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CURVATURE AND PROPER HOLOMORPHIC MAPPINGS
BETWEEN BOUNDED DOMAINS IN C*®

E.B. LIN AND B. WONG

ABSTRACT. In this paper we discuss some connections
between proper holomorphic mappings between domains in
C™ and the boundary behaviors of certain canonical invariant
metrics (Cheng-Yau-Einstein K&hler metric, Bergman metric,
intrinsic measures, etc.). Some compactness theorems have
been proved (Theorem 4, Theorem 5). This generalizes an
earlier result proved by the second author.

Introduction. A continuous mapping f : X; — X2 between two
topological spaces is called proper if f~1(K) C X, is compact whenever
K C X3 is compact. Proper holomorphic mappings between analytic
spaces stand out for their beauty and simplicity. For instance, if
g : D1 — D5 is a proper holomorphic mapping between two bounded
domains in C", a theorem of Remmert says that (Dy,g,D2) is a
finite branching cover. The branching locus in D; is described by
{#z € D;|det(dg(z)) = 0}. For the past ten years, there was a great
amount of activity in characterizing the proper holomorphic mappings
between pseudoconvex domains. It has been known for a long time that
there are numerous proper holomorphic maps between unit disks in C*.
The simplest example is g : A = {z € C!||z] < 1} — A, g(z) = 2,
where n is any positive integer. Nevertheless, such a phenomenon is
no longer true in higher dimensional cases. H. Alexander was able to
verify the following interesting fact.

THEOREM 1. [1]. Let B, = {(z1,22,...,2n)| D1y |2i]? < 1} be the
unit ball in C™,n > 2. Suppose f : B, — B, ts a proper holomorphic
mapping; then f must be a biholomorphism.
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The essential step in proving Theorem 1 is to show that the set
of branching loci B = {z € B,|det(df(z)) = 0} is empty. Thus,
f : B, — B, is a finite covering. Since B,, is simply connected, f
can only be a biholomorphism.

Complex analysts are always interested in generalizing the results
from Euclidean balls to strongly pseudoconvex domains. The following
result due to S. Pincuk is a significant extension of Alexander’s theorem.

THEOREM 2. [15]. Let Dy and Do be two strongly pseudoconver
bounded domains with smooth boundaries in C™, n > 2. Suppose
f : D1 — Dy is a proper holomorphic mapping; then f is a covering.

An example of the situation in Theorem 2 can be described as follows:

1
Dy = {(zl,zQ) e CZ‘ 2| + P 202 < 3},
1

1
Dy = {(zl,ZQ) € Cz‘ ‘Z1|2 + W + |22|2 < 3};
1
the mapping (z1,22) — (2%,29) is a 2 to 1 covering map from D; to
D,. This example was due to Y-T Siu, according to [1].

In general, the set of proper holomorphic mappings, denoted by
P(Dy,D3), between two strongly pseudoconvex bounded domains is
very small. It can be proved easily that, for generic members of strongly
pseudoconvex bounded domains D; and D5 in C",n > 2, with m(D1)
a normal subgroup of m;(D5), P(D;,D5) is empty. For example, this
would happen in the interesting cases when either 7y (Dy) is trivial or
m1(D3) is abelian. The underlying reason is, for generic strongly pseu-
doconvex bounded domains D in C™,n > 2, the groups of biholomor-
phisms, namely Aut(D), consist of identity elements only [3, 8]. If there
is a proper holomorphic map f : Dy — Ds, it is a finite holomorphic
cover by Pinc¢uk’s theorem. Furthermore, 71(D3)/m1(D;) will induce a
biholomorphic group action on Dy if 7 (D) is sitting in m;(Ds) as a
subgroup. This would be a contradiction if the order of 71 (D2)/m1(D1)
is greater than one. There is another obvious topological obstruction
to the existence of a proper holomorphic map between two strongly
pseudoconvex domains D; and Dy, namely m;(D;) = m;(Ds) for all
i>2.
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In [20] the second author proved the following result concerning
biholomorphic groups of strongly pseudoconvex domains.

THEOREM 3. [20]. Let D be a strongly pseudoconvex bounded domain
with smooth boundary in C™. Then Aut(D) is noncompact if and only
if D is biholomorphic to B,,n = dimc D.

Theorem 3 is interesting only when D is an Eilenberg-Maclane space
(i.e., m(D) = 0 for all ¢ > 1) due to the following observation of the
authors.

LEMMA. Let D be a bounded domain in C™ with D embedded as a C*
closed submanifold of dimension 2n—1. Suppose Aut(D) is noncompact
and w;(D) # 0 for some i > 1; then 0D admits a complex analytic
variety of positive dimension.

PROOF. Let S be a sphere representing a nontrivial element in 7;(D).
As Aut(D) is noncompact, by a normal family argument, there exists
a sequence {g;} C Aut(D) such that it will converge on compacta to
a holomorphic mapping, g : D — C", with the image g(D) sitting
on 0D. Suppose 0D does not accommodate any complex variety of
positive dimension. Then g must be a constant map. Let us assume
g(D) =p € dD. Since dD is a C* closed submanifold, one can always
find an open set V' containing p in C™ such that V' N D is contractible.
It is clear that, for sufficiently large j, g;(S) C V N D. Each g; is
a homeomorphism, thus g;(S) represents a nontrivial element in the
free homotopy class of m;(D). This contradicts the fact that V N D is
contractible. O

In view of a lot of recent attention on the topic of proper holomorphic
mappings, the authors feel that it might be worthwhile to point out the
following startling fact which generalizes Theorem 3 significantly.
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THEOREM 4. Let Dy and Dy be two strongly pseudoconver bounded
domains with smooth boundaries in C*,n > 2. Then P(D;,D3) is
noncompact if and only if both D1 and Dy are biholomorphic to B,.

It follows from Pincuk’s theorem that Theorem 4 is an immediate
consequence of the local version stated below, which is the principal
result of this note.

THEOREM 5. Let Dy and Do be bounded domains in C™. We let
Py(D1, Ds) be the set of all unbranching proper holomorphic maps from
Dy to Dy. Suppose the following two conditions are fulfilled.

(1) There is a strongly pseudoconvezr boundary point p € ODs.

(2) There exists a point € D1 and a sequence {f;} C Py(D1,D2)
such that {fj(z)} converges to p.

Then both Dy and D5 are btholomorphic to B,,.

We shall present three proofs of Theorem 5. The first proof depends
on the recent works of Cheng-Yau [5] and Mok-Yau [14] on the canon-
ical Einstein Kdhler metrics on domains of holomorphy. The second
and third proofs are a modification of those given in [20]. The main
techniques of our proofs are basically differential geometry. They in-
volve some known results on boundary behaviors and curvature esti-
mates of some canonical Kihler metrics (Bergman metrics, Cheng-Yau
Einstein Kéhler metrics) and intrinsic measures (Eisenman measures,
Kobayashi-Royden differential metrics, Caratheodory-Reiffen differen-
tial metrics). The underlying idea goes back to an old paper of L.
Ahlfors (Trans. Amer. Math Soc. 43 (1938), 359-364), who inter-
preted the classical Schwarz lemma in a differential geometric setting.
His theorem can be recorded as follows.

THEOREM (AHLFORS-SCHWARZ LEMMA). Let (N,ds%) be a her-
mitian manifold with holomorphic curvature bounded above by —b>.
Suppose (M,ds?,) is a complete hermitian manifold of dimension one
whose holomorphic curvature is bounded from below by —a?®. Let

2
f: M — N be any holomorphic mapping; then f*(ds3%) < ‘;—zds?\/l.
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Some generalizations of the Ahlfors-Schwarz lemma have been consid-
ered by Grauert-Reckziegel (Math Z. 89 (1965), 108-125), R.L. Royden
[17], S.T. Yau [23], and others.

A. Some preliminaries and related results. Let M be a complex
manifold of dimension n,x € M,k an integer between one and n.

DEFINITION. The Eisenman differential k-measure on M is a function
E% : A*T(M) — R such that, for all (z,v) € A*T, (M),

E¥ (z,v) = inf{R72k|there exists a holomorphic map f : Bx(R) — M

such that f(0) = z and df0<8iw1 A aiw /ARERW)\ %(0)) = v},

where By(R) = {w = (wy,wy, ..., wg) € C*| 0 Jwi|?> < R}.

When k£ = 1, it is called a Kobayashi-Royden differential metric [16],
denoted by Ky = \/E};. When k = n, it is a volume form, denoted
by EYy = |EYyldz1 AdZ A -+ Adzp A dZ,, where |E%| is a function
on M. The Kobayashi pseudo-distance function d%, can be defined as
the integrated form of K. If d%, is nontrivial everywhere (i.e., for all
x#y e M,d%, (x,y) #0), then M is called a hyperbolic manifold. A
complete hyperbolic manifold means d%, is Cauchy complete.

On the other hand, the Caratheodory differential k-measure C%, is
defined as follows.

DEFINITION. C%, : AKT, (M) — R, (x,v) € A*T, (M), C¥/(z,v) =
sup{1/RZ?¥| there exists a holomorphic mapping f : M — By (R) such
that f(z) = 0,df.(v) = 52~ A--- A 52— (0)}.

= 8’(,()1 8wk

When k£ = 1, it is called a Caratheodory-Reiffen differential metric,
denoted by Cy = 1/C};. When k = n, it is a volume form C}, =
|CRyldzy AdZ1 A -+ A dzy A dZ,, where |CFy| is a function on M.

One can also define EX; and C¥, relative to a polydisc instead of a
ball. They are different measures, but enjoy similar properties. In this
section, we shall use ]’f/[ to represent either Ej’f/l or C'Jlf/[.
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The following theorem follows almost immediately from the defini-
tions.

THEOREM (a). (1) E¥, > C%, on any complex manifold M.

(2) Let f : My — My be a holomorphic mapping between complex
manifolds My and My. Then one has I]’fﬁ > f*(I]’f/Iz), a measure-
decreasing property under f.

(3) Let X be a domain of a complex manifold M. Then I% > 1%, a
monotone property, holds.

(4) Any biholomorphism f of a complex manifold X is measure-
preserving relative to 1%, that is, I% = f*(I%).

(5)~ Let M be the universal cover of a complex manifold M. Let
7m: M — M be the covering projection. Then E:Z = m*(E%,).

THEOREM (b). [16] (ROYDEN’S LOCALIZATION LEMMA). Let D be a
bounded domain on a hyperbolic complex manifold M and D=VnD,
p € 0D,p € V, where V is an open set of M. Then the following
inequality holds:

|Elz~)(z,v)| < |cot thib(z)|2k . |E’f,(z,v)|,

where z € D, (z,v) € A*T,(D).

In the statement of Theorem (b), d,_p(2) = inf,{dp(z,w)]|
w € D — D}, where dp(z,w) is defined as follows.

DEFINITION. dp(z,w) = inf{dp,(ap)|f € Hol(By,D), f(a) = =z,
f(b) = w,dp, is the Kobayashi distance function on By}, By =

{(21,22,...,26) € C*| S8 |22 < 1}

It is clear from the definition that dj_p(z) is not less than

inf,, {d% (z,w)|w € D — D}, where d% is the Kobayashi distance func-
tion on D. We remark that El’%(z, v)/E%(2,v) — 1 when z — p under

the situation de_ D(Z) — 00. When 9D is strongly pseudoconvex, this



CURVATURE AND PROPER HOLOMORPHIC MAPPINGS 185

is true [6]. Theorem (b) was proved by H.L. Royden for the case k = 1.
For the general case 1 < k < n, the proof is similar.

Using a curvature argument, the second author was able to give the
following intrinsic characterization of a Euclidean ball.

THEOREM (c.1). [20]. Let M be a simply-connected hyperbolic
manifold with Cpy = Kpr. Moreover, either Cypp or Kpp is assumed
to be a Kahler metric. Then M is biholomorphic to the Fuclidean ball.

Recently, Charles Stanton generalized the above theorem using a
different method.

THEOREM (c.2). [19]. Let M be a complete hyperbolic manifold.
Suppose there is one point x € M at which Cp; = Kp; and one of these

two metrics is hermitian of class C*. Then M is biholomorphic to the
FEuclidean ball.

THEOREM (d). [7, 21]. Let D be a bounded domain in C™ with a
strongly pseudoconvezr boundary point p € 0D. Let D =V N D, where
p €V is a sufficiently small ball in C™. The following are true:

(1) |E%(2)|/|CF(2)] approaches one as z — p;

(2) Kp(z,v)/Cp(z,v) approaches one as z — p.

In [20], the next theorem was proved for the special case where D
is completely hyperbolic. Actually, a similar proof can yield a slightly
more general statement as follows.

THEOREM (e). [20]. Let D be a bounded domain in C™. Suppose
there is one point & € D such that |[E}(x)] = |CB(x)|. Then D is
biholomorphic to the Euclidean ball.

S.Y. Cheng and S.T. Yau constructed an invariant complete Einstein
Kahler metric on a bounded strongly pseudoconvex domain in [5]. We
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summarize part of their results in the theorem stated below which will
be used in the future.

THEOREM (f). [5]. Let D be a strongly pseudoconvez bounded domain
in C™. Then the following statements are true.

(1) The boundary limits of \/ds%(z,v)/kp(z,v) and \/ds%(z,v)/
Cp(z,v) are equal to one, where (z,v) is a nonzero vector and \/ds3,

the Finsler metric associated with the canonical Einstein metric ds%,
on D.

2) The holomorphic curvature of ds2, is asymptotically equal to —2
D
close to the boundary.

Similar results are true for Bergman metrics with the reservation that
a multiple of v/n + 1 and 1/(n + 1) will appear in the limits of (1) and
(2) respectively.

Let D be any bounded domain of holomorphy; it is well known that
one can approximate D from the interior by an increasing sequence of
strongly pseudoconvex bounded domains {D;}. Let ds?, be the Cheng-
Yau Einstein metric on D;. In [5], it was proved that the increasing
limit lim;_, o ds2Di is also an Einstein K&hler metric d52D on D. N.
Mok and S.T. Yau later proved that ds% is actually complete [14].
This gives rise to a differential geometric characterization of the Stein
open sets in C™.

THEOREM (g). [14]. Let D be a bounded domain in C™. Then D
18 a domain of holomorphy if and only if it admits a complete Kdhler
Einstein metric.

These metrics on domains of holomorphy D are again invariant under
biholomorphisms, and they are the unique complete Einstein Kahler
metrics on D up to multiples of scalars.

One can also prove the following local version of the Cheng-Yau met-
ric and the Bergman metric around a strongly pseudoconvex boundary
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point. The result is implicit in [2, 5, 6, 7, 9]. Wong is grateful to
Professor Shing-Tung Yau for a conversation about this fact during his
stay at the Institute for Advanced Study.

THEOREM (h). Let p € 0D be a strongly pseudoconvex point of a
domain D in C". Let V be a sufficiently small open neighborhood of p
which is bitholomorphic to B, and let D =V N D. Then the following
statements are true:

(1) The boundary limits of ,/ds%(2,v)/Cp(z,v) and /ds%(z,v)/
kp(z,v) are equal to one as z — p, where ds% is the Cheng- Yau metric
on D.

(2) The boundary limits of \/Bp(z,v)/Cp(2,v) and \/Bp(z,v)/
kp(z,v) are equal to v/1+n as z — p, where By is the Bergman
metric on D.

3) The holomorphic curvature of ds% is asymptotically equal to —2
D
close to the boundary point p.

(4) The holomorphic curvature of Bp is asymptotically equal to
—2/(n+ 1) close to the boundary point p.

THEOREM (i). [4] (CARTAN’S FIXED POINT THEOREM). Let
(X,ds?) be a simply-connected complete Riemannian manifold with
nonpositive sectional curvature. Suppose G is a compact Lie group
acting on X as isometries; then G has a fived point.

In particular, any finite group H acting on X isometrically must fix
at least one point.

THEOREM (j). Let Dy and Dy be bounded domains in C". Suppose
that

1. there is a strongly pseudoconvex point p € ODs;

2. one can find x € Dy and a sequence of holomorphic mappings
{f;} € Hol(Dy, D) such that {f;(z)} — p.

Then there exists a subsequence of {f;}, denoted by the same nota-
tion, {f;}, satisfying: For any compact set K C Dy and any open set
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D=V N Dy, where p €V is an open set in C™, there is a jo such that
[i(I) C D forall j > jo.

PROOF. Since {f;(xz)} — p, by a normal family argument one can
find a subsequence of {f;} converging on compacta to a holomorphic
mapping f : D; — C™ so that f(z) = p and f(D;) C 0D,. By
assumption 0Dy is strongly pseudoconvex at p and contains no complex
analytic variety of positive dimension through p. This implies f is a
constant mapping which brings the whole D onto a single point. Our
claim in Theorem (j) should now be clear. O

The following theorem is implicit in [12].

THEOREM (k). (K.H. LOOK). Let D be a bounded domain in C™;
then /Bp > +/(n+1)Cp, where Bp =Bergman metric on D.

THEOREM (1). (K.H. LOOK) [13]. Let D be a bounded domain
in C™ carrying a complete Bergman metric with constant negative
holomorphic curvature. Then D is biholomorphic to the ball.

THEOREM (m). (LEMPERT) [10, 11, 18]. Let D be a convex bounded
domain in C™. Then Kp = Cp.

THEOREM (n). (LEMPERT) [10, 11]. Let D be a conver bounded
domain in C™. Then d¥%, = dS,, where d$, is the classical Caratheodory
distance function on D.

Theorems (b) and (n) will not be used in our proofs.

(B). A proof of Theorem 5 depending on the Einstein Kéhler
metric.

Claim 1. Dy is stmply-connected.
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Proof . Let us denote by {f;} the sequence of holomorphic mappings
in the proof of Theorem (j) starting from the original sequence of
unbranching proper holomorphic mappings stated in Theorem 5. Thus,
{f;} are all finite holomorphic coverings. Since p € 9D, is strongly
pseudoconvex, one can choose an open set V containing p such that
D = V N D, is contractible. Suppose m1(D1) is nontrivial. Let § be
a closed loop at the base point = representing a nontrivial element in
m1(D1). By Theorem (j), for sufficiently large j, f;(d) is a closed loop
B C D with base point fi(x). D is simply-connected, 3 is therefore
homotopic to a point in D. Nevertheless, fi + D1 — D3 is a covering,
(fj)x : m1(D1) — m1(D2) is an injection. This is a contradiction to the
fact that f;(6) must be a nontrivial element in (f;).(71(D1)) C m1(Dg).
O

Claim 2. Both D1 and Do admit a complete Einstein Kdhler metric.

Proof . Again p € 9D is strongly pseudoconvex, hence we can choose
an open set V' containing p such that D = V N D; has an increasing
sequence of Stein open sets {D;}5°, satisfying the following properties:

(i) Di+1 cc D; for all i;
(ii) D; is connected and simply-connected for all i;

(i) U2, D; = D.

By a rearrangement of the sequences {f;} and {D;}, including taking
subsequences and altering the indices, we can assume f;(x) € D; for all ¢
(Theorem (j)). Let E; be a subset of D; constructed as follows: E; is the
lifting of D; in D, with fixed base points € Dy and z; = f;(z) € D;.
To avoid confusion, we must present the details of the construction of
E;. Let 7 be a path in Dy, starting from x; and ending at an arbitrary
point y € D;. Since D; is simply-connected, there is a unique lifting of
7 starting from z and terminating at some point z € D;. This point
is uniquely determined depending only on y € D;. E; is the totality of
such z and clearly is biholomorphic to D; for each i.

We claim that {F;} will exhaust D;. The argument goes as follows.
Let K be any relatively compact connected open set in D;. We can
assume K contains our fixed point z. By Theorem (j), fi(K) will be
contained in D; for some i. Let 7 be any path in K joining x to an
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arbitrary point z € K. The image of 7 under f;, namely 8 = f;(7), is
a path contained in D; C D, linking #; = f;(z) to some point y € D;.
According to our previous discussion, one can conclude z € E;. This
proves that K C E; and thus {E;} will exhaust the whole Dj.

Finally, by taking a subsequence of {bi}, one can assume that
E;,11 CC E; for every i¢. Hence, we have succeeded in exhibiting
a sequence of connected open subsets in D;, namely {E;}, with the
following properties:

(i) Ej41 CC E; for all i
(iii) each E; is biholomorphic to the Stein open set D;.

A classical theorem of Behnke-Stein can now assure us that D; is a
bounded domain of holomorphy.

By Theorem (g) there exists a complete Kéahler Einstein metric ds%1
on D;. Let us fix any f; : D1 — D, which is a holomorphic
covering with D; simply-connected. Since ds%1 is invariant under
biholomorphisms, f; will induce a complete Einstein Ké&hler metric
ds?,, on Dy. 0O

An alternate way to construct a complete Einstein K&hler metric D,
is described next.

One can choose D; to be strongly pseudoconvex for each i. We let
dszDi be the Cheng-Yau metric on each D;. Since E; is biholomorphic
to D;, there is a complete Einstein Kihler metric dsZEi defined on E; as
well. By taking an increasing limit of {ds, } one obtains an Einstein
Kahler metric ds7, by [5]. This metric is complete by Mok-Yau [14].

Claim 3. The holomorphic curvature of dszD1 s equal to —2 every-
where.

Proof . One can choose D = V N D,, where V is a sufficiently
small open set biholomorphic to B,,. By Theorem (h) the holomorphic
curvature of ds% is asymptotically equal to —2 close to 0D. Let ¢ € Dy
be an arbitrary point. By Theorem (j), {fi(¢)} through a subsequence
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will converge to p € dD2. Let {¢;} be a monotonic decreasing sequence
of positive numbers converging to zero. For each i, we can choose a
simply-connected strong pseudoconvex domain D; with filg) € D; cc
D;,1 large enough such that |K;(fi(q),t) — K(fi(q),t)| < &, where
K;(fi(¢q),t) = holomorphic curvature of ds%_ at f;(g) in the direction of
t, K(fi(q),t) = holomorphic curvature of ds% at f;(q) in the direction
of t, t = any unit complex vector at f;(q) with respect to the Euclidean
norm. In this way we construct an increasing sequence of simply-
connected strongly pseudoconvex domains {D;}$°, such that

(i) fi(q) € Dy;
(ii) D; CC Dy
(i) U2, D; = D;
(iv) The holomorphic curvature at p; with respect to ds%i tends to
—2 as i — 00, here p; = f;(q).

As before we obtain a corresponding increasing sequence of open sets
{E;} exhausting D;. For every i, f; : E; — D, is an isometry relative to
dsZEi and ds%i. By the Cheng-Mok-Yau procedure, {dsZEi} will converge
to ds%1 normally. It would imply that the holomorphic curvature at g
is equal to —2. 0

Claim 4. Both Dy and Dy are biholomorphic to B,,.

Proof . Since D; is a simply-connected complete Kédhler manifold
with constant negative holomorphic curvature, it is biholomorphic to
B, by a well-known fact in complex differential geometry. Suppose
fj : D1 — Dy is a finite cover with index m. Hence, there is a finite
biholomorphic group of order m acting freely on B,, as isometries with
respect to the Bergman metric, which has negative sectional curvature.
This would contradict Cartan’s fixed point theorem (Theorem (i)) if
m > 1. Therefore D> must be biholomorphic to B,, also.

REMARK 1. It is possible to use the Bergman metric instead of the
Einstein Kahler metric. If one decides to do so, it is necessary to
prove that the Bergman metric Bp, on D; is complete. One can prove
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this fact depending on the completeness of d52D1. For example, the
completeness of Bp, is a consequence of §D(1) (or the remark in §D),
§D(2), §D(3), and a theorem of K.H. Look (Theorem (k)). It should
not be hard to find a proof of this result independent of the Einstein
Kahler metric.

For the rest of the proof, we can apply the same argument as in Claim
3 of §B and Theorem (h)(4) to conclude that Bp, has constant negative
holomorphic curvature. Finally, by Claim 1 of §B that D; is simply-
connected, it follows immediately that D; must be biholomorphic to
B,,. Alternately, one can invoke a theorem due to K.H. Look (Theorem
(1)) to draw the same conclusion without appealing to the simple
connectivity of Dy. O

REMARK 2. The proof of Theorem 4 is much easier; the basic result
we need is Theorem (f).

C. A proof depending on intrinsic volume forms. Let us
assume |E} (x)| = |CP, ()] for the given point z in D;. By Theorem
(e), this implies that D; must be biholomorphic to B,. If the order
of the covering f; : B, = Dy — D, is greater than one, this would
contradict Cartan’s fixed point theorem (Theorem (i)). Thus Dj is
also biholomorphic to B,,. Therefore the whole proof depends on the
following assertion.

Claim. |E} (z)| = |CP, (z)].

Proof . For each j, fj : Dy — D5 is a covering. From Theorem (a)(5)
we have
E?)l(x7v) = Egz(wﬁdfj(v))v
where z; = f;(z) and (z, v) is a nonzero n-vector at «. Let (D;) be an
increasing sequence of domains such that U2 ;(D1)r = D1,z € (D1)g
for each k, and (D1) CC (D1)g41- For each j, let (D2)l = f;((D1))-
For a fixed k, we obtain, by Theorem (a)(2)(3), the inequalities

Clpyy, (@ v) > C?Dl)i (zj,df;(v)) = CF (5, df;(v)).
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The last inequality on the above chain is valid for sufficiently large j.
The reason is that when j is sufficiently large, f;((D1)x) = (D2)], € D
by Theorem (j), where D = V N Da,p € V, is an open set in C™. It
follows that, for fixed k& and large j, we have the chain

Cloy @:0) _ Clpy @ i) Cp (2, dfs (v)
EBl(I,U) N E$2(xj’dfj(v)) _Egz(mjvdfj(v))

of inequalities (Theorem (a)(5) has been used here).
Observe that:

(i) By the volume decreasing property under holomorphic mappings,
we have E7(z;,dfj(v)) > Ep,(zj,df;(v)) since the inclusion map
D < D5 is holomorphic. Therefore we have

C("Dl)k (z,v)
ER (z,v)

O (a5, df; (v)
B (wy,df5(v)

>

(ii) Again by the strong pseudoconvexity of p € D5, one obtains

Cp (), df;(v))
E

(j, df;(v))

—1 asxz; = p

3 (3

by Theorem (d)(1).

(i) If we let k — oo, then Cfp ) (#,v) — Cfp ) (z,v). This
approximation property can be proved by an elementary normal family
argument.

(iv) It is always true that C'(”Dl)(:v,v)/E?Dl)(m,v) < 1 by Theorem
(a)(1).

Combining (i)—(iv), letting j — oo and then k — 0o, one concludes
1> C("Dl)(w, v)/EE’Dl)(w,U) > 1, proving our claim.

D. A proof depending on the intrinsic metrics.

1. CDl = KDl-
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Proof . Let ¢ € Dy be an arbitrary point. By Theorem (j), {f;(¢)}
will converge to p € 9D; as before. Applying Theorem (d)(2) and a
parallel argument as in §C, one obtains Kp, = Cp, at gq.

2. There exists a complete Einstein Kahler metric ds2D1 on D; (Claim
2 of §B).

3. .KvD1 = d82D1.

Proof . Let ¢ € D; be an arbitrary point and {f;(¢)} the sequence as
before. With the same notations as in Claim 3 of §B we can exhibit an
increasing sequence of simply-connected open sets {D;}2, in D with
the following properties:

(1) D; is a relatively compact strongly pseudoconvex domain in D,

(ii) D; CC Dit1,

(iii) p; = fi(q) € D, and

(iv) each D; is chosen large enough so that
K, (b, dfi(2)) ds’, (i dfi(v)

im 27 20 9 lim =1,

i—o00 Klj(pi,dfi(v)) oo Jds% (pzadfl( )

where v is a nonzero vector at ¢ € Dy.

By Theorem (h)(1) lim;oo Kp(pi,dfi(v))/y/ds% (pidfi(v)) = 1
hence we can conclude from (iv) that
KDI (q7 U) — llm KEz (q7 U)
dst, (g,v) 7% /dsy, (q,v)
Kp (pi, dfi(v))

= lim =1

oo sy (pi, dfi(v))

(Remember, here f; is an isometry from F; to D, with respect to
KEi,dSQEi, and Kbi,ds%i, respectively.)

There are two methods to conclude the proof.

1. By Claim 1 of §B, D is simply-connected. One can apply Theorem
(c.1) to finalize the proof.
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2. We can invoke Theorem (c.2) to conclude the proof without using
the simple connectivity of D;.

The rest of the proof is the same as Claim 4 of §B.
REMARK. One can prove Cp, = Kp, by means of Theorem (m).

Proof . We follow the same notations as in §B. Let us choose V to
be a sufficiently small open set containing p so that D = D, NV is
biholomorphic to a bounded convex set in C™. One can choose an
increasing sequence of simply-connected open sets {Dz}fil such that

(i) pi = fi(q) € D;,
(i) D;41 CC Dy,
(iii) U, D; = D, and
(iv) each D; is biholomorphic to a convex bounded open set in C™.
The corresponding sequence of open sets { E; }2, of Dy in (B) satisfies
the following properties:
(i) g € B,
(ii) E;41 CC Ey,
(i) U E; = Dy, and
(iv) each E; is biholomorphic to D; under f;.

By Theorem (m), Kp, is equal to Cp at p;; thus K, = Cg, at g,
letting ¢ — o0, Kg, = Kp,,Cg, — Cp, at ¢, respectively. O
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