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AN ASYMPTOTIC PROPERTY FOR TAILS
OF LIMIT PERIODIC CONTINUED FRACTIONS

LISA JACOBSEN AND HAAKON WAADELAND

1. Introduction. In the present paper we study continued fractions
of the forms

(1.1) K∞
n=1

an

1
= K(an/1) =

a1

1 +
a2

1 + · · ·+
an

1 + · · · ,

an ∈ C \{0},
and

(1.2) K∞
n=1

1
bn

= K(1/bn) =
1
b1 +

1
b2 + · · ·+

1
bn + · · · ,

bn ∈ C ,

where the elements {an}, {bn} are limit k-periodic for a k ∈ N, that is

(1.3) akn+p = ãp + δkn+p or bkn+p = b̃p + δkn+p; ãp, b̃p ∈ C , δn → 0

for p = 1, . . . , k and all n ≥ 0. We also assume that these limit
periodic continued fractions are of hyperbolic or loxodromic type. (For
definition, see §2 and §3.) It is then well known that the continued
fraction converges, at least generally. (For definition, see §3.) So do
also all its tails

(1.4)
K∞

n=1

am+n

1
=

am+1

1 +
am+2

1 + · · ·
K∞

n=1

1
bm+n

=
1

bm+1 +
1

bm+2 + · · ·

for m ∈ N∪{0}. Let f (m) denote the value of the m-th tail (1.4). Then
{f (m)} is also limit k-periodic [3, p. 96; 1].
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We assume that {f (m)} has finite limit points, that is

(1.5) f (kn+p) = Γp + εkn+p, Γp ∈ C for p = 1, . . . , k, n ≥ 0, εn → 0.

Then upper bounds for |εn| in terms of the differences |δm| in (1.3)
are well established. Here we go one step further, although, in a
special case, we shall assume also that {δn+1/δn} is limit k-periodic
and see what effect that has on {εn+1/εn}. (Many continued fraction
expansions of known functions satisfy this extra condition.)

The problem appeared in the following connection. Modified approx-
imants

(1.6) Sn(wn) =
a1

1 +
a2

1 + · · ·+
an

1 + wn
, wn ∈ Ĉ = C∪{∞}, n ∈ N,

converge faster to the value f = f (0) of (1.1) than the ordinary approx-
imants Sn(0) if we choose the modifying factors {wn} appropriately.
In [5] some different choices for {wn} are compared. The asymptotic
behavior of {εn+1/εn} determines in some cases which one of the con-
sidered choices is the best one.

It is important to come up with good alternatives for the modifying
factors {wn}. Clearly wn = f (n) is the “best” choice since Sn(f (n)) = f ,
but f (n) is in general unknown. In view of (1.5), wkn+p = Γp seems to
be a good choice, and indeed it is proved that if f �= ∞ and Γp �= 0,
then

(1.7) (f − Skn+p(Γp))/(f − Skn+p(0)) → 0 as n → ∞ [2].

It is shown later (in (2.4)) that, for K(an/1),

(1.8) δkn+p+1 = (1 + Γp+1)εkn+p + Γpεkn+p+1 + εkn+pεkn+p+1.

Dividing by εkn+p we see that if the asymptotic behavior of {εn+1/εn}
is known, then so is the behavior of {δn+1/εn}. Since {δn} is known,
this gives us an estimate ε̃n for εn. One can then prove that

(1.9)
(f − Skn+p(Γp + ε̃kn+p))/(f − Skn+p(Γp)) → 0

as n → ∞ if f �= ∞, [2].

In §2 our main results are presented and proved for the special case
where k = 1. The more general results for k ∈ N are stated in §3. In
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§4 we consider some other consequences of the techniques from §2 and
§3.

2. The case k = 1. K(an/1) is limit 1-periodic of hyperbolic or
loxodromic type if an → a, where | arg(a + 1/4)| < π. Then K(an/1)
converges to a value f ∈ Ĉ and

(2.1) f (n) → Γ = (
√

1 + 4a − 1)/2, where 	√ > 0 [3, p. 96].

With the notation δn = an − a, εn = f (n) − Γ as in the introduction,
we then have

THEOREM 2.1. Let K(an/1) satisfy an → a where | arg(a+1/4)| < π.
Then

(2.2) lim
n→∞

εn+1

εn
= t ∈ C if and only if lim

n→∞
δn+1

δn
= t ∈ C .

PROOF. Since f (n) → Γ �= ∞, we can, without loss of generality
assume that all f (n) �= ∞. (Otherwise we just consider a tail of
K(an/1).) From the relations

(2.3) f (n−1) = an/(1 + f (n)), Γ = a/(1 + Γ)

it then follows that

(2.4) δn = (1 + Γ)εn−1 + Γεn + εn−1εn.

Assume first that lim εn+1/εn = t ∈ C . Since εn → 0 we then know
that |t| ≤ 1. Then εn �= 0 from some n on. (εn �= ∞ since we have
assumed that all f (n) are finite.) Without loss of generality we assume
that all εn �= 0. From (2.4) we then get

(2.5)
δn+1

δn
=

εn

εn−1
· 1 + Γ + Γεn+1/εn + εn+1

1 + Γ + Γεn/εn−1 + εn
,

which proves that δn+1/δn → t. ((1 + Γ + Γεn+1/εn + εn+1) →
1 + Γ + tΓ �= 0 since |t| ≤ 1 and |1 + Γ| > |Γ|.)
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Assume next that lim δn+1/δn = t ∈ C . Again |t| ≤ 1 and δn �= 0
from some n on. (δn �= ∞ by definition.) Without loss of generality we
assume that all δn �= 0. By (2.4), we see that then no two consecutive
εn can both be zero and that all εn �= 0 if Γ = 0. This means that (2.5)
still holds (with the obvious interpretation if εn or εn−1 is zero).

Case 1. Γ = 0. Then (2.4) reduces to δn = εn−1(1 + εn), and thus

(2.5)
δn+1

δn
=

εn

εn−1

1 + εn+1

1 + εn
where

1 + εn+1

1 + εn
→ 1.

Hence, lim εn/εn−1 = lim δn+1/δn = t.

Case 2. Γ �= 0. Rearranging (2.5) we find that {gn}, given by

(2.6) gn = Γεn+1/εn, for n = 0, 1, 2, . . . ,

satisfies the recurrence relation

(2.7) gn−1 = cn/(dn + gn), for n = 1, 2, 3, . . . ,

where

(2.8) cn = Γ(1 + Γ + εn)δn+1/δn → c = at

and

(2.9) dn = 1 + Γ + εn+1 − Γδn+1/δn → d = 1 + Γ − Γt.

gn is clearly well defined since Γ �= 0 and εn, εn+1 are both finite and
at least one of them non-zero. Since Γ(1 + Γ + εn) → a = Γ(1 + Γ) �= 0
and all δn �= 0, we can, without loss of generality, assume that all
cn �= 0. Then K(cn/dn) is a limit 1-periodic continued fraction. Every
sequence {g∗n} satisfying (2.7) is called a sequence of right or wrong
tails for K(cn/dn). If we can prove that K(cn/dn) is limit 1-periodic
of hyperbolic or loxodromic type, i.e., that either

(2.10) c = 0, d �= 0

or that the non-singular linear fractional transformation

(2.11) s(w) = c/(d + w) where c �= 0
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is of hyperbolic or loxodromic type, then we know that {gn} converges
[1]. Since Γ �= 0 we then have that {εn+1/εn} converges. That
lim εn+1/εn = t follows then by (2.5).

Clearly, if t = 0 then (2.10) holds. Assume that t �= 0. Then s(w)
has the two fixed points

(2.11) −(1 + Γ) and Γt.

Since |d + (−1 − Γ)| < |d + Γt|, it follows that s(w) is of hyperbolic or
loxodromic type.

It is interesting to note that a slightly weaker version of the non-
trivial part (the if-part) of (2.2) can be proved by using a formula for
a linear approximation of the value f of K((a + δn)/1) if all |δn| ≤ ρ
for ρ > 0 sufficiently small:

(2.12) f = Γ +
1

1 + Γ

∞∑
m=0

( −Γ
1 + Γ

)m

δm+1 + O(ρ2) [4].

The O-term is dominated by Kρ2 for some K > 0 depending only upon
a [4].

If we assume that {|δn|} is a decreasing sequence from some n on,
the if-part of (2.2) follows easily, since, by (2.12),

(2.13) εn = f (n) − Γ =
1

1 + Γ

∞∑
m=0

( −Γ
1 + Γ

)m

δn+m+1 + O(|δn+1|2);

that is (since δn+1 �= 0 and |dn| decreases),

(2.14)

εn

δn+1
=

1
1 + Γ

∞∑
m=0

( −Γ
1 + Γ

)m δn+m+1

δn+1
+ O(|δn+1|)

−→
n→∞

1
1 + Γ

∞∑
m=0

( −Γ
1 + Γ

)m

tm =
1

1 + Γ + tΓ

or lim δn+1/εn = 1 + Γ + tΓ. Inserting the expression (2.4) for δn+1

then gives the result.
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Another interesting observation is that Gauss’ continued fractions
1 + K(anz/1) for hypergeometric functions 2F1 satisfy the conditions
of Theorem 2.1 with t = −1 [3, p. 123].

We can obtain a similar result for continued fractions K(1/bn).
K(1/bn) is limit 1-periodic of hyperbolic or loxodromic type if bn → b,
where b ∈ C \i[−2, 2]. In this case K(1/bn) converges to a value f ∈ Ĉ
and

(2.15) f (n) → Γ = (
√

1 + 4/b2 − 1)b/2 where 	√ > 0.

Using the notation δn = bn − b and εn = f (n) − Γ, we then have

THEOREM 2.2. Let K(1/bn) satisfy bn → b ∈ C \i[−2, 2]. Then

(2.16) lim
n→∞

εn+1

εn
= t ∈ C if and only if lim

n→∞
δn+1

δn
= t ∈ C .

PROOF. The proof follows the one of Theorem 2.1 with some modifi-
cations. First of all the recurrence relations for the tails now become

(2.3′) f (n−1) = 1/(bn + f (n)), Γ = 1/(b + Γ)

such that we get

(2.4′) (Γ + εn)δn+1 = −(b + Γ)εn − Γεn+1 − εnεn+1

and thus

(2.5′)
δn+1

δn
=

Γ + εn−1

Γ + εn
· εn

εn−1
· b + Γ + Γεn+1/εn + εn+1

b + Γ + Γεn/εn−1 + εn
.

This proves the only if part of (2.16).

To prove the if part, we observe that Γ �= 0, and that rearranging
(2.5′) gives that {gn} (defined by (2.6)) satisfies the recurrence relation
(2.7) with

(2.8′) cn = Γ(b + Γ + εn)
δn+1

δn
· Γ + εn

Γ + εn−1
→ c = at.
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and

(2.9′) dn = b + Γ + εn+1 − Γ
δn+1

δn
· Γ + εn

Γ + εn−1
→ d = b + Γ − Γt.

For sufficiently large N, K∞
n=N (cn/dn) is then a limit 1-periodic contin-

ued fraction of hyperbolic or loxodromic type, and the result follows.

3. The case k ∈ N. The result in §2 can be extended to the
more general case where K(an/1) or K(1/bn) is limit k-periodic of
hyperbolic or loxodromic type. This is important since also this class
contains continued fraction expansions of many interesting functions.
For instance, the C-fraction expansion of (1− z)2F1(a, 1; c; z2) is limit
4-periodic with limit 4-periodic δn+1/δn. Also, cases where K(an/1)
(or K(1/bn)) is limit 1-periodic and {δn+1/δn} is limit k-periodic for
some k > 1 are interesting. Then K(an/1) can be regarded as a limit
k-periodic continued fraction in order to apply the results from this
paper.

A limit k-periodic continued fraction K(an/bn) is said to be of
hyperbolic or loxodromic type if the limits

(3.1) lim
n→∞ akn+p = ãp, lim

n→∞ bkn+p = b̃p for p = 1, . . . , k

are finite and the linear fractional transformation

(3.2) S̃k(w) =
ã1

b̃1 +
ã2

b̃2 + · · ·+
ãk

b̃k + w
=

Ãk + Ãk−1w

B̃k + B̃k−1w
,

where Ãm, B̃m satisfy the recurrence relation

Ãm = b̃mÃm−1 + ãmÃm−2, B̃m = b̃mB̃m−1 + ãmB̃m−2

(3.3) for m = 1, . . . , k,

Ã0 = B̃−1 = 0, Ã−1 = B̃0 = 1,

satisfies

(3.4)
|Ãk−1 + B̃k +

√
R| �= |Ãk−1 + B̃k −

√
R|,

where R = (Ãk−1 − B̃k)2 + 4ÃkB̃k−1.
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S̃k is non-singular if and only if all ãn �= 0. It can be proved that if S̃k

is non-singular, then S̃k is hyperbolic or loxodromic if and only if (3.4)
holds [1].

It does not change anything if we instead regard a tail of K(an/bn).
For n ∈ N let

(3.2′) S̃
(n)
k (w) =

ãn+1

b̃n+1 +
ãn+2

b̃n+2 + · · ·+
ãn+k

b̃n+k + w
=

Ã
(n)
k + Ã

(n)
k−1w

B̃
(n)
k + B̃

(n)
k−1w

,

where ãkn+p = ãp, b̃kn+p = b̃p for p = 1, . . . , k and all n ≥ 0. Then
one can prove that S̃

(n)
k is non-singular if and only if S̃k = S̃

(0)
k is non-

singular, and S̃
(n)
k is of hyperbolic or loxodromic type if and only if S̃k

is of hyperbolic or loxodromic type, [1].

Let Γn and yn denote the attractive and repulsive fixed point of S̃
(n)
k .

(If S̃k is singular, then Γn = S̃
(n)
k (w) and

(3.5)

yn =

{
−B̃

(n)
k /B̃

(n)
k−1 if ãn+1 = 0,

ãn+1/(b̃n+1 + yn+1) if ãn+1 �= 0,
for n = p, p − 1, . . . , 0,

starting with a p ∈ {k, k + 1, . . . , 2k − 1} such that ãp+1 = 0. Further,
the relation yn+k = yn allows us to define {yn} for all n ∈ N.) Γn is
then the same Γn as in the introduction.

With this notation we know that if K(an/bn) is limit k-periodic
of hyperbolic or loxodromic type and all yp �= ∞, then K(an/bn)
converges to a value f ∈ Ĉ [1]. If yp = ∞ for one or more p ∈
{0, . . . , k− 1}, then K(an/bn) may diverge, but it will always converge
generally to a value f ∈ Ĉ [1]. By general convergence we mean

Definition 3.1. A continued fraction K(an/bn) is said to converge
generally to a value f ∈ Ĉ, if there exist two sequences {un}, {vn} of
elements from Ĉ such that
(3.6)

limSn(un) = lim Sn(vn) = f, lim inf
|un − vn|√

1 + |un|2
√

1 + |vn|2
> 0.

The (general) value f of a generally convergent continued fraction is
unique. If K(an/bn) converges to f , then it also converges generally to
f .



ASYMPTOTIC PROPERTY 159

We shall assume that all Γn �= ∞, but we allow yn = ∞. f (n) =
Γn + εn therefore denotes the general values of the tails of K(an/1) or
K(1/bn) in cases where K(an/1) or K(1/bn) diverges in the ordinary
sense. Under our conditions we still have that εn → 0.

THEOREM 3.2. Let K(an/1) be a limit k-periodic continued fraction
of hyperbolic or loxodromic type, and let Γp �= ∞ for p = 0, . . . , k − 1.
Then the following hold.

A. If, for an m ∈ {1, . . . , k},

(3.7) lim
n→∞ εkn+p+1/εkn+p = sp ∈ C , for p = m, m − 1,

and sp �= −(1 + Γp+1)/Γp for at least one of the indices p = m, m − 1,
then

(3.8) lim
n→∞

δkn+m+1

δkn+m
= tm = sm−1

1 + Γm+1 + Γmsm

1 + Γm + Γm−1sm−1
.

B. If

(3.9) lim
n→∞ δkn+p+1/δkn+p = tp ∈ C , for p = 1, . . . , k,

then

(3.10) lim
n→∞ εkn+p+1/εkn+p = sp �= −1 + Γp+1

Γp
, for p = 0, . . . , k−1.

REMARKS 3.3. 1. If (3.10) holds, then
∏k−1

p=0 |sp| ≤ 1 since εn → 0.
Likewise, if (3.9) holds, then

∏k
p=1 |tp| ≤ 1.

2. The implication in part A also involves the existence of δkn+m+1/
δkn+m from some n on. Likewise, if (3.9) holds, then εn+1/εn is well-
defined from some n on.

3. Clearly, the connection (3.8) between tp and sp, sp−1 also holds in
part B. Moreover,

(3.11)
k−1∏
p=0

sp =
k∏

p=1

tp.
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A proof of Theorem 3.2 will not be included here. It can be proved
following the same idea as in the proof of Theorem 2.1.

For the choice k = 1, we have that yn �= ∞ and Theorem 3.2 reduces
to Theorem 2.1. For the choice k = 2 we also have yn �= ∞ such that
K(an/1) converges. The connection between (s0, s1) and (t1, t2) is then
given by

(3.12) tp = sp−1
spΓp + 1 + Γp−1

sp−1Γp−1 + 1 + Γp
, for p = 1, 2 (s2 = s0),

and thus

(3.13) sp = tp+1
1 + Γp+1 − Γp+1tp
1 + Γp − Γptp+1

, for p = 0, 1 (t0 = t2).

For continued fractions K(1/bn) we have, similarly,

THEOREM 3.4. Let K(1/bn) be a limit k-periodic continued fraction
of hyperbolic or loxodromic type, and let Γp �= ∞ for p = 0, . . . , k − 1.
Then the following hold.

A. If, for an m ∈ {1, . . . , k},
(3.14) lim

n→∞ εkn+p+1/εkn+p = sp ∈ C , for p = m, m − 1,

and sp = −(b̃p+1 + Γp+1)/Γp does not occur for both indices p =
m, m − 1, then

(3.15) lim
n→∞

δkn+m+1

δkn+m
= tm = sm−1

Γm−1

Γm
· b̃m+1 + Γm+1 + Γmsm

b̃m + Γm + Γm−1sm−1

.

B. If

(3.16) lim
n→∞ δkn+p+1/δkn+p = tp ∈ C , for p = 1, . . . , k,

then

(3.17) lim
n→∞ εkn+p+1/εkn+p = sp �= −(b̃p+1 + Γp+1)/Γp

for p = 0, . . . , k − 1.



ASYMPTOTIC PROPERTY 161

Remarks 3.3 still hold, and Theorem 3.4 reduces to Theorem 2.2 for
the choice k = 1.

4. Some other results. Reading the proofs of Theorem 2.1 and
Theorem 2.2 we see that they depend on

(i) the recurrence relations (2.3) and (2.3′),

(ii) the fact that f (n) = Γ + εn where εn → 0, Γ �= ∞, and

(iii) the continued fraction K(cn/dn), given by (2.8) (2.9) or

(2.8′) (2.9′), being limit 1-periodic of hyperbolic or loxodromic type.

It is well known that if K(an/1) or K(1/bn) is limit k-periodic of
hyperbolic or loxodromic type, then every sequence {gn} of g-wrong
tails (i.e., {gn} satisfies (2.3) or (2.3′) with g0 �= f) is limit k-periodic
such that

(4.1) lim
n→∞ gkn+p = yp, for p = 0, . . . , k − 1 [1].

For k = 1 we have yp = y �= ∞ such that {gn} satisfies (i) and (ii)
above with Γ replaced by y. The similarity goes further. We have

THEOREM 4.1. Let K(an/1) satisfy an → a where | arg(a+1/4)| < π,
and let {gn} be an arbitrary sequence of g-wrong tails for K(an/1).
Further let εn = gn − y, and let t ∈ C satisfy |t| �= |1 + y|/|y|. Then

(4.2) lim
n→∞

εn+1

εn
= t if and only if lim

n→∞
δn+1

δn
= t.

REMARKS 4.2. 1. The conclusion (4.2) is empty for |t| > 1. The
extra condition |t| �= |1 + y|/|y| is vital since |1 + y| < |y|. In Theorem
2.1 no such condition was needed since |1 + Γ| > |Γ|.

2. Also Theorem 3.2 has a parallel for g-wrong tails {gn}, with Γn

replaced by yn. The extra condition on {tn} then takes the form

(4.3)
k∏

n=1

|tn| �=
k∏

n=1

∣∣∣∣1 + yn

yn

∣∣∣∣.
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It is well known that the conclusions are empty if
∏k

n=1 |tn| > 1
and that, for limit k-periodic continued fractions of hyperbolic or
loxodromic type,

(4.4)
k∏

n=1

∣∣∣∣1 + yn

yn

∣∣∣∣ < 1 <

k∏
n=1

∣∣∣∣1 + Γn

Γn

∣∣∣∣ if all yn, Γn �= ∞.

3. (4.2) also holds for continued fractions K(1/bn), where bn → b ∈
C \i[−2, 2], when |t| �= |1 + y|/|y|.

PROOF. The proof goes through just as before, since 1+y+yεn+1/εn+
εn+1 → 1+y +yt �= 0 if εn+1/εn → t. If δn+1/δn → t, we need to show
that K∞

n=N (cn/dn), where

(2.8′′) cn = y(1 + y + εn)δn+1/δn → c = at

and

(2.9′′) dn = 1 + y + εn+1 − yδn+1/δn → d = 1 + y − yt

is a limit 1-periodic continued fraction of hyperbolic or loxodromic type
for sufficiently large N . This happens if and only if |t| �= |1 + y|/|y| .

Another observation is that the proofs of Theorem 3.2 and 3.4 do not
really depend on K(an/1) or K(1/bn) to be of hyperbolic or loxodromic
type. This means that Theorem 3.2 and 3.4 also holds for K(an/1) or
K(1/bn) being of the elliptic or parabolic type as long as {f (n)} (or
{gn}) is limit k-periodic with finite limits and

∏k
p=1 |tp| < 1.

If an → −1/4 and

(4.5) |an| − 	(ane−i2α) ≤ 2qn−1(1 − qn) cos2 α from some n on,

where −π/2 < α < π/2 is a fixed constant and 0 < qn → 1/2, then
one can prove that every sequence of right or wrong tails of K(an/1)
converges to −1/2. We therefore have, in particular,

THEOREM 4.3. Let K(an/1), where an = −1/4 + δn, δn → 0 satisfies
(4.5), be given, and let {gn} be a sequence of right or wrong tails of
K(an/1). Then the following hold.



ASYMPTOTIC PROPERTY 163

A. Let t ∈ C , |t| < 1. Then

(4.6) lim δn+1/δn = t ⇐⇒ lim(gn+1 + 1/2)/(gn + 1/2) = t.

B. Let t1, t2 ∈ C , |t1t2| < 1. Then

(4.7) lim
n→∞ δ2n+p+1/δ2n+p = tp, for p = 1, 2,

if and only if
(4.8)

lim
n→∞

g2n+p+1 + 1/2
g2n+p + 1/2

= sp =
1 + tp

1 + tp+1
tp+1, for p = 0, 1 (t0 = t2).

Added in Proof. See also P. Levrie, Improving a method for
computing non-dominant solutions of certain second-order recurrence
relations of Poincaré-type, Numer. Math., to appear.
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