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CONTROLLING CONJUGACY CLASSES IN EMBEDDINGS
OF LOCALLY FINITE GROUPS

SUSAN E. SCHUUR

Several recent papers in the theory of locally finite groups discuss
the concept of m-homogeneity [1, 2, 3]. A locally finite group G
is m-homogeneous for the set of primes 7 if, for every isomorphism
1 : H — K between finite m-subgroups of G, there is an z € G with
hu = h® for all h € H. The group G is a w-ULF group if it is locally
finite, m-homogeneous and contains a copy of every finite group. One
of the results of [3] is that any locally finite group G can be embedded
in a m-ULF group of cardinality max{Rg, |G|} in which, for each p ¢ ,
there are exactly two conjugacy classes of elements of order p. The
purpose of this paper is to extend this result as follows:

THEOREM. Let G be a locally finite group and ® a non-empty set
of primes. Let K = {ky|p € 7} be a set of positive integers, where
7wy C 7'. Then there is a m-ULF group G satisfying

(i) G C G and |G| = max{Xy, |G|};

(ii) if p € 7', n > 1, and v(p", G) is the set of G-conjugacy classes
of elements of order p™, then

v, 6 = {

kp,+1, ifpeniandn > kp,
n+1, otherwise .

This theorem was suggested by one of the constructions in [3] (cf.
Theorem 3).

We need the following notation. In any group G, ~¢g denotes G-
conjugacy of elements and subgroups. If H C G, (G : H) denotes the
set of right cosets of H in G and ¥ = 3(G : H) the full symmetric group
on (G : H). The representation ¢ = ¢(G : H) of G into £(G : H) is
defined by

Hz(gp) = Hzg for z,g € G;
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the kernel of ¢ is Coreg(H). The constricted symmetric group C' =
C(G : H) is defined as follows:

C=C(G: H)={r € (G : H)| there is a finite subgroup T’
of G such that (HsT,)r C HsT, for all s € G}.

By Proposition 1 of [3], if G is locally finite, so is C(G : H); Gy C
C(G : H); and if K and K are isomorphic finite subgroups of G which
intersect every conjugate of H trivially, then there is a ¢ in C(G : H)
such that kBp = (kg)? for all k € K. In the following proposition
we extend this result to certain subgroups which intersect a conjugate
of H non-trivially (for H as in the statement of the proposition). We
remark that the proof combines features of Proposition 1 and Lemma
2 of [3].

PROPOSITION. Let G be a locally finite group, H C G an abelian
subgroup, and let ¢ be the representation of G in ¥ = X(G : H). For
p a prime suppose that the Sylow p-subgroup of H is isomorphic either
to Cpr or to Cpe. Denote by (w,) the unique subgroup of H of order
p", where 1 < n < k in the Cpr case and n > 1 in the Cp~ case, and,
for0 <t <n, let

C(t,wy) = C(t,wy, G) = {y € G‘ ly| = p™ and t is minimal

with respect to <ypt> ~G <wﬁt>}.
Then the following two properties hold for elements y and z of G of
order p™:

(i) For 1 < n < k in the Cpe case and all n > 1 in the Cpeo
case, if there is at, 0 < t < n, such that y,z € C(t,wy,), then
there is a o in C = C(G : H) such that zp = (yp)°. Fur-
ther, C(t,wn,G)p C C(t,wnp,X); thus if y,z belong to different sets
C(t,wy), then yp »x zp;

(ii) In the Cpx case, if n > k, then zp ~c yyo if and only if

n—k n—k
2 pr~oy? .

PROOF. (i). Suppose y, z € C(t,wy,). Then, by definition of C(¢t, w,,),
t
there exist G-conjugates yg, 2o of y, z, respectively, such that <y§ > =
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<th> = <wﬁt>. Let V = ({(y0), (z0)) and write G as the double coset
decomposition
G =U{HsV|se S}.

For each s € S, the number of right cosets of H in HsV is the index
[V : H®* N V], which is finite since V is finite. Now, for fixed s € 5,
write

HsV = U{Hsz(yo) |z € Xs CV}

this can be obtained from a decomposition of V' into left cosets of {yp),
and can also be viewed as a decomposition of HsV into a finite number
of disjoint ygp-orbits. (There is a similar decomposition of HsV into
disjoint zgp-orbits.) For any v € V, the order of the orbit Hsv{yop)
(i.e., the number of right cosets of H in Hsv(yg)) equals

(1) [(yo) : H™ 0 (yo)] = [(yo) : (wn)™ N (y0)];

(1) follows easily from the definition of H. But, as in the proof of
Lemma 2(i) of [3],

@ w0 0o = (wr ) () = (wr') " ur’).

Hence the order of the orbit Hsv(yop) equals

n

p
sv
(u) 0 (k')

which is at least p! and at most p™. The crucial observation, however,
is that this is also the order of the orbit Hsv(zop) (repeat the argument
with yo replaced by zp). Thus if Hsv is in a yop-orbit of order
p?, t < i < n, then Hsv falls into a zgp-orbit of order p?, and conversely.
It follows that the number of distinct ygp-orbits of order p® in HsV
equals the number of distinct zop-orbits of order p* in HsV.

’

Hence there is a subset X' = X! of V and a bijection z — 2’ of
X = X, to X' such that

HsV = U{Hsx(yo) |z € X} = U{Hsz'(20) |2’ € X'},

where if  — 2/, then the orbits Hsz(yop) and Hsz'(zgp) have the
same order. For each s € § and =z € X, define

75 : Hsz(yo) — Hsz'(z0)
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by (Hsmyg)rs = Hsac’zg, 1 < j < p". This is a bijection, so the
function 7 on (G : H), defined by

(Hu)T = Huts if Hu € HSsV,

is an element of (G : H). In fact, 7 € C(G : H) since (HsV)T C
HsV for all s € G. Furthermore, (yop)”™ = zop. To see this, let
Hu € HsV, s € S; so Hu = Hsz'z} for some ' € X' and some j.
Then

(Hu)yop)™ = (Hsz'2))m Lyopr = (Hszyd) (yor)
= (styéH)T = Hsav'zf)'Jrl = (st'zg)(zoap) = (Hu)z0¢p),

as desired.

Finally, y ~g yo, z ~a 2o implies yo ~g, yYop and zp ~g, 20p.
Since G CC =C(G : H),

Yp ~c Yop ~C 2P ~YC 2P,

and this completes the proof of the first assertion of (i).

To finish the proof of (i) we must show that C(t,w,,G)p C
C(t,wnp,X). Let y € C(t,wn,G), 0 <t < n. Since <ypt> ~G <w£’lt>,
we certainly have <y<ppt> ~% <wn<ppt>. Thus it suffices to show that,
for t # 0, <y<ppt71> 2> <wn<ppt71>. But this follows from [3, (5.1.6)],
which holds for H whose Sylow p-subgroup is either C,x or Cpe by (1)
and (2).

(ii). Clearly z¢p ~¢ yy implies zp"7k<,0 ~C y?”nfkgo. For the converse,
suppose zP" "¢ ~c yP" “¢. Since y?" " and 27" " are of order pF,
there is a ¢, 0 < t < k, such that y?" ", 2F" = € C(t,wk), by (i).
Hence there are g, h € G such that if yo = (y?" )9 and 2o = (27" "),
then <y§t> = <th> = <w£t>. Now set y1 = y9 and z; = z"; note that
y{’n_ = (y9)P" " = yo and zfn = z9. Further let V = ({(y1), (21)).
With this V, just as in the proof of (i), G = U{HsV|s € S} and, for
fixed s € S, HsV = {Hsx(y1)|z € X C V}. The order of the orbit
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Hsxz(y;p) equals

[(y1) :H* 1 (y1)]
= [{yn) + {wn)™™ 0 )] = () s wo ("))
= [y} s ()™ 1 o) = [twn) s (wf )™ N 58]

n

- [<y1> : <w1,:> " <wzt>} - ‘<wpt>sfﬂ <wpt> ’

k k

which is also the order of the orbit Hsz(z;¢p). Hence we can proceed
as in (i) to find a 7 € C(G : H) such that (y1¢)” = z1¢ and conclude
that

Yyp ~c y1p ~e 2P e 2P,

as desired. O

PROOF OF THE THEOREM. Let
H = Dr{Cr,|p € 71} x Dr{Cpe|p € 7' — 11},

m C «', and

Go = (G x Sym(Xg)) wr H,

where the wreath product is restricted and Sym(Xg) is the countable
group of finitary permutations. Then Gy is f-universal, since Sym(R)
contains an isomorphic copy of every finite symmetric group, and
|Go| = max{Rg, |G|}. Further Coreg,(H) = 1, so the representation
wo = p(Go : H) of Gy into X(Gy : H) is an embedding.

Let G; be the subgroup of C(Gy : H) generated by:
(a) Gowo;

(b) for each isomorphism 8 : K — K@ of finite m-subgroups of Gy,
an element o € C(Gy : H) such that kB = (kpo)? for all k € K

(c)forpen’and0<¢t<n,wherel <n<k,ifpeniandn>1
otherwise, and each pair y, z € C(¢, wy,, Gy), an element of C(Gy : H)
conjugating ypo to zpo;

(d) for p € @}, n > kp, and each pair y, z € Gy such that
lyl = |z| = p™ and yypy is conjugate to zpy in C(Gy : H), a conjugating
element.
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(The notation here is as in the proposition.) Proposition 1 of [2]
and the above proposition ensure that the conjugating elements in
(b) and (c), respectively, can be found in C(Gy : H); the number
of conjugating elements in (b), (c) and (d) is at most max{Ry, |G|}, so
|G1| > max{No, |Go|}. It also follows from part (i) of the proposition
that for p € 7’ and n as in (c), if |y| = |z| = p™,y € C(t,wn,Go),z €
C(j, wn, Go) and j # t, then ypo »g, zpo.

Similarly, for i = 1, 2,... define G; 11 and ¢; : G; — G;41 inductively
by vi = ¢(G; : H;), where H; = Hepg - - - p; 1, and G4 is the subgroup
of C(G; : H;) generated by:

(a) Gips;

(b) for each isomorphism 8 : K — K[ of finite m-subgroups of G;,
an element o € C(G; : H;) such that kBy; = (kp;)” for all k € K;

(c)forpen’and 0 <t <n,wherel <n<kyifpecniandn>1
otherwise, and each pair y,z € C(t,wnp---pi—1,G;), an element of
C(G; : H;) conjugating yp; to zp;;

(d) for p € w1, n > kp, and each pair y, z € G; such that
ly| = |z| = p™ and yy; is conjugate to zy; in C(G; : H;), a conjugating
element.

Note that Coreg,(H;) = 1, H; ~ H for all i and |Gijt1] <
max{Rg, |G;|}. Further, for p € «’ and n as in (c), if |y| = |z| =
pn, Y€ C(ta Wn Yo "Qai—laGi)a KIS C(Ja Wnpo "Pi—laGi) and .7 7A t,
then yy; ~g,,, 2¢i.

Let G be the direct limit of the groups G;. Clearly G is a m-ULF
group of cardinality |G| = max{R,|G|}; we may assume that G is
the union of the Gy, so G C G. Let y,z be elements of G of order
p", p € . There is then an ¢ with y,z € G;. There are two cases.
First, for 1 < n < ky if p € 7y and all n > 1 if p € ' — 7], it
follows from the above remarks that y ~z 2 if and only if, for some
t, 0 <t <n, we have y,z € C(t,wnpo---pi_1,G;). Each of the n + 1
sets C(t,wppo---¢i—1,G;) is non-empty, because Gy, and hence G;,
contains finite symmetric groups of arbitrarily large degree. Hence in
this case |v(p", G)| = n+1. A similar argument, combined with part (ii)
of the proposition, shows that if p € 7} and n > k,, then y ~ z if and

only if y?" ", 2P € C(t,we, 00 pi—1,G;) for some t, 0 <t < k.
Since there are k, + 1 such sets, we have |v(p",G)| = k, + 1. This

kp n—kp
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completes the proof of the theorem.
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