CONTROLLING CONJUGACY CLASSES IN EMBEDDINGS OF LOCALLY FINITE GROUPS

SUSAN E. SCHUUR

Several recent papers in the theory of locally finite groups discuss the concept of π -homogeneity $[1,\ 2,\ 3]$. A locally finite group G is π -homogeneous for the set of primes π if, for every isomorphism $\mu: H \to K$ between finite π -subgroups of G, there is an $x \in G$ with $h\mu = h^x$ for all $h \in H$. The group G is a π -ULF group if it is locally finite, π -homogeneous and contains a copy of every finite group. One of the results of [3] is that any locally finite group G can be embedded in a π -ULF group of cardinality $\max\{\aleph_0,|G|\}$ in which, for each $p \notin \pi$, there are exactly two conjugacy classes of elements of order p. The purpose of this paper is to extend this result as follows:

THEOREM. Let G be a locally finite group and π a non-empty set of primes. Let $K = \{k_p | p \in \pi'_1\}$ be a set of positive integers, where $\pi'_1 \subseteq \pi'$. Then there is a π -ULF group \overline{G} satisfying

- (i) $G \subseteq \overline{G}$ and $|\overline{G}| = \max{\aleph_0, |G|}$;
- (ii) if $p \in \pi'$, $n \geq 1$, and $\nu(p^n, \overline{G})$ is the set of \overline{G} -conjugacy classes of elements of order p^n , then

$$|\nu(p^n, \overline{G})| = \begin{cases} k_p + 1, & \text{if } p \in \pi_1' \text{ and } n > k_p, \\ n + 1, & \text{otherwise }. \end{cases}$$

This theorem was suggested by one of the constructions in [3] (cf. Theorem 3).

We need the following notation. In any group G, \sim_G denotes G-conjugacy of elements and subgroups. If $H \subseteq G$, (G:H) denotes the set of right cosets of H in G and $\Sigma = \Sigma(G:H)$ the full symmetric group on (G:H). The representation $\varphi = \varphi(G:H)$ of G into $\Sigma(G:H)$ is defined by

$$Hx(g\varphi) = Hxg$$
 for $x, g \in G$;

Received by the editors on December 29, 1986.

Copyright ©1990 Rocky Mountain Mathematics Consortium

the kernel of φ is $\mathrm{Core}_G(H)$. The constricted symmetric group C=C(G:H) is defined as follows:

$$C = C(G:H) = \{ \tau \in \Sigma(G:H) | \text{ there is a finite subgroup } T_{\tau}$$
 of G such that $(HsT_{\tau})\tau \subseteq HsT_{\tau}$ for all $s \in G \}$.

By Proposition 1 of [3], if G is locally finite, so is C(G:H); $G\varphi \subseteq C(G:H)$; and if K and $K\beta$ are isomorphic finite subgroups of G which intersect every conjugate of H trivially, then there is a σ in C(G:H) such that $k\beta\varphi = (k\varphi)^{\sigma}$ for all $k \in K$. In the following proposition we extend this result to certain subgroups which intersect a conjugate of H non-trivially (for H as in the statement of the proposition). We remark that the proof combines features of Proposition 1 and Lemma 2 of [3].

PROPOSITION. Let G be a locally finite group, $H \subseteq G$ an abelian subgroup, and let φ be the representation of G in $\Sigma = \Sigma(G:H)$. For p a prime suppose that the Sylow p-subgroup of H is isomorphic either to C_{p^k} or to C_{p^∞} . Denote by $\langle w_n \rangle$ the unique subgroup of H of order p^n , where $1 \le n \le k$ in the C_{p^k} case and $n \ge 1$ in the C_{p^∞} case, and, for $0 \le t \le n$, let

$$C(t, w_n) = C(t, w_n, G) = \left\{ y \in G \, \middle| \, |y| = p^n \text{ and } t \text{ is minimal} \right.$$

$$\text{with respect to} \left\langle y^{p^t} \right\rangle \sim_G \left\langle w_n^{p^t} \right\rangle \right\}.$$

Then the following two properties hold for elements y and z of G of order p^n :

- (i) For $1 \leq n \leq k$ in the C_{p^k} case and all $n \geq 1$ in the C_{p^∞} case, if there is a t, $0 \leq t \leq n$, such that $y, z \in C(t, w_n)$, then there is a σ in C = C(G : H) such that $z\varphi = (y\varphi)^{\sigma}$. Further, $C(t, w_n, G)\varphi \subseteq C(t, w_n\varphi, \Sigma)$; thus if y, z belong to different sets $C(t, w_n)$, then $y\varphi \nsim_{\Sigma} z\varphi$;
- (ii) In the C_{p^k} case, if n>k, then $z\varphi\sim_C y\varphi$ if and only if $z^{p^{n-k}}\varphi\sim_C y^{p^{n-k}}\varphi$.

PROOF. (i). Suppose $y, z \in C(t, w_n)$. Then, by definition of $C(t, w_n)$, there exist G-conjugates y_0, z_0 of y, z, respectively, such that $\langle y_0^{p^t} \rangle =$

 $\langle z_0^{p^t} \rangle = \langle w_n^{p^t} \rangle$. Let $V = \langle \langle y_0 \rangle, \langle z_0 \rangle \rangle$ and write G as the double coset decomposition

$$G = \dot{\cup} \{ HsV \mid s \in S \}.$$

For each $s \in S$, the number of right cosets of H in HsV is the index $[V: H^s \cap V]$, which is finite since V is finite. Now, for fixed $s \in S$, write

$$HsV = \dot{\cup} \{ Hsx\langle y_0 \rangle \mid x \in X_s \subset V \};$$

this can be obtained from a decomposition of V into left cosets of $\langle y_0 \rangle$, and can also be viewed as a decomposition of HsV into a finite number of disjoint $y_0\varphi$ -orbits. (There is a similar decomposition of HsV into disjoint $z_0\varphi$ -orbits.) For any $v \in V$, the order of the orbit $Hsv\langle y_0\varphi \rangle$ (i.e., the number of right cosets of H in $Hsv\langle y_0\rangle$) equals

$$(1) \qquad [\langle y_0 \rangle : H^{sv} \cap \langle y_0 \rangle] = [\langle y_0 \rangle : \langle w_n \rangle^{sv} \cap \langle y_0 \rangle];$$

(1) follows easily from the definition of H. But, as in the proof of Lemma 2(i) of [3],

$$(2) \qquad \langle w_n \rangle^{sv} \cap \langle y_0 \rangle = \left\langle w_n^{p^t} \right\rangle^{sv} \cap \left\langle y_0^{p^t} \right\rangle = \left\langle w_n^{p^t} \right\rangle^{sv} \cap \left\langle w_n^{p^t} \right\rangle.$$

Hence the order of the orbit $Hsv\langle y_0\varphi\rangle$ equals

$$\frac{p^n}{\left|\left\langle w_n^{p^t}\right\rangle^{sv}\cap\left\langle w_n^{p^t}\right\rangle\right|},$$

which is at least p^t and at most p^n . The crucial observation, however, is that this is also the order of the orbit $Hsv\langle z_0\varphi\rangle$ (repeat the argument with y_0 replaced by z_0). Thus if Hsv is in a $y_0\varphi$ -orbit of order p^i , $t \leq i \leq n$, then Hsv falls into a $z_0\varphi$ -orbit of order p^i , and conversely. It follows that the number of distinct $y_0\varphi$ -orbits of order p^i in HsV equals the number of distinct $z_0\varphi$ -orbits of order p^i in HsV.

Hence there is a subset $X'=X'_s$ of V and a bijection $x\to x'$ of $X=X_s$ to X' such that

$$HsV = \dot{\cup} \{ Hsx \langle y_0 \rangle \mid x \in X \} = \dot{\cup} \{ Hsx' \langle z_0 \rangle \mid x' \in X' \},$$

where if $x \to x'$, then the orbits $Hsx\langle y_0\varphi \rangle$ and $Hsx'\langle z_0\varphi \rangle$ have the same order. For each $s \in S$ and $x \in X$, define

$$\tau_s: Hsx\langle y_0 \rangle \to Hsx'\langle z_0 \rangle$$

by $(Hsxy_0^j)\tau_s = Hsx'z_0^j$, $1 \le j \le p^n$. This is a bijection, so the function τ on (G:H), defined by

$$(Hu)\tau = Hu\tau_s$$
 if $Hu \in HsV$,

is an element of $\Sigma(G:H)$. In fact, $\tau \in C(G:H)$ since $(HsV)\tau \subseteq HsV$ for all $s \in G$. Furthermore, $(y_0\varphi)^\tau = z_0\varphi$. To see this, let $Hu \in HsV$, $s \in S$; so $Hu = Hsx'z_0^j$ for some $x' \in X'$ and some j. Then

$$(Hu)(y_0\varphi)^{\tau} = (Hsx'z_0^j)\tau^{-1}y_0\varphi\tau = (Hsxy_0^j)(y_0\varphi\tau)$$

= $(Hsxy_0^{j+1})\tau = Hsx'z_0^{j+1} = (Hsx'z_0^j)(z_0\varphi) = (Hu)(z_0\varphi)$

as desired.

Finally, $y \sim_G y_0$, $z \sim_G z_0$ implies $y\varphi \sim_{G\varphi} y_0\varphi$ and $z\varphi \sim_{G\varphi} z_0\varphi$. Since $G\varphi \subseteq C = C(G:H)$,

$$y\varphi \sim_C y_0\varphi \sim_C z_0\varphi \sim_C z\varphi$$
,

and this completes the proof of the first assertion of (i).

To finish the proof of (i) we must show that $C(t, w_n, G)\varphi \subseteq C(t, w_n\varphi, \Sigma)$. Let $y \in C(t, w_n, G)$, $0 \le t \le n$. Since $\langle y^{p^t} \rangle \sim_G \langle w_n^{p^t} \rangle$, we certainly have $\langle y\varphi^{p^t} \rangle \sim_\Sigma \langle w_n\varphi^{p^t} \rangle$. Thus it suffices to show that, for $t \ne 0, \langle y\varphi^{p^{t-1}} \rangle \sim_\Sigma \langle w_n\varphi^{p^{t-1}} \rangle$. But this follows from [3, (5.1.6)], which holds for H whose Sylow p-subgroup is either C_{p^k} or C_{p^∞} by (1) and (2).

(ii). Clearly $z\varphi \sim_C y\varphi$ implies $z^{p^{n-k}}\varphi \sim_C y^{p^{n-k}}\varphi$. For the converse, suppose $z^{p^{n-k}}\varphi \sim_C y^{p^{n-k}}\varphi$. Since $y^{p^{n-k}}$ and $z^{p^{n-k}}$ are of order p^k , there is a $t,\ 0 \le t \le k$, such that $y^{p^{n-k}},\ z^{p^{n-k}} \in C(t,w_k)$, by (i). Hence there are $g,h\in G$ such that if $y_0=(y^{p^{n-k}})^g$ and $z_0=(z^{p^{n-k}})^h$, then $\left\langle y_0^{p^t}\right\rangle = \left\langle z_0^{p^t}\right\rangle = \left\langle w_k^{p^t}\right\rangle$. Now set $y_1=y^g$ and $z_1=z^h$; note that $y_1^{p^{n-k}}=(y^g)^{p^{n-k}}=y_0$ and $z_1^{p^{n-k}}=z_0$. Further let $V=\langle\langle y_1\rangle,\langle z_1\rangle\rangle$. With this V, just as in the proof of (i), $G=\dot\cup\{HsV|s\in S\}$ and, for fixed $s\in S$, $HsV=\{Hsx\langle y_1\rangle \mid x\in X\subset V\}$. The order of the orbit

 $Hsx\langle y_1\varphi\rangle$ equals

$$\begin{split} \left[\left\langle y_{1} \right\rangle : & H^{sx} \cap \left\langle y_{1} \right\rangle \right] \\ &= \left[\left\langle y_{1} \right\rangle : \left\langle w_{k} \right\rangle^{sx} \cap \left\langle y_{1} \right\rangle \right] = \left[\left\langle y_{1} \right\rangle : \left\langle w_{k} \right\rangle^{sx} \cap \left\langle y_{1}^{p^{n-k}} \right\rangle \right] \\ &= \left[\left\langle y_{1} \right\rangle : \left\langle w_{k} \right\rangle^{sx} \cap \left\langle y_{0} \right\rangle \right] = \left[\left\langle y_{1} \right\rangle : \left\langle w_{k}^{p^{t}} \right\rangle^{sx} \cap \left\langle y_{0}^{p^{t}} \right\rangle \right] \\ &= \left[\left\langle y_{1} \right\rangle : \left\langle w_{k}^{p^{t}} \right\rangle^{sx} \cap \left\langle w_{k}^{p^{t}} \right\rangle \right] = \frac{p^{n}}{\left| \left\langle w_{k}^{p^{t}} \right\rangle^{sx} \cap \left\langle w_{k}^{p^{t}} \right\rangle \right|}, \end{split}$$

which is also the order of the orbit $Hsx\langle z_1\varphi\rangle$. Hence we can proceed as in (i) to find a $\tau\in C(G:H)$ such that $(y_1\varphi)^{\tau}=z_1\varphi$ and conclude that

$$y\varphi \sim_C y_1\varphi \sim_C z_1\varphi \sim_C z\varphi$$
,

as desired. \Box

PROOF OF THE THEOREM. Let

$$H = \text{Dr}\{C_{p^{k_p}} | p \in \pi_1'\} \times \text{Dr}\{C_{p^{\infty}} | p \in \pi' - \pi_1'\},\$$

$$\pi'_1 \subseteq \pi'$$
, and

$$G_0 = (G \times \operatorname{Sym}(\aleph_0)) \operatorname{wr} H$$
,

where the wreath product is restricted and $\operatorname{Sym}(\aleph_0)$ is the countable group of finitary permutations. Then G_0 is f-universal, since $\operatorname{Sym}(\aleph_0)$ contains an isomorphic copy of every finite symmetric group, and $|G_0| = \max\{\aleph_0, |G|\}$. Further $\operatorname{Core}_{G_0}(H) = 1$, so the representation $\varphi_0 = \varphi(G_0 : H)$ of G_0 into $\Sigma(G_0 : H)$ is an embedding.

Let G_1 be the subgroup of $C(G_0: H)$ generated by:

- (a) $G_0\varphi_0$;
- (b) for each isomorphism $\beta: K \to K\beta$ of finite π -subgroups of G_0 , an element $\sigma \in C(G_0: H)$ such that $k\beta\varphi_0 = (k\varphi_0)^{\sigma}$ for all $k \in K$;
- (c) for $p \in \pi'$ and $0 \le t \le n$, where $1 \le n \le k_p$ if $p \in \pi'_1$ and $n \ge 1$ otherwise, and each pair $y, z \in C(t, w_n, G_0)$, an element of $C(G_0 : H)$ conjugating $y\varphi_0$ to $z\varphi_0$;
- (d) for $p \in \pi'_1$, $n > k_p$, and each pair $y, z \in G_0$ such that $|y| = |z| = p^n$ and $y\varphi_0$ is conjugate to $z\varphi_0$ in $C(G_0 : H)$, a conjugating element.

(The notation here is as in the proposition.) Proposition 1 of [2] and the above proposition ensure that the conjugating elements in (b) and (c), respectively, can be found in $C(G_0:H)$; the number of conjugating elements in (b), (c) and (d) is at most $\max\{\aleph_0, |G_0|\}$, so $|G_1| \geq \max\{\aleph_0, |G_0|\}$. It also follows from part (i) of the proposition that for $p \in \pi'$ and n as in (c), if $|y| = |z| = p^n$, $y \in C(t, w_n, G_0)$, $z \in C(j, w_n, G_0)$ and $j \neq t$, then $y\varphi_0 \nsim_{G_1} z\varphi_0$.

Similarly, for i = 1, 2, ... define G_{i+1} and $\varphi_i : G_i \to G_{i+1}$ inductively by $\varphi_i = \varphi(G_i : H_i)$, where $H_i = H\varphi_0 \cdots \varphi_{i-1}$, and G_{i+1} is the subgroup of $C(G_i : H_i)$ generated by:

- (a) $G_i\varphi_i$;
- (b) for each isomorphism $\beta: K \to K\beta$ of finite π -subgroups of G_i , an element $\sigma \in C(G_i: H_i)$ such that $k\beta\varphi_i = (k\varphi_i)^{\sigma}$ for all $k \in K$;
- (c) for $p \in \pi'$ and $0 \le t \le n$, where $1 \le n \le k_p$ if $p \in \pi'_1$ and $n \ge 1$ otherwise, and each pair $y, z \in C(t, w_n \varphi \cdots \varphi_{i-1}, G_i)$, an element of $C(G_i : H_i)$ conjugating $y\varphi_i$ to $z\varphi_i$;
- (d) for $p \in \pi'_1$, $n > k_p$, and each pair $y, z \in G_i$ such that $|y| = |z| = p^n$ and $y\varphi_i$ is conjugate to $z\varphi_i$ in $C(G_i : H_i)$, a conjugating element.

Note that $\operatorname{Core}_{G_i}(H_i) = 1$, $H_i \simeq H$ for all i and $|G_{i+1}| \leq \max\{\aleph_0, |G_i|\}$. Further, for $p \in \pi'$ and n as in (c), if $|y| = |z| = p^n$, $y \in C(t, w_n \varphi_0 \cdots \varphi_{i-1}, G_i)$, $z \in C(j, w_n \varphi_0 \cdots \varphi_{i-1}, G_i)$ and $j \neq t$, then $y \varphi_i \nsim_{G_{i+1}} z \varphi_i$.

Let \overline{G} be the direct limit of the groups G_i . Clearly \overline{G} is a π -ULF group of cardinality $|\overline{G}| = \max\{\aleph_0, |G|\}$; we may assume that \overline{G} is the union of the G_i , so $G \subset \overline{G}$. Let y, z be elements of \overline{G} of order p^n , $p \in \pi'$. There is then an i with $y, z \in G_i$. There are two cases. First, for $1 \leq n \leq k_p$ if $p \in \pi'_1$ and all $n \geq 1$ if $p \in \pi' - \pi'_1$, it follows from the above remarks that $y \sim_{\overline{G}} z$ if and only if, for some $t, 0 \leq t \leq n$, we have $y, z \in C(t, w_n \varphi_0 \cdots \varphi_{i-1}, G_i)$. Each of the n+1 sets $C(t, w_n \varphi_0 \cdots \varphi_{i-1}, G_i)$ is non-empty, because G_0 , and hence G_i , contains finite symmetric groups of arbitrarily large degree. Hence in this case $|\nu(p^n, \overline{G})| = n+1$. A similar argument, combined with part (ii) of the proposition, shows that if $p \in \pi'_1$ and $n > k_p$, then $y \sim_{\overline{G}} z$ if and only if $y^{p^{n-k_p}}, z^{p^{n-k_p}} \in C(t, w_{k_p} \varphi_0 \cdots \varphi_{i-1}, G_i)$ for some $t, 0 \leq t \leq k_p$. Since there are $k_p + 1$ such sets, we have $|\nu(p^n, \overline{G})| = k_p + 1$. This

completes the proof of the theorem.

REFERENCES

- 1. K. Hickin, Universal locally finite central extensions of groups, Proc. London Math. Soc. 52 (1986), 53-72.
- $\textbf{2.} \ \ \text{R.E. Phillips}, \textit{Existentially closed locally finite central extensions}; \textit{ multipliers and local systems}, \textit{Math. Z. 187} \ (1984), 383-392.$
- 3. —— and S.E. Schuur, Partial homogeneity in locally finite groups, Math. Z. 194 (1987), 293–308.

Department of Mathematics, Michigan State University, E. Lansing, MI $48824\,$