate
that when T is measure preserving then hT = 1.

LEMMA 4.4. Suppose T is ergodic. If T admits an invariant measure,
then it is of Hurewicz type.

PROOF. Let ν be a T -invariant measure equivalent to μ and write
k(x) = dν/dμ(x). Let A∗ = {(x, y) :k(x)<y<2k(x)}. Then A∗ is T ∗-
invariant since k(Tx)ω(x) = k(x). Let f∗(x, y) = (1/y)f(x), fm(x, y) =
(1/y)f(x)χ[1/m,m](y). One finds that

∫
A∗ f∗dμ×λ = ln 2(

∫
X

f dμ)<∞.
Hence Theorem 1.1 applied to T ∗, fm, f∗ when restricted to A∗ gives
that

hT (x, y, m) = lim
n→∞

n∑
i=0

f(T ix)ωm
i (x)

/ n∑
i=0

f(T ix)ωi(x)

exists and is finite a.e. and

0 <

∫
A∗

fmdμ × λ =
∫

A∗
hT f∗ dμ × λ.

It follows that hT (x, y, m) > 0 on a set of positive measure in X∗ and
for all m > 1. Hence there exists y0 so that hT (x, y0, m) > 0 on a
set of positive measure in X. By Lemma 4.3 hT (x) is T -invariant,
hence constant. Since hT (x) = limm→∞ hT (x, y0, m), where the limit
is non-decreasing in m and hT constant, then hT > 0 a.e.

LEMMA 4.5. If T is type III1, then hT = 0 and so is not of Hurewicz
type.
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PROOF. We have seen that limn→∞ f
(n)
m (x, y)/f

(n)
∗ (x, y) is T ∗-invari-

ant. Thus, in a way similar to that in the proof of Theorem 3.2, since
T ∗ is ergodic and

∫
X∗ f∗ dμ×λ = ∞, the Hopf ergodic theorem implies

limn→∞ f
(n)
m (x, y)/f

(n)
∗ (x, y) = 0.

The following Theorem 4.2 could be deduced from Theorem 1.2; how-
ever we use it below (Theorem 4.3) to prove Theorem 1.2. One can also
obtain Theorem 4.2 if one assumes that limm→∞ limn→∞ f

(n)
m (x)/g

(n)
m (x)

exists. This follows from the equality(
g(n)

m (x)
/

g(n)(x)
)(

f (n)
m (x)

/
g(n)

m (x)
)

= f (n)
m (x)

/
g(n)(x).

If the converse of Lemma 4.4 is true, then Theorem 4.3 below is
trivial. However, one would then have a new characterization of
transformations admiting an invariant measure. In view of these results
it would be of interest to investigate further the properties of Hurewicz
type transformations.

THEOREM 4.2. Let T be a conservative automorphism of a σ-finite
measure space (X, μ) and (f, g) be a Hopf pair. The following limit
exists and is finite and T -invariant a.e.:

[f/g](x) = lim
m→∞ lim

n→∞ f (n)
m (x)/g(n)(x).

PROOF. It suffices to prove this for g invariantly positive and f ≥ 0.
Recall that [f/g](x) = limm→∞[f/g]m(x, y0) and [f/g]m(x, y) is finite
for almost all (x, y) and a non-decreasing function of m. Thus it suffices
to show it is bounded. Write A = {x : [f/g](x) = ∞}. Note that
A = {x : supm limn f

(n)
m (x)/g(n)(x) = ∞}. Since f (n)(x)/g(n)(x) ≥

f
(n)
m (x)/g(n)(x) for all m, n, if B = {x : limn f (n)(x)/g(n)(x) = ∞}

then A ⊂ B. Let Eα = {x : supn f (n)(x)/g(n)(x) > α} = ∪∞
n=0{x :

f (n)(x) > αg(n)(x)}. Then A ⊂ B ⊂ Eα for all α > 0. By Lemma
4.3, A is T -invariant. By applying the version of Corollary 1.1 for non-
singular transformations (cf. Remark 1.1) to T restricted to A, one
obtains ∫

Eα∩A

f dμ ≥ α

∫
Eα∩A

g dμ,
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which gives
∫

A
f dμ ≥ α

∫
A

g dμ, for all α > 0. But since f is integrable
and g invariantly positive, μA = 0.

THEOREM 4.3. If T is of Hurewicz type, then the Hurewicz-Halmos-
Oxtoby theorem can be deduced from the Hopf ergodic theorem.

PROOF. This follows from the following equality and Theorem 4.2.

f
(n)
m (x)

f (n)(x)
f (n)(x)
g(n)(x)

=
f

(n)
m (x)

g(n)(x)
.
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