AN ASYMPTOTIC PROPERTY FOR TAILS OF LIMIT PERIODIC CONTINUED FRACTIONS

LISA JACOBSEN AND HAAKON WAADELAND

1. Introduction. In the present paper we study continued fractions of the forms

$$
\begin{gather*}
K_{n=1}^{\infty} \frac{a_{n}}{1}=K\left(a_{n} / 1\right)=\frac{a_{1}}{1}+\frac{a_{2}}{1}+\cdots+\frac{a_{n}}{1}+\cdots \tag{1.1}\\
a_{n} \in \mathbf{C} \backslash\{0\}
\end{gather*}
$$

and

$$
\begin{align*}
K_{n=1}^{\infty} \frac{1}{b_{n}}=K\left(1 / b_{n}\right) & =\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}}+\cdots \tag{1.2}\\
b_{n} & \in \mathbf{C}
\end{align*}
$$

where the elements $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are limit k-periodic for a $k \in \mathbf{N}$, that is

$$
\begin{equation*}
a_{k n+p}=\tilde{a}_{p}+\delta_{k n+p} \text { or } b_{k n+p}=\tilde{b}_{p}+\delta_{k n+p} ; \tilde{a}_{p}, \tilde{b}_{p} \in \mathbf{C}, \delta_{n} \rightarrow 0 \tag{1.3}
\end{equation*}
$$

for $p=1, \ldots, k$ and all $n \geq 0$. We also assume that these limit periodic continued fractions are of hyperbolic or loxodromic type. (For definition, see $\S 2$ and $\S 3$.) It is then well known that the continued fraction converges, at least generally. (For definition, see §3.) So do also all its tails

$$
\begin{align*}
& K_{n=1}^{\infty} \frac{a_{m+n}}{1}=\frac{a_{m+1}}{1}+\frac{a_{m+2}}{1}+\cdots \\
& K_{n=1}^{\infty} \frac{1}{b_{m+n}}=\frac{1}{b_{m+1}}+\frac{1}{b_{m+2}}+\cdots \tag{1.4}
\end{align*}
$$

for $m \in \mathbf{N} \cup\{0\}$. Let $f^{(m)}$ denote the value of the m-th tail (1.4). Then $\left\{f^{(m)}\right\}$ is also limit k-periodic [3, p. 96; $\left.\mathbf{1}\right]$.

Received by the editors on March 6, 1987 and in revised form on July 3, 1987.

We assume that $\left\{f^{(m)}\right\}$ has finite limit points, that is

$$
\begin{equation*}
f^{(k n+p)}=\Gamma_{p}+\varepsilon_{k n+p}, \Gamma_{p} \in \mathbf{C} \text { for } p=1, \ldots, k, n \geq 0, \varepsilon_{n} \rightarrow 0 \tag{1.5}
\end{equation*}
$$

Then upper bounds for $\left|\varepsilon_{n}\right|$ in terms of the differences $\left|\delta_{m}\right|$ in (1.3) are well established. Here we go one step further, although, in a special case, we shall assume also that $\left\{\delta_{n+1} / \delta_{n}\right\}$ is limit k-periodic and see what effect that has on $\left\{\varepsilon_{n+1} / \varepsilon_{n}\right\}$. (Many continued fraction expansions of known functions satisfy this extra condition.)

The problem appeared in the following connection. Modified approximants

$$
\begin{equation*}
S_{n}\left(w_{n}\right)=\frac{a_{1}}{1}+\frac{a_{2}}{1}+\cdots+\frac{a_{n}}{1+w_{n}}, \quad w_{n} \in \hat{\mathbf{C}}=\mathbf{C} \cup\{\infty\}, n \in \mathbf{N} \tag{1.6}
\end{equation*}
$$

converge faster to the value $f=f^{(0)}$ of (1.1) than the ordinary approximants $S_{n}(0)$ if we choose the modifying factors $\left\{w_{n}\right\}$ appropriately. In [5] some different choices for $\left\{w_{n}\right\}$ are compared. The asymptotic behavior of $\left\{\varepsilon_{n+1} / \varepsilon_{n}\right\}$ determines in some cases which one of the considered choices is the best one.

It is important to come up with good alternatives for the modifying factors $\left\{w_{n}\right\}$. Clearly $w_{n}=f^{(n)}$ is the "best" choice since $S_{n}\left(f^{(n)}\right)=f$, but $f^{(n)}$ is in general unknown. In view of (1.5), $w_{k n+p}=\Gamma_{p}$ seems to be a good choice, and indeed it is proved that if $f \neq \infty$ and $\Gamma_{p} \neq 0$, then

$$
\begin{equation*}
\left(f-S_{k n+p}\left(\Gamma_{p}\right)\right) /\left(f-S_{k n+p}(0)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

It is shown later (in (2.4)) that, for $K\left(a_{n} / 1\right)$,

$$
\begin{equation*}
\delta_{k n+p+1}=\left(1+\Gamma_{p+1}\right) \varepsilon_{k n+p}+\Gamma_{p} \varepsilon_{k n+p+1}+\varepsilon_{k n+p} \varepsilon_{k n+p+1} \tag{1.8}
\end{equation*}
$$

Dividing by $\varepsilon_{k n+p}$ we see that if the asymptotic behavior of $\left\{\varepsilon_{n+1} / \varepsilon_{n}\right\}$ is known, then so is the behavior of $\left\{\delta_{n+1} / \varepsilon_{n}\right\}$. Since $\left\{\delta_{n}\right\}$ is known, this gives us an estimate $\tilde{\varepsilon}_{n}$ for ε_{n}. One can then prove that

$$
\begin{gather*}
\left(f-S_{k n+p}\left(\Gamma_{p}+\tilde{\varepsilon}_{k n+p}\right)\right) /\left(f-S_{k n+p}\left(\Gamma_{p}\right)\right) \rightarrow 0 \tag{1.9}\\
\text { as } n \rightarrow \infty \text { if } f \neq \infty, \quad[\mathbf{2}] .
\end{gather*}
$$

In $\S 2$ our main results are presented and proved for the special case where $k=1$. The more general results for $k \in \mathbf{N}$ are stated in $\S 3$. In
$\S 4$ we consider some other consequences of the techniques from $\S 2$ and §3.
2. The case $\mathbf{k}=1$. $K\left(a_{n} / 1\right)$ is limit 1-periodic of hyperbolic or loxodromic type if $a_{n} \rightarrow a$, where $|\arg (a+1 / 4)|<\pi$. Then $K\left(a_{n} / 1\right)$ converges to a value $f \in \hat{\mathbf{C}}$ and

$$
\begin{equation*}
f^{(n)} \rightarrow \Gamma=(\sqrt{1+4 a}-1) / 2, \quad \text { where } \Re \sqrt{ }>0 \quad[\mathbf{3}, \text { p. } 96] \tag{2.1}
\end{equation*}
$$

With the notation $\delta_{n}=a_{n}-a, \varepsilon_{n}=f^{(n)}-\Gamma$ as in the introduction, we then have

THEOREM 2.1. Let $K\left(a_{n} / 1\right)$ satisfy $a_{n} \rightarrow a$ where $|\arg (a+1 / 4)|<\pi$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}}=t \in \mathbf{C} \quad \text { if and only if } \lim _{n \rightarrow \infty} \frac{\delta_{n+1}}{\delta_{n}}=t \in \mathbf{C} \tag{2.2}
\end{equation*}
$$

Proof. Since $f^{(n)} \rightarrow \Gamma \neq \infty$, we can, without loss of generality assume that all $f^{(n)} \neq \infty$. (Otherwise we just consider a tail of $K\left(a_{n} / 1\right)$.) From the relations

$$
\begin{equation*}
f^{(n-1)}=a_{n} /\left(1+f^{(n)}\right), \quad \Gamma=a /(1+\Gamma) \tag{2.3}
\end{equation*}
$$

it then follows that

$$
\begin{equation*}
\delta_{n}=(1+\Gamma) \varepsilon_{n-1}+\Gamma \varepsilon_{n}+\varepsilon_{n-1} \varepsilon_{n} \tag{2.4}
\end{equation*}
$$

Assume first that $\lim \varepsilon_{n+1} / \varepsilon_{n}=t \in \mathbf{C}$. Since $\varepsilon_{n} \rightarrow 0$ we then know that $|t| \leq 1$. Then $\varepsilon_{n} \neq 0$ from some n on. $\left(\varepsilon_{n} \neq \infty\right.$ since we have assumed that all $f^{(n)}$ are finite.) Without loss of generality we assume that all $\varepsilon_{n} \neq 0$. From (2.4) we then get

$$
\begin{equation*}
\frac{\delta_{n+1}}{\delta_{n}}=\frac{\varepsilon_{n}}{\varepsilon_{n-1}} \cdot \frac{1+\Gamma+\Gamma \varepsilon_{n+1} / \varepsilon_{n}+\varepsilon_{n+1}}{1+\Gamma+\Gamma \varepsilon_{n} / \varepsilon_{n-1}+\varepsilon_{n}} \tag{2.5}
\end{equation*}
$$

which proves that $\delta_{n+1} / \delta_{n} \rightarrow t . \quad\left(\left(1+\Gamma+\Gamma \varepsilon_{n+1} / \varepsilon_{n}+\varepsilon_{n+1}\right) \rightarrow\right.$ $1+\Gamma+t \Gamma \neq 0$ since $|t| \leq 1$ and $|1+\Gamma|>|\Gamma|$.)

Assume next that $\lim \delta_{n+1} / \delta_{n}=t \in \mathbf{C}$. Again $|t| \leq 1$ and $\delta_{n} \neq 0$ from some n on. ($\delta_{n} \neq \infty$ by definition.) Without loss of generality we assume that all $\delta_{n} \neq 0$. By (2.4), we see that then no two consecutive ε_{n} can both be zero and that all $\varepsilon_{n} \neq 0$ if $\Gamma=0$. This means that (2.5) still holds (with the obvious interpretation if ε_{n} or ε_{n-1} is zero).

Case 1. $\Gamma=0$. Then (2.4) reduces to $\delta_{n}=\varepsilon_{n-1}\left(1+\varepsilon_{n}\right)$, and thus

$$
\begin{equation*}
\frac{\delta_{n+1}}{\delta_{n}}=\frac{\varepsilon_{n}}{\varepsilon_{n-1}} \frac{1+\varepsilon_{n+1}}{1+\varepsilon_{n}} \quad \text { where } \frac{1+\varepsilon_{n+1}}{1+\varepsilon_{n}} \rightarrow 1 \tag{2.5}
\end{equation*}
$$

Hence, $\lim \varepsilon_{n} / \varepsilon_{n-1}=\lim \delta_{n+1} / \delta_{n}=t$.
Case 2. $\Gamma \neq 0$. Rearranging (2.5) we find that $\left\{g_{n}\right\}$, given by

$$
\begin{equation*}
g_{n}=\Gamma \varepsilon_{n+1} / \varepsilon_{n}, \quad \text { for } n=0,1,2, \ldots \tag{2.6}
\end{equation*}
$$

satisfies the recurrence relation

$$
\begin{equation*}
g_{n-1}=c_{n} /\left(d_{n}+g_{n}\right), \quad \text { for } n=1,2,3, \ldots, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=\Gamma\left(1+\Gamma+\varepsilon_{n}\right) \delta_{n+1} / \delta_{n} \rightarrow c=a t \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}=1+\Gamma+\varepsilon_{n+1}-\Gamma \delta_{n+1} / \delta_{n} \rightarrow d=1+\Gamma-\Gamma t \tag{2.9}
\end{equation*}
$$

g_{n} is clearly well defined since $\Gamma \neq 0$ and $\varepsilon_{n}, \varepsilon_{n+1}$ are both finite and at least one of them non-zero. Since $\Gamma\left(1+\Gamma+\varepsilon_{n}\right) \rightarrow a=\Gamma(1+\Gamma) \neq 0$ and all $\delta_{n} \neq 0$, we can, without loss of generality, assume that all $c_{n} \neq 0$. Then $K\left(c_{n} / d_{n}\right)$ is a limit 1-periodic continued fraction. Every sequence $\left\{g_{n}^{*}\right\}$ satisfying (2.7) is called a sequence of right or wrong tails for $K\left(c_{n} / d_{n}\right)$. If we can prove that $K\left(c_{n} / d_{n}\right)$ is limit 1-periodic of hyperbolic or loxodromic type, i.e., that either

$$
\begin{equation*}
c=0, \quad d \neq 0 \tag{2.10}
\end{equation*}
$$

or that the non-singular linear fractional transformation

$$
\begin{equation*}
s(w)=c /(d+w) \text { where } c \neq 0 \tag{2.11}
\end{equation*}
$$

is of hyperbolic or loxodromic type, then we know that $\left\{g_{n}\right\}$ converges [1]. Since $\Gamma \neq 0$ we then have that $\left\{\varepsilon_{n+1} / \varepsilon_{n}\right\}$ converges. That $\lim \varepsilon_{n+1} / \varepsilon_{n}=t$ follows then by (2.5).

Clearly, if $t=0$ then (2.10) holds. Assume that $t \neq 0$. Then $s(w)$ has the two fixed points

$$
\begin{equation*}
-(1+\Gamma) \text { and } \Gamma t \tag{2.11}
\end{equation*}
$$

Since $|d+(-1-\Gamma)|<|d+\Gamma t|$, it follows that $s(w)$ is of hyperbolic or loxodromic type. \square

It is interesting to note that a slightly weaker version of the nontrivial part (the if-part) of (2.2) can be proved by using a formula for a linear approximation of the value f of $K\left(\left(a+\delta_{n}\right) / 1\right)$ if all $\left|\delta_{n}\right| \leq \rho$ for $\rho>0$ sufficiently small:

$$
\begin{equation*}
f=\Gamma+\frac{1}{1+\Gamma} \sum_{m=0}^{\infty}\left(\frac{-\Gamma}{1+\Gamma}\right)^{m} \delta_{m+1}+O\left(\rho^{2}\right) \tag{2.12}
\end{equation*}
$$

The O-term is dominated by $K \rho^{2}$ for some $K>0$ depending only upon a [4].
If we assume that $\left\{\left|\delta_{n}\right|\right\}$ is a decreasing sequence from some n on, the if-part of (2.2) follows easily, since, by (2.12),

$$
\begin{equation*}
\varepsilon_{n}=f^{(n)}-\Gamma=\frac{1}{1+\Gamma} \sum_{m=0}^{\infty}\left(\frac{-\Gamma}{1+\Gamma}\right)^{m} \delta_{n+m+1}+O\left(\left|\delta_{n+1}\right|^{2}\right) \tag{2.13}
\end{equation*}
$$

that is (since $\delta_{n+1} \neq 0$ and $\left|d_{n}\right|$ decreases),

$$
\begin{align*}
\frac{\varepsilon_{n}}{\delta_{n+1}}= & \frac{1}{1+\Gamma} \sum_{m=0}^{\infty}\left(\frac{-\Gamma}{1+\Gamma}\right)^{m} \frac{\delta_{n+m+1}}{\delta_{n+1}}+O\left(\left|\delta_{n+1}\right|\right) \\
& \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{1+\Gamma} \sum_{m=0}^{\infty}\left(\frac{-\Gamma}{1+\Gamma}\right)^{m} t^{m}=\frac{1}{1+\Gamma+t \Gamma} \tag{2.14}
\end{align*}
$$

or $\lim \delta_{n+1} / \varepsilon_{n}=1+\Gamma+t \Gamma$. Inserting the expression (2.4) for δ_{n+1} then gives the result.

Another interesting observation is that Gauss' continued fractions $1+K\left(a_{n} z / 1\right)$ for hypergeometric functions ${ }_{2} F_{1}$ satisfy the conditions of Theorem 2.1 with $t=-1$ [3, p. 123].
We can obtain a similar result for continued fractions $K\left(1 / b_{n}\right)$. $K\left(1 / b_{n}\right)$ is limit 1-periodic of hyperbolic or loxodromic type if $b_{n} \rightarrow b$, where $b \in \mathbf{C} \backslash i[-2,2]$. In this case $K\left(1 / b_{n}\right)$ converges to a value $f \in \hat{\mathbf{C}}$ and

$$
\begin{equation*}
f^{(n)} \rightarrow \Gamma=\left(\sqrt{1+4 / b^{2}}-1\right) b / 2 \quad \text { where } \Re \sqrt{ }>0 \tag{2.15}
\end{equation*}
$$

Using the notation $\delta_{n}=b_{n}-b$ and $\varepsilon_{n}=f^{(n)}-\Gamma$, we then have

THEOREM 2.2. Let $K\left(1 / b_{n}\right)$ satisfy $b_{n} \rightarrow b \in \mathbf{C} \backslash i[-2,2]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}}=t \in \mathbf{C} \quad \text { if and only if } \quad \lim _{n \rightarrow \infty} \frac{\delta_{n+1}}{\delta_{n}}=t \in \mathbf{C} \tag{2.16}
\end{equation*}
$$

Proof. The proof follows the one of Theorem 2.1 with some modifications. First of all the recurrence relations for the tails now become

$$
f^{(n-1)}=1 /\left(b_{n}+f^{(n)}\right), \quad \Gamma=1 /(b+\Gamma)
$$

such that we get

$$
\left(\Gamma+\varepsilon_{n}\right) \delta_{n+1}=-(b+\Gamma) \varepsilon_{n}-\Gamma \varepsilon_{n+1}-\varepsilon_{n} \varepsilon_{n+1}
$$

and thus

$$
\frac{\delta_{n+1}}{\delta_{n}}=\frac{\Gamma+\varepsilon_{n-1}}{\Gamma+\varepsilon_{n}} \cdot \frac{\varepsilon_{n}}{\varepsilon_{n-1}} \cdot \frac{b+\Gamma+\Gamma \varepsilon_{n+1} / \varepsilon_{n}+\varepsilon_{n+1}}{b+\Gamma+\Gamma \varepsilon_{n} / \varepsilon_{n-1}+\varepsilon_{n}}
$$

This proves the only if part of (2.16).
To prove the if part, we observe that $\Gamma \neq 0$, and that rearranging (2.5') gives that $\left\{g_{n}\right\}$ (defined by (2.6)) satisfies the recurrence relation (2.7) with

$$
c_{n}=\Gamma\left(b+\Gamma+\varepsilon_{n}\right) \frac{\delta_{n+1}}{\delta_{n}} \cdot \frac{\Gamma+\varepsilon_{n}}{\Gamma+\varepsilon_{n-1}} \rightarrow c=a t
$$

and

$$
\begin{equation*}
d_{n}=b+\Gamma+\varepsilon_{n+1}-\Gamma \frac{\delta_{n+1}}{\delta_{n}} \cdot \frac{\Gamma+\varepsilon_{n}}{\Gamma+\varepsilon_{n-1}} \rightarrow d=b+\Gamma-\Gamma t \tag{2.9'}
\end{equation*}
$$

For sufficiently large $N, K_{n=N}^{\infty}\left(c_{n} / d_{n}\right)$ is then a limit 1-periodic continued fraction of hyperbolic or loxodromic type, and the result follows.
3. The case $k \in \mathbf{N}$. The result in $\S 2$ can be extended to the more general case where $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ is limit k-periodic of hyperbolic or loxodromic type. This is important since also this class contains continued fraction expansions of many interesting functions. For instance, the C-fraction expansion of $(1-z)_{2} F_{1}\left(a, 1 ; c ; z^{2}\right)$ is limit 4-periodic with limit 4-periodic $\delta_{n+1} / \delta_{n}$. Also, cases where $K\left(a_{n} / 1\right)$ (or $K\left(1 / b_{n}\right)$) is limit 1-periodic and $\left\{\delta_{n+1} / \delta_{n}\right\}$ is limit k-periodic for some $k>1$ are interesting. Then $K\left(a_{n} / 1\right)$ can be regarded as a limit k-periodic continued fraction in order to apply the results from this paper.

A limit k-periodic continued fraction $K\left(a_{n} / b_{n}\right)$ is said to be of hyperbolic or loxodromic type if the limits

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{k n+p}=\tilde{a}_{p}, \lim _{n \rightarrow \infty} b_{k n+p}=\tilde{b}_{p} \text { for } p=1, \ldots, k \tag{3.1}
\end{equation*}
$$

are finite and the linear fractional transformation

$$
\begin{equation*}
\tilde{S}_{k}(w)=\frac{\tilde{a}_{1}}{\tilde{b}_{1}}+\frac{\tilde{a}_{2}}{\tilde{b}_{2}}+\cdots+\frac{\tilde{a}_{k}}{\tilde{b}_{k}+w}=\frac{\tilde{A}_{k}+\tilde{A}_{k-1} w}{\tilde{B}_{k}+\tilde{B}_{k-1} w} \tag{3.2}
\end{equation*}
$$

where $\tilde{A}_{m}, \tilde{B}_{m}$ satisfy the recurrence relation

$$
\begin{gather*}
\tilde{A}_{m}=\tilde{b}_{m} \tilde{A}_{m-1}+\tilde{a}_{m} \tilde{A}_{m-2}, \quad \tilde{B}_{m}=\tilde{b}_{m} \tilde{B}_{m-1}+\tilde{a}_{m} \tilde{B}_{m-2} \\
\text { for } m=1, \ldots, k, \tag{3.3}\\
\tilde{A}_{0}=\tilde{B}_{-1}=0, \quad \tilde{A}_{-1}=\tilde{B}_{0}=1,
\end{gather*}
$$

satisfies

$$
\begin{align*}
& \left|\tilde{A}_{k-1}+\tilde{B}_{k}+\sqrt{R}\right| \neq\left|\tilde{A}_{k-1}+\tilde{B}_{k}-\sqrt{R}\right| \\
& \text { where } R=\left(\tilde{A}_{k-1}-\tilde{B}_{k}\right)^{2}+4 \tilde{A}_{k} \tilde{B}_{k-1} \tag{3.4}
\end{align*}
$$

\tilde{S}_{k} is non-singular if and only if all $\tilde{a}_{n} \neq 0$. It can be proved that if \tilde{S}_{k} is non-singular, then \tilde{S}_{k} is hyperbolic or loxodromic if and only if (3.4) holds [1].
It does not change anything if we instead regard a tail of $K\left(a_{n} / b_{n}\right)$. For $n \in \mathbf{N}$ let

$$
\tilde{S}_{k}^{(n)}(w)=\frac{\tilde{a}_{n+1}}{\tilde{b}_{n+1}}+\frac{\tilde{a}_{n+2}}{\tilde{b}_{n+2}}+\cdots+\frac{\tilde{a}_{n+k}}{\tilde{b}_{n+k}+w}=\frac{\tilde{A}_{k}^{(n)}+\tilde{A}_{k-1}^{(n)} w}{\tilde{B}_{k}^{(n)}+\tilde{B}_{k-1}^{(n)} w}
$$

where $\tilde{a}_{k n+p}=\tilde{a}_{p}, \tilde{b}_{k n+p}=\tilde{b}_{p}$ for $p=1, \ldots, k$ and all $n \geq 0$. Then one can prove that $\tilde{S}_{k}^{(n)}$ is non-singular if and only if $\tilde{S}_{k}=\tilde{S}_{k}^{(0)}$ is nonsingular, and $\tilde{S}_{k}^{(n)}$ is of hyperbolic or loxodromic type if and only if \tilde{S}_{k} is of hyperbolic or loxodromic type, [1].

Let Γ_{n} and y_{n} denote the attractive and repulsive fixed point of $\tilde{S}_{k}^{(n)}$. (If \tilde{S}_{k} is singular, then $\Gamma_{n}=\tilde{S}_{k}^{(n)}(w)$ and

$$
y_{n}=\left\{\begin{array}{ll}
-\tilde{B}_{k}^{(n)} / \tilde{B}_{k-1}^{(n)} & \text { if } \tilde{a}_{n+1}=0, \tag{3.5}\\
\tilde{a}_{n+1} /\left(\tilde{b}_{n+1}+y_{n+1}\right) & \text { if } \tilde{a}_{n+1} \neq 0,
\end{array} \text { for } n=p, p-1, \ldots, 0\right.
$$

starting with a $p \in\{k, k+1, \ldots, 2 k-1\}$ such that $\tilde{a}_{p+1}=0$. Further, the relation $y_{n+k}=y_{n}$ allows us to define $\left\{y_{n}\right\}$ for all $n \in \mathbf{N}$.) Γ_{n} is then the same Γ_{n} as in the introduction.

With this notation we know that if $K\left(a_{n} / b_{n}\right)$ is limit k-periodic of hyperbolic or loxodromic type and all $y_{p} \neq \infty$, then $K\left(a_{n} / b_{n}\right)$ converges to a value $f \in \hat{\mathbf{C}}[\mathbf{1}]$. If $y_{p}=\infty$ for one or more $p \in$ $\{0, \ldots, k-1\}$, then $K\left(a_{n} / b_{n}\right)$ may diverge, but it will always converge generally to a value $f \in \hat{\mathbf{C}}[\mathbf{1}]$. By general convergence we mean

Definition 3.1. A continued fraction $K\left(a_{n} / b_{n}\right)$ is said to converge generally to a value $f \in \hat{\mathbf{C}}$, if there exist two sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ of elements from $\hat{\mathbf{C}}$ such that

$$
\begin{equation*}
\lim S_{n}\left(u_{n}\right)=\lim S_{n}\left(v_{n}\right)=f, \quad \liminf \frac{\left|u_{n}-v_{n}\right|}{\sqrt{1+\left|u_{n}\right|^{2}} \sqrt{1+\left|v_{n}\right|^{2}}}>0 \tag{3.6}
\end{equation*}
$$

The (general) value f of a generally convergent continued fraction is unique. If $K\left(a_{n} / b_{n}\right)$ converges to f, then it also converges generally to f.

We shall assume that all $\Gamma_{n} \neq \infty$, but we allow $y_{n}=\infty . f^{(n)}=$ $\Gamma_{n}+\varepsilon_{n}$ therefore denotes the general values of the tails of $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ in cases where $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ diverges in the ordinary sense. Under our conditions we still have that $\varepsilon_{n} \rightarrow 0$.

THEOREM 3.2. Let $K\left(a_{n} / 1\right)$ be a limit k-periodic continued fraction of hyperbolic or loxodromic type, and let $\Gamma_{p} \neq \infty$ for $p=0, \ldots, k-1$. Then the following hold.
A. If, for an $m \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varepsilon_{k n+p+1} / \varepsilon_{k n+p}=s_{p} \in \mathbf{C}, \quad \text { for } p=m, m-1 \tag{3.7}
\end{equation*}
$$

and $s_{p} \neq-\left(1+\Gamma_{p+1}\right) / \Gamma_{p}$ for at least one of the indices $p=m, m-1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\delta_{k n+m+1}}{\delta_{k n+m}}=t_{m}=s_{m-1} \frac{1+\Gamma_{m+1}+\Gamma_{m} s_{m}}{1+\Gamma_{m}+\Gamma_{m-1} s_{m-1}} \tag{3.8}
\end{equation*}
$$

B. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{k n+p+1} / \delta_{k n+p}=t_{p} \in \mathbf{C}, \quad \text { for } p=1, \ldots, k \tag{3.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varepsilon_{k n+p+1} / \varepsilon_{k n+p}=s_{p} \neq-\frac{1+\Gamma_{p+1}}{\Gamma_{p}}, \quad \text { for } p=0, \ldots, k-1 \tag{3.10}
\end{equation*}
$$

REMARKS 3.3. 1. If (3.10) holds, then $\prod_{p=0}^{k-1}\left|s_{p}\right| \leq 1$ since $\varepsilon_{n} \rightarrow 0$. Likewise, if (3.9) holds, then $\prod_{p=1}^{k}\left|t_{p}\right| \leq 1$.
2. The implication in part A also involves the existence of $\delta_{k n+m+1} /$ $\delta_{k n+m}$ from some n on. Likewise, if (3.9) holds, then $\varepsilon_{n+1} / \varepsilon_{n}$ is welldefined from some n on.
3. Clearly, the connection (3.8) between t_{p} and s_{p}, s_{p-1} also holds in part B. Moreover,

$$
\begin{equation*}
\prod_{p=0}^{k-1} s_{p}=\prod_{p=1}^{k} t_{p} \tag{3.11}
\end{equation*}
$$

A proof of Theorem 3.2 will not be included here. It can be proved following the same idea as in the proof of Theorem 2.1.

For the choice $k=1$, we have that $y_{n} \neq \infty$ and Theorem 3.2 reduces to Theorem 2.1. For the choice $k=2$ we also have $y_{n} \neq \infty$ such that $K\left(a_{n} / 1\right)$ converges. The connection between $\left(s_{0}, s_{1}\right)$ and $\left(t_{1}, t_{2}\right)$ is then given by

$$
\begin{equation*}
t_{p}=s_{p-1} \frac{s_{p} \Gamma_{p}+1+\Gamma_{p-1}}{s_{p-1} \Gamma_{p-1}+1+\Gamma_{p}}, \quad \text { for } p=1,2 \quad\left(s_{2}=s_{0}\right) \tag{3.12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
s_{p}=t_{p+1} \frac{1+\Gamma_{p+1}-\Gamma_{p+1} t_{p}}{1+\Gamma_{p}-\Gamma_{p} t_{p+1}}, \quad \text { for } p=0,1 \quad\left(t_{0}=t_{2}\right) \tag{3.13}
\end{equation*}
$$

For continued fractions $K\left(1 / b_{n}\right)$ we have, similarly,

THEOREM 3.4. Let $K\left(1 / b_{n}\right)$ be a limit k-periodic continued fraction of hyperbolic or loxodromic type, and let $\Gamma_{p} \neq \infty$ for $p=0, \ldots, k-1$. Then the following hold.
A. If, for an $m \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varepsilon_{k n+p+1} / \varepsilon_{k n+p}=s_{p} \in \mathbf{C}, \quad \text { for } p=m, m-1 \tag{3.14}
\end{equation*}
$$

and $s_{p}=-\left(\tilde{b}_{p+1}+\Gamma_{p+1}\right) / \Gamma_{p}$ does not occur for both indices $p=$ $m, m-1$, then
(3.15) $\lim _{n \rightarrow \infty} \frac{\delta_{k n+m+1}}{\delta_{k n+m}}=t_{m}=s_{m-1} \frac{\Gamma_{m-1}}{\Gamma_{m}} \cdot \frac{\tilde{b}_{m+1}+\Gamma_{m+1}+\Gamma_{m} s_{m}}{\tilde{b}_{m}+\Gamma_{m}+\Gamma_{m-1} s_{m-1}}$.
B. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{k n+p+1} / \delta_{k n+p}=t_{p} \in \mathbf{C}, \quad \text { for } p=1, \ldots, k \tag{3.16}
\end{equation*}
$$

then

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \varepsilon_{k n+p+1} / \varepsilon_{k n+p}=s_{p} \neq-\left(\tilde{b}_{p+1}+\Gamma_{p+1}\right) / \Gamma_{p} \tag{3.17}\\
\text { for } p=0, \ldots, k-1
\end{gather*}
$$

Remarks 3.3 still hold, and Theorem 3.4 reduces to Theorem 2.2 for the choice $k=1$.
4. Some other results. Reading the proofs of Theorem 2.1 and Theorem 2.2 we see that they depend on
(i) the recurrence relations (2.3) and (2.3'),
(ii) the fact that $f^{(n)}=\Gamma+\varepsilon_{n}$ where $\varepsilon_{n} \rightarrow 0, \Gamma \neq \infty$, and
(iii) the continued fraction $K\left(c_{n} / d_{n}\right)$, given by (2.8)-(2.9) or $\left(2.8^{\prime}\right)-\left(2.9^{\prime}\right)$, being limit 1-periodic of hyperbolic or loxodromic type.

It is well known that if $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ is limit k-periodic of hyperbolic or loxodromic type, then every sequence $\left\{g_{n}\right\}$ of g-wrong tails (i.e., $\left\{g_{n}\right\}$ satisfies (2.3) or $\left(2.3^{\prime}\right)$ with $\left.g_{0} \neq f\right)$ is limit k-periodic such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{k n+p}=y_{p}, \quad \text { for } p=0, \ldots, k-1 \quad[\mathbf{1}] \tag{4.1}
\end{equation*}
$$

For $k=1$ we have $y_{p}=y \neq \infty$ such that $\left\{g_{n}\right\}$ satisfies (i) and (ii) above with Γ replaced by y. The similarity goes further. We have

THEOREM 4.1. Let $K\left(a_{n} / 1\right)$ satisfy $a_{n} \rightarrow a$ where $|\arg (a+1 / 4)|<\pi$, and let $\left\{g_{n}\right\}$ be an arbitrary sequence of g-wrong tails for $K\left(a_{n} / 1\right)$. Further let $\varepsilon_{n}=g_{n}-y$, and let $t \in \mathbf{C}$ satisfy $|t| \neq|1+y| /|y|$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}}=t \quad \text { if and only if } \quad \lim _{n \rightarrow \infty} \frac{\delta_{n+1}}{\delta_{n}}=t \tag{4.2}
\end{equation*}
$$

REMARKS 4.2. 1. The conclusion (4.2) is empty for $|t|>1$. The extra condition $|t| \neq|1+y| /|y|$ is vital since $|1+y|<|y|$. In Theorem 2.1 no such condition was needed since $|1+\Gamma|>|\Gamma|$.
2. Also Theorem 3.2 has a parallel for g-wrong tails $\left\{g_{n}\right\}$, with Γ_{n} replaced by y_{n}. The extra condition on $\left\{t_{n}\right\}$ then takes the form

$$
\begin{equation*}
\prod_{n=1}^{k}\left|t_{n}\right| \neq \prod_{n=1}^{k}\left|\frac{1+y_{n}}{y_{n}}\right| \tag{4.3}
\end{equation*}
$$

It is well known that the conclusions are empty if $\prod_{n=1}^{k}\left|t_{n}\right|>1$ and that, for limit k-periodic continued fractions of hyperbolic or loxodromic type,

$$
\begin{equation*}
\prod_{n=1}^{k}\left|\frac{1+y_{n}}{y_{n}}\right|<1<\prod_{n=1}^{k}\left|\frac{1+\Gamma_{n}}{\Gamma_{n}}\right| \text { if all } y_{n}, \Gamma_{n} \neq \infty \tag{4.4}
\end{equation*}
$$

3. (4.2) also holds for continued fractions $K\left(1 / b_{n}\right)$, where $b_{n} \rightarrow b \in$ $\mathbf{C} \backslash i[-2,2]$, when $|t| \neq|1+y| /|y|$.

Proof. The proof goes through just as before, since $1+y+y \varepsilon_{n+1} / \varepsilon_{n}+$ $\varepsilon_{n+1} \rightarrow 1+y+y t \neq 0$ if $\varepsilon_{n+1} / \varepsilon_{n} \rightarrow t$. If $\delta_{n+1} / \delta_{n} \rightarrow t$, we need to show that $K_{n=N}^{\infty}\left(c_{n} / d_{n}\right)$, where

$$
c_{n}=y\left(1+y+\varepsilon_{n}\right) \delta_{n+1} / \delta_{n} \rightarrow c=a t
$$

and

$$
d_{n}=1+y+\varepsilon_{n+1}-y \delta_{n+1} / \delta_{n} \rightarrow d=1+y-y t
$$

is a limit 1-periodic continued fraction of hyperbolic or loxodromic type for sufficiently large N. This happens if and only if $|t| \neq|1+y| /|y|$. \square

Another observation is that the proofs of Theorem 3.2 and 3.4 do not really depend on $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ to be of hyperbolic or loxodromic type. This means that Theorem 3.2 and 3.4 also holds for $K\left(a_{n} / 1\right)$ or $K\left(1 / b_{n}\right)$ being of the elliptic or parabolic type as long as $\left\{f^{(n)}\right\}$ (or $\left.\left\{g_{n}\right\}\right)$ is limit k-periodic with finite limits and $\prod_{p=1}^{k}\left|t_{p}\right|<1$.
If $a_{n} \rightarrow-1 / 4$ and

$$
\begin{equation*}
\left|a_{n}\right|-\Re\left(a_{n} e^{-i 2 \alpha}\right) \leq 2 q_{n-1}\left(1-q_{n}\right) \cos ^{2} \alpha \quad \text { from some } n \text { on } \tag{4.5}
\end{equation*}
$$

where $-\pi / 2<\alpha<\pi / 2$ is a fixed constant and $0<q_{n} \rightarrow 1 / 2$, then one can prove that every sequence of right or wrong tails of $K\left(a_{n} / 1\right)$ converges to $-1 / 2$. We therefore have, in particular,

THEOREM 4.3. Let $K\left(a_{n} / 1\right)$, where $a_{n}=-1 / 4+\delta_{n}, \delta_{n} \rightarrow 0$ satisfies (4.5), be given, and let $\left\{g_{n}\right\}$ be a sequence of right or wrong tails of $K\left(a_{n} / 1\right)$. Then the following hold.
A. Let $t \in \mathbf{C},|t|<1$. Then

$$
\begin{equation*}
\lim \delta_{n+1} / \delta_{n}=t \Longleftrightarrow \lim \left(g_{n+1}+1 / 2\right) /\left(g_{n}+1 / 2\right)=t \tag{4.6}
\end{equation*}
$$

B. Let $t_{1}, t_{2} \in \mathbf{C},\left|t_{1} t_{2}\right|<1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{2 n+p+1} / \delta_{2 n+p}=t_{p}, \quad \text { for } p=1,2 \tag{4.7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g_{2 n+p+1}+1 / 2}{g_{2 n+p}+1 / 2}=s_{p}=\frac{1+t_{p}}{1+t_{p+1}} t_{p+1}, \quad \text { for } p=0,1 \quad\left(t_{0}=t_{2}\right) \tag{4.8}
\end{equation*}
$$

Added in Proof. See also P. Levrie, Improving a method for computing non-dominant solutions of certain second-order recurrence relations of Poincaré-type, Numer. Math., to appear.

REFERENCES

1. L. Jacobsen, Convergence of limit k-periodic continued fractions in the hyperbolic or loxodromic case, Det Kgl. Norske Vid. Selsk. Skr. 5 (1987), 1-23.
2. -_ and H. Waadeland, Convergence acceleration of limit periodic continued fractions under asymptotic side conditions, Numer. Math. 53 (1988), 285-298.
3. O. Perron, Die Lehre von den Kettenbrüchen, dritte Auflage, B.G. Teubner Verlagsgesellschaft, Stuttgart, 1954.
4. H. Waadeland, Local properties of continued fractions, Lecture Notes in Mathematics, Springer-Verlag 1237 (1987), 239-250.
5. - Computation of continued fractions by square root modification, App. Num. Math. 4 (1988), 361-375.

Department of Mathematics and Statistics, The University of Trondheim, N-7055 Dragvoll, Norway

