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WHEN DO TWO GROUPS ALWAYS HAVE
ISOMORPHIC EXTENSION GROUPS?

H. PAT GOETERS

What is the relationship between abelian groups A and C if Ext(A, B)
∼= Ext(C, B) for all abelian groups B? (problem 43 in [5]). We will
address this question, restricting our attention to torsion-free abelian
groups A, B and C of finite rank.

Call A and C related if Ext(A, B) ∼= Ext(C, B) for all B. We give a
characterization of this relation in §1 and use it to show

THEOREM. Assume that one of the following hold: (a) rank A = 2; (b)
A has a semi-prime endomorphism ring; or (c) A is almost completely
decomposable. Write A = D′ ⊕ F ′ ⊕G with F ′ free, D′ divisible and G
reduced with Hom(G,Z) = 0.

Then C is related to A if and only if C = D ⊕ F ⊕ R with F free;
D is divisible and zero if OT(A) �= typeQ and nonzero if OT(G) �=
type Q and D′ �= 0; and R quasi-isomorphic to G.

Here Z is the ring of integers and Q the field of rationals, p will denote
a prime of Z. As usual, the p-rank of A, rp(A) = dim A/pA. We show
the

COROLLARY. Assume that one of the following hold: (a) rank A =
2; (b) A has a semi-prime endomorphism ring; or (c) A is almost
completely decomposable. Then C is quasi-isomorphic to A if and only
if (i) rp(C) = rp(A) for all p; (ii) rp( Hom(C, B)) = rp( Hom(A, B)) for
all p and groups B with rankB ≤ rankA; (iii) OT(C) = OT(A); and
(iv) rank C = rank A.

The notation, if undefined, appears in [1], and the basic ideas from [1]
are assumed. However a few facts about the outer type of A, OT(A) =
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sup{σ|σ = typeA/K for some K, A with rankA/K = 1}, and the
inner type of B, IT(B) = inf {σ|σ = type 〈a〉∗, 0 �= a ∈ B}, are given.

PROPOSITION 0. Let τ = OT(A) and σ = IT(B).

1. If G ≤ A and C � A, then OT(G) ≤ τ and OT(A/C) ≤ τ .

2. τ ≤ typeZp if and only if rp(A) = rank A.

3. OT( Hom(C, A)) ≤ τ for any C.

4. τ ≤ σ if and only if rank Hom(A, B) = ( rankA)( rankB).

5. If {a1, . . . , an} ⊆ A is a basis for QA then, for Ki = 〈aj |j �= i〉∗,
OT(A) = typeA/K1 ∨ · · · ∨ typeA/Kn.

Hence, by 5, OT(A) is manageable and, by 4, is a quasi-isomorphism
invariant of A.

1. Groups with a semi-prime endomorphism ring. By virtue
of the fact that A is torsion-free, Ext(A, B) = D ⊕ T where D is
torsion-free divisible and T is a divisible torsion group. We excerpt the
following from [8] with this notation.

THEOREM 1.1. If Ext(A, B) �= 0, then dimQ D = 2ℵ0 and p-rank
T = rp(A)rp(B) − rp( Hom(A, B)).

A useful characterization of when Ext(A, B) = 0 is the following.
Let R(B) be the subring of Q generated by 1 and 1/p for all p with
pB �= B. Note type R(B) ≤ IT(B).

THEOREM 1.2. (Wickless [9]). Ext(A, B) = 0 if and only if
OT(A) ≤ type R(B).

We will say that C is n-related to A if Ext(A, B) ∼= Ext(C, B) for all
B of rank ≤ n. Any group C can be written as C = F ⊕C ′ with F free
and Hom(C ′,Z) = 0. Since C ′ is n-related to A if and only if C is n-
related to A, we may as well assume that Hom(C,Z) = 0 = Hom(A,Z)
in considering these relations.
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THEOREM 1.3. Assume that Hom(A, Z) = Hom(C, Z) = 0 and
n > 0. The following are equivalent:

1. C is n-related to A.

2. (i) rp(C) = rp(A) for all p; (ii) rp( Hom(C, B)) = rp( Hom(A, B))
for all p and all B with rank B ≤ n; and (iii) OT(C) = OT(A).

PROOF. We will first show that if Ext(A, B) = 0, then rp(A)rp(B)−
rp( Hom(A, B)) = 0 for all p. Consider 0 → B → QB → T → 0
and note that p-rank T = rp(B) [1, Theorem 2]. By Theorem 1.2 and
Proposition 0, rank Hom(A, B) = ( rankA)( rankB), and consequently
the sequence 0 → Hom(A, B) → Hom(A, QB) → Hom(A, T ) → 0 is
exact and Hom(A, T ) is a torsion group. In this case Hom(A, QB) is
the divisible hull of Hom(A, B), and therefore p-rank Hom(A, T ) =
rp( Hom(A, B)) [1, Theorem 2]. But, by [8, Theorem 1], p-rank
Hom(A, T ) = rp(A)(p-rank T ) = rp(A)rp(B).

Hence the torsion subgroup of Ext(A, B) always has p-rank equal to
rp(A)rp(B) − rp( Hom(A, B)).

(1⇒ 2). Let rankB ≤ n. Since the torsion subgroups of Ext(A, B)
and Ext(C, B) are isomorphic, (∗) rp(A)rp(B) − rp( Hom(A, B)) =
rp(C)rp(B) − rp( Hom(C, B)) for every p.

In particular, rp(A) = rp(A)rp(Z) = rp(C)rp(Z) = rp(C) for all p.
We can solve (∗) to get (ii).

Assume that not both OT(C) and OT(A) equal ∞(∞ = typeQ).
Say OT(A) = τ < ∞. Let p be such that τ ≤ typeZp. By
Theorem 1.2, Ext(A,Zp) = 0 = Ext(C,Zp), and, by the same theorem,
OT(C) ≤ typeZp < ∞. By proposition 0, rp(C) = rank C.

Let X be a rank-1 group of type τ . Since, by Proposition 0,
OT( Hom(A, X)) ≤ τ, rp( Hom(A, X)) = rank Hom(A, X) = rank A =
rp(A). Therefore rp(C) = rp( Hom(C, X)) = rank Hom(C, X) =
rank C and OT(C) ≤ typeX = τ .

Since we can repeat the argument to show OT(C) ≥ τ , we have
established (iii).

(2⇒ 1). Let rank B ≤ n. By (iii) and Theorem 1.2, Ext(C, B) = 0
if and only if Ext(A, B) = 0. If Ext(C, B) �= 0 then, by (i), (ii) and
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Theorem 1.1, the torsion subgroups of Ext(C, B) and Ext(A, B) are
isomorphic. Whence Ext(C, B) ∼= Ext(A, B) in this case, too.

If A and C are quasi-isomorphic, then they are n-related for all n.
However if OT(A) = ∞, then A ⊕ Q is related to A by the above.

Also if A is a nonzero divisible group, then Ext(A, B) is a vector
space of dimension 2ℵ0 over Q. For C to be related to A, C must be a
nonzero divisible group plus a free group.

For E(A) = Hom(A, A), let N = N(E(A)) denote the nilradical of
E(A) which is the ideal generated by all of the nilpotent right ideals
of E(A). We say that E(A) is semi-prime if N = 0 or, equivalently,
if QE(A) = Q ⊗ E(A) is a semi-simple ring. Call A semi-prime if
E(A) is a semi-prime ring and note that being semi-prime is a quasi-
isomorphism invariant (Chapter 9 in [1]).

By a result of J. Reid [7, Corollary 4.3], if A is strongly indecompos-
able, then A is semi-prime if and only if every endomorphism of A is
a monomorphism. If C is quasi-isomorphic to A we will write C ∼ A.
Let SA(C) denote 〈f(A)| f : A → C〉.

THEOREM 1.4. Let A be semi-prime of rank n. The following are
equivalent:

1. C is related to A.

2. C is n-related to A.

3. (i) If A is a free group plus a divisible group, then C = D⊕F with
F free, and D divisible and D = 0 if and only if A is reduced.

(ii) Otherwise C = D ⊕ F ⊕ R, where F is free, D is divisible and
zero if OT(A) �= ∞ and R is quasi-isomorphic to A.

PROOF. Write A
.= An1

1 ⊕ · · · ⊕ Ank

k ( .= means quasi equal) with
each Ai strongly indecomposable and Ai � Aj if i �= j. Since
An1

1 ⊕ · · · ⊕Ank

k is semi-prime and C is related to A if and only if C is
related to An1

1 ⊕ · · · ⊕ Ank

k , we may assume without loss of generality
that A = An1

1 ⊕ · · · ⊕ Ank

k .
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Suppose f : Ai → Aj with i �= j and regard f ∈ E = E(A). We will
show that I = fE is nilpotent so that f = 0.

Let g ∈ E and, for the natural maps πi : A → Ai ⊆ A and πj : A →
Aj ⊆ A, let h = πigπj . Then fgf = fhf and (fg)n = f(hf)n−1g with
hf ∈ E(Ai). If hf is a monomorphism, then α = hf is invertible in
QE(Ai) (Proposition 6.1 in [1]). If k �= 0 is such that kα−1 ∈ E(Ai),
then (kα−1h)f = k1Ai

, and, for u = kα−1h, Aj ⊇ f(Ai) ⊕ keru ⊇
kAj . Since Aj is strongly indecomposable and f is a monomorphism,
ker u = 0, which contradicts the assumption that Ai � Aj . Whence
hf ∈ NE(Ai) is nilpotent. If (hf)n = 0, then (fg)n+1 = f(hf)ng = 0
so that fg is nilpotent. Since QI is finite dimensional and contains only
nilpotent elements, it is easy to check that QI hence I is nilpotent.

Therefore E(A) = E(An1
1 )×· · ·×E(Ank

k ). Since E(Ani
i ) could have no

nilpotent ideals, 0 = N(E(Ani
i )) = Matni

(N(Ai)) and Ai is semi-prime
and strongly indecomposable. If A is divisible, the theorem follows from
Theorem 1.1.

(2⇒ 3). Assume that C is n-related to A. If A is free, then C is
clearly free by Theorem 1.3. Otherwise, if A = F ′ ⊕ A′ with F ′ free
and Hom(A′, Z) = 0, then Hom(F ′, A′) is a nilpotent ideal in E(A).
Hence F ′ = 0 and Hom(A, Z) = 0. Similarly A is reduced since A is
not divisible.

Writing C = B ⊕ F with F free and Hom(B, Z) = 0 we see that B
is n-related to A. Write B = D ⊕ R with D divisible and R reduced.
We will show that R ∼ A.

Now, by Theorem 1.3, rp(R) = rp(A) and rp( Hom(R, G)) =
rp( Hom(A, G)) for every p and G with rank G ≤ n. We will show, by
induction on rank R, that if, for some summand K = Am1

1 ⊕ · · ·⊕Amk

k

of A we have rp( Hom(R, G)) = rp( Hom(K, G)) for all p and groups G
with rank G ≤ n, then R ∼ Ae1

1 ⊕ · · · ⊕ Aek

k ⊕ R′ with R′ satisfying
SA(R′) ≤ R′[A].

If rank R = 0, then there is nothing to show. Otherwise let K =
Am1

1 ⊕ · · · ⊕ Amk

k with rp( Hom(R, G)) = rp( Hom(K, G)) for all p and
G having rank G ≤ n. If SA(R) ≤ R[A], then we are finished. Assume
SA(R) =

∑
i SAi

(R) � R[A].

If pK �= K, then r = rank Hom(R, A) ≥ rp( Hom(R, K)) =
rp( Hom(K, K)) > 0. Using standard arguments, we may embed
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R/R[A] into Ar = Arn1
i ⊕ · · · ⊕ Arnk

k and identify R/R[A] with its
image. Take πj : Ar → A

rnj

j and π : R → R/R[A] to be the natural
maps.

Since SAj
(R) � R[A] for some j, there is an f : Aj → R such that

f(Aj) � R[A]. Since Hom(Aj , Ai) = 0 if i �= j, then πiπf(Aj) = 0
and πjπf(Aj) = (f(A); +R[A])/R[A] �= 0. Therefore there is a
g ∈ Hom(R, Aj) such that 0 �= gf ∈ E(Ai). But Aj is strongly
indecomposable and semi-prime so that gf is a monomorphism. As
before, gf is invertible in QE(Aj) and we get a quasi-splitting of
R

g→Aj , i.e., R ∼ Aj ⊕ R1. Now rp( Hom(R, G)) = rp( Hom(Aj ⊕
R1, G)) for every p and G of rank ≤ n. If pAj �= Aj , then rp( Hom(Aj⊕
R1, Aj)) = rp( Hom(K, Aj)) = mjrp(E(Aj)) ≥ rp(E(Aj)) > 0 and
mj �= 0.

Hence rp( Hom(R, G)) = rp( Hom(Aj , G)) + rp( Hom(R1, G)) =
rp( Hom(Aj , G)) + rp( Hom(Al1

1 ⊕ · · · ⊕ Alk
k , G)) = rp( Hom(K, G)) for

all p where li = mi if i �= j; lj = mj − 1 and induction applies to R1.

Whence R ∼ Ae1
1 ⊕ · · · ⊕ Aek

k ⊕ R′ with SA(R′) ≤ R′[A] as de-
sired. Returning to the proof, rp( Hom(R, Ai)) = rp( Hom(A, Ai)) =
nirp(E(Aj)) ≥ eirp(E(Aj)) from which we infer that ni ≥ ei for every
i.

Consider K = An1−e1
1 ⊕ · · · ⊕ Ank−ek

k . Clearly rp( Hom(R′, G)) =
rp( Hom(K, G)) for all p and G of rank ≤ n. If rank R′ > 0, then R′

has a quasi-summand Aj for some j and SAj
(R′) ≤ SA(R′) ≤ R′[A] is

impossible. Thus R′ = 0 which implies that rp( Hom(K, K)) = 0 for
all p. Since K is reduced, K = 0, and ni = ei for all i. Whence R ∼ A.

If OT(A) �= ∞, then OT(C) �= ∞ by Theorem 1.3 and D must be
zero.

(3⇒ 1). The case when 3(i) holds is covered by the remark preceding
the statement of the theorem. If C = D ⊕ R ⊕ F as stated, then
OT(D ⊕ R) = ∞ if OT(A) = ∞ and OT(D ⊕ R) = OT(R) = OT(A)
if OT(A) �= ∞. Since rp( Hom(D ⊕ R, G)) = rp( Hom(R, G)) =
rp( Hom(A, G)) for all p and G, D ⊕ R, hence C, is related to A.

COROLLARY 1.5. If A is semi-prime, then C is quasi-isomorphic
to A if and only if (i) rp(C) = rp(A) for all p; (ii) rp( Hom(C, G)) =
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rp( Hom(A, G)) for all p and G with rank G ≤ rank A; (iii) OT(C) =
OT(A); and (iv) rankC = rankA.

PROOF. (⇐) If A is free, then OT(A) = OT(C) implies C is free and
(iv) implies A ∼= C. If A is divisible, then (i) and (iv) imply A ∼= C.
Otherwise, if C ∼ F ⊕ D ⊕ A then, by (iv), F = D = 0.

Any finite rank group A can be decomposed A = D⊕F ⊕A′ with D
divisible, F free and A′ reduced with Hom(A′,Z) = 0. Call A′ a free
and divisible complementary summand of A, or fdc-summand for short.

2. When is C related to an almost completely decomposable
group A? The simplest example of a group without a semi-prime
endomorphism ring is A = X ⊕ Y where X, Y ≤ Q with type
X < typeY . The nilradical of E(A) is Hom(X, Y ).

THEOREM 2.1. Let A be completely decomposable with a linearly
ordered typeset and n = rankA. The following are equivalent:

1. C is related to A.

2. C is n-related to A.

3. (i) If A is a free group plus a divisible, then C = D ⊕ F with F
free and D divisible and zero if and only if A is reduced.

(ii) Otherwise write C = D⊕F ⊕R and A = D′⊕F ′⊕R′ with R and
R′ respective fdc-summands, D and D′ divisible groups and F and F ′

free groups. Then R is isomorphic to R′, and D is zero if OT(A) < ∞,
and nonzero if both OT(R′) < ∞ and D′ �= 0.

PROOF. If A = D′⊕F ′ with D′ divisible and F ′ free, then C = D⊕F
with D divisible and F free with the further restriction that D = 0 if
and only if D′ = 0. We will exclude this case in the following.

(2⇒ 3). Suppose C is n-related to A. We may assume that
Hom(A,Z) = 0. Write A = G⊕D′ with D′ divisible and G reduced, and
write C = D⊕F ⊕R with D divisible, F free and R an fdc-summand.
We will show that R ∼= G.
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Write G = G1⊕· · ·⊕Gn with Gi = Xri
i where Xi is a rank-1 group of

type τi. Assume that τi < τj if i < j. We will construct an embedding
of R into G below.

We note that rp( Hom(R, B)) = rp( Hom(C, B)) = rp( Hom(A, B)) =
rp( Hom(G, B)) and that rp(R) = rp(G) for all p and all B of rank ≤ n.
For a group K and a rank-1 group X it is easy to check that f1, . . . , fl ∈
Hom(K, X) are independent if and only if rankK−rank (∩l

i=1 ker fi) =
l (Proposition 0).

Since, for pX1 �= X1, rp( Hom(R, X1)) = rp( Hom(G, X1)) = r1

(Proposition 0), there are linearly independent maps g1, . . . , gr1 ∈
Hom(R, X1). Define θ1 : R → G1 by θ1(x) = (g1(x), . . . , gr1(x)). Then
rank Im θ1 = rank R − rank ker θ1 = r1 and coker θ1 is torsion.

Assume that a map θ : R → G1 ⊕ · · · ⊕ Gk has been constructed
so that coker θ is a torsion group T , for k < n. Now OT(Im θ) ≤
OT(G1 ⊕ · · · ⊕ Gk) = τk < τk+1 by Proposition 0. This implies rank
Hom(Im θ, Xk+1) = rank Im θ = rank Hom(G1 ⊕ · · · ⊕ Gk, Xk+1) =
r1 + · · · + rk.

From 0 → ker θ → R → Im θ → 0 we derive 0 → Hom( Im θ, Xk+1) →
Hom(R, Xk+1)

α→ Hom(ker θ, Xk+1). If pXk+1 �= Xk+1, then rp( Hom
(R, Xk+1)) = rank Hom(R, Xk+1) = rp( Hom(G, Xk+1)) = rank Hom
(G, Xk+1) = r1 + · · · + rk+1. Hence there are linearly independent
maps f1, . . . , frk+1 ∈ Hom(R, Xk+1) so that αf1, . . . , αfrk+1 are lin-
early independent in Hom(ker θ, Xk+1). Define φ : R → G1 ⊕ · · · ⊕
Gk+1 by φ(x) = (θ(x), (f1(x), . . . , frk+1(x))). Since kerφ = ker θ ∩
∩i ker fi, rank (R/ kerφ) = rank (R/ ker θ)+ rank (ker θ/ kerφ) = rank
(R/ ker θ)+ rank (ker θ/∩i kerαfi) = r1 + · · ·+ rk + rk+1 = rank (G1⊕
· · · ⊕ Gk+1) and cokerφ is torsion.

We have constructed a map θ : R → G with T = coker θ a torsion
group. By [1, Theorem 2], rp(R/ ker θ)+dimT/pT = rp(G)+dimT [p]
for all p where T [p] = {x ∈ T | px = 0}. Since dimT/pT ≤ dimT [p]
and rp(R) = rp(R/ ker θ) = rp(ker θ) = rp(G) for all p, the inequality
rp(G) ≤ rp(R/ ker θ) ≤ rp(R) implies rp(ker θ) = 0 for all p. Whence
ker θ = 0 since R is reduced.

Let p satisfy pXn �= Xn. From 0 → R
θ→G → T → 0 we de-

rive 0 → Hom(G, R) → Hom(R, R). Since OT(R) ≤ OT(G) =
typeXn, rp(R) = rankR. By Proposition 0, rp( Hom(R, R)) = rank
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Hom(R, R) = rank Hom(G, R) = rp( Hom(G, R)). Let m �= 0 satisfy
m1r = f ∈ Hom(G, R). Since f is clearly 1-1, G ∼ R [1, Corollary
6.2]. By a theorem of Beaumont-Pierce [1, Theorem 2.3] G ∼= R.

Now R ⊕ D is related to A = G ⊕ D′ so that OT(R ⊕ D) =
OT(R) ∨ OT(D) = OT(A) by Theorem 1.3. Clearly D = 0 if
OT(A) < ∞. If OT(A) = ∞ but OT(G) < ∞, then D �= 0 in order for
OT(C) = ∞.

(3⇒ 1). Assume Hom(C,Z) = Hom(A,Z) = 0 and suppose C =
R ⊕ D with D divisible, R reduced and R ⊕ D′ = A for some divisible
group D′. Moreover D = 0 if and only if D′ = 0 since the hypothesis
that R is completely decomposable with linearly ordered typeset implies
OT(R) < ∞. Therefore OT(C) = OT(A), the hypotheses of Theorem
1.3 hold, and C is related to A.

REMARK. The n in part 2 could be taken to be the maximum rank
of a fdc-summand of A in the case that A is not a free plus a divisible.

Let X be a rank-1 group which is neither free nor divisible. It is easy
to construct a strongly indecomposable group C of rank-2 such that
any rank-1 image of C is isomorphic to X. Then, from Theorem 1.3, C
is 1-related to A = X ⊕ X, but not 2-related. If, however, both C and
A are presumed almost completely decomposable, then C is related to
A if and only if C is 1-related to A.

Unfortunately the proof of Theorem 2.1 does not go through under
the assumption that A is almost completely decomposable. To prove
the analogue in this case we must use several results about Butler
groups. Recall that A is a Butler group if A is a pure subgroup of a
completely decomposable group G (see [2] and [3]).

For a set S of primes, let AS be the localization of A at S. That is,
for ZS the subring of Q generated by 1 and 1/p if p ∈ S, AS = ZS ⊗A.
We identify A ≤ AS as usual. Using the notation from [9] let
supp A = {p | pA �= A}. Note that if C and A are n-related and
Hom(C,Z) = Hom(A,Z) = 0, then rp(A) = rp(C) for all p. In this
case supp C = supp A.
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LEMMA 2.2. Assume Hom(A,Z) = Hom(C,Z) = 0. Then C is
n-related to A if and only if CS is n-related to AS for every set S of
primes.

PROOF. We will only consider the necessity since, if S is the set
of all primes, CS = C and AS = A. Let S be a set of primes.
Then OT(AS) = OT(A) + typeZS = OT(C) + typeZS = OT(CS)
(see Exercise 1.2 in [1]). Therefore Ext(AS , B) = 0 if and only if
Ext(CS , B) = 0 by Theorem 1.2.

If supp B ⊆ S, then QB/B has a zero p-component if p /∈ S and
both AS/A and CS/C have a zero p-component if p ∈ S. This implies
0 = Hom(AS/A,QB/B) = Hom(CS/S,QB/B) = Ext(AS/A, B) =
Ext(CS/C, B) so that Ext(AS, B) ∼= Ext(A, B) ∼= Ext(C, B) ∼=
Ext(CS , B).

Note suppAS = ( suppA) ∩ S = ( suppC) ∩ S = supp CS since
rp(A) = rp(C) for all p. For B with supp B � S take P =
( suppB)\ supp AS. Let PωB be the pure subgroup {b ∈ B | b ∈ pmB
for all p ∈ P and m ∈ Z}. Then Pω(B/PωB) = 0 (defined analo-
gously). If f : AS → B then Im f is p-divisible for all p ∈ P . Fur-
thermore, Hom(AS , B/PωB) = 0. A similar arrangement holds for C.
Thus

0 → Ext(CS, PωB) → Ext(CS, B) → Ext(CS, B/PωB) → 0

‖ ‖

0 → Ext(AS, PωB) → Ext(AS, B) → Ext(AS, B/PωB) → 0

has split exact rows.

The first isomorphism is due to supp PωB = ( suppB)\P ⊆
S. The latter isomorphism is due to rp(AS)rp(B/pωB) = 0 =
rp(CS)rp(B/pωB) for all p. This implies the torsion subgroups of
Ext(AS , B/pωB) and Ext(CS, B/pωB) are isomorphic. By the open-
ing remark and Theorem 1.1, the two groups are isomorphic. Therefore
Ext(AS , B) ∼= Ext(CS , B).

Some key properties are preserved by our relation.
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PROPOSITION 2.3. Assume that C is n-related to A for n = rank A.

(i) If A is locally completely decomposable, then C is locally com-
pletely decomposable.

(ii) If A is a Butler group, then C is a Butler group.

PROOF. In the proof we may assume that Hom(C,Z) = Hom(A,Z) =
0.

(i). By Lemma 2.2, Cp is n-related to Ap. Hence, by Theorem 2.1,
Cp is completely decomposable.

(ii). By Theorem 1.12 in [2], A is a Butler group if and only if there
is a partition S1, . . . , Sm of the set of primes such that AS is completely
decomposable with a linearly ordered typeset for all S ∈ {S1, . . . , Sm}.

By Lemma 2.2, CS is n-related to AS for any S ∈ {S1, . . . , Sm} and,
by Theorem 2.1, CS is completely decomposable with linearly ordered
typeset.

To prove a generalization of Theorem 2.1 we need a few results from
[3]. Let A be a Butler group. If X is a rank-1 group of type τ , then
A[τ ] = ∩{ker f |f ∈ Hom(A, X)} and A∗[τ ] = ∩{A[σ]|σ < τ}. It is
easy to see that if K is a pure subgroup of A with K ⊆ A[σ] for all
σ < τ , then (A/K)[σ] = A[σ]/K and (A/K)∗[τ ] = A∗[τ ]/K.

THEOREM 2.4. (Arnold-Vinsonhaler [3]). The exact sequence
0 → A∗[τ ]/A[τ ] → A/A[τ ] → A/A∗[τ ] → 0 is split exact.

Recall that A∗[τ ]/A[τ ] is homogeneous completely decomposable of
type τ (see [3]).

THEOREM 2.5. Let A be an almost completely decomposable group
and n = rank A. The following are equivalent.

1. C is related to A.

2. C is n-related to A.

3. (i) If A is a free group plus a divisible group, then C = D⊕F with
D divisible and zero if and only if A is reduced, and F is free.
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(ii) Otherwise write A = D′ ⊕ F ′ ⊕ G and C = D ⊕ F ⊕ R with D
and D′ divisible, F and F ′ free, and R and G fdc-summands. Then
R is quasi-isomorphic to G, and D = 0 if OT(A) < ∞ and D �= 0 if
D′ �= 0 but OT(G) < ∞.

PROOF. (2⇒ 3). If A is a free group plus a divisible group,
then clearly the conclusion of 3(i) must hold. Otherwise assume
Hom(A,Z) = Hom(C,Z) = 0 and A = D′⊕G with G an fdc-summand.
Without loss of generality, assume G = A1 ⊕A2 ⊕· · ·⊕An, where each
Ai is homogeneous completely decomposable of type τi and rank ri and
τi � τj if i < j.

We will construct the map θ : C → A1 ⊕ · · · ⊕Ak for 1 ≤ k ≤ n such
that C/ ker θ ∼ A1 ⊕ · · · ⊕ Ak by induction on k. Since C is a Butler
group, by Proposition 2.3, there is a splitting map fi : C/C[τi] →
C∗[τi]/C[τi], for each i, by Theorem 2.4.

If X is a rank-1 group of type < τ1, then Hom(G, X) = 0. By
Theorem 1.3, Hom(C, X) = 0 so that C∗[τ1] = C. By Theo-
rem 2.4, C/C[τ1] ∼= C∗[τ1]/C[τ1] ⊕ C/C∗[τ1] = C∗[τ1]/C[τ1] is ho-
mogeneous completely decomposable of type τ1. Since, for pX1 �=
X1, rankC/C[τ1] = rp( Hom(C, X1)) = rp( Hom(G, X1)) = r1, we have
C/C[τ1] ∼= A1.

Assume for the sake of induction, that the map θ : C → ⊕k−1
i=1 C∗[τ1]/

C[τi], given by θ(c) = (f(c), . . . , fk−1(c)), satisfies Im θ ∼ ⊕k−1
i=1 C∗[τi]/

C[τi] and that Ai
∼= C∗[τi]/C[τi]. Identify Ai with C∗[τi]/C[τi].

Since our characterization is only up to quasi-isomorphism, we may
assume without loss of generality that Im θ = A1 ⊕ · · · ⊕ Ak−1. Let
K = ker θ, and consider 0 → K → C → A1 ⊕ · · · ⊕ Ak−1 → 0.
Applying Hom(−, X) for a rank-1 group X we have 0 → Hom(A1 ⊕
· · · ⊕ Ak−1, X) → Hom(C, X) t→ Hom(K, X). Let τ = typeX.

If τ < τk and pX �= X, then rank Hom(C, X) = rp( Hom(C, X)) =
rp( Hom(G, X)) = rp( Hom(A1 ⊕ · · · ⊕ Ak−1, X)) = rank Hom(A1 ⊕
· · ·⊕Ak−1, X) so that t = 0 since Hom(K, X) is torsion-free. This im-
plies K ⊆ C[τ ] and consequently K ⊆ C∗[τk]. Moreover, (C/K)[τ ] =
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C[τ ]/K here so that (C/K)∗[τk] = C∗[τk]/K by the remark pre-
ceding Theorem 2.4. Therefore C/C∗[τk] = (C/K)/((C/K)∗[τk]) =
⊕{Ai|τi < τk} = A/A∗[τk].

If pXk �= Xk, then rp( Hom(C, Xk)) = rank Hom(C, Xk) = rank C/

C[τk] = rank A/A[τk] = rp( Hom(A, Xk)). Since C/C∗[τk] ∼= A/A∗[τk]
we must have rank C∗[τk]/C[τk] = rank A∗[τk]/A[τk] by Theorem
2.4. Hence C∗[τk]/C[τk] ∼= A∗[τk]/A[τk] since both are homogeneous
completely decomposable of type τk.

Hence C/C[τk] = C∗[τk]/C[τk] ⊕ C/C∗[τk] = C∗[τk]/C[τk]⊕
{C∗[τi]/C[τi] | τi < τk} and the map f : C → ⊕{C∗[τi]/C[τi]|τi < τk}
defined by f(c) = (θ(c), fk(c)) is an isomorphism.

Hence, by induction, there is a map θ : C → G such that C/kerθ ∼ G.
Since rp(C) = rp(G) + rp(ker θ) = rp(G) for all p, ker θ is divisible.
Then C ∼= ker θ ⊕ Im θ ∼ ker θ ⊕ G. Since OT(C) = OT(A), if
OT(A) < ∞, then ker θ must be zero. If OT(A) = ∞ but OT(G) < ∞,
then OT(C) = ∞ so ker θ cannot be zero.

(3⇒ 1). This follows along the line of the proof of (3⇒ 1) in theorem
2.1.

In the proof of the theorem we only used the full strength of the
relation in deducing that C was a Butler group.

COROLLARY 2.6. Assume C is a Butler group and A is almost
completely decomposable. If rp(C) = rp(A) and rp( Hom(C, X)) =
rp( Hom(A, X)) for all p and rank-1 groups X, then C ∼ D ⊕ C ′,
where D is divisible and A = D′⊕C ′ with D′ divisible and C ′ reduced.
In particular, C is almost completely decomposable.

PROOF. If A is divisible, then so is C. Otherwise repeat along the
lines of Theorem 2.5 noting that rank Hom(A, Z) = rank Hom(C, Z).

3. Rank-2 groups. We can apply the results from §1 and §2 to
settle the question for rank-2 groups. By doing so we determine a
complete system of quasi-invariants for rank-2 groups.
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In [7] James Reid gave a classification of rank-2 groups in terms of
their quasi-endomorphism rings. This classification is similar to the
Beaumont-Pierce classification (Theorem 3.3 in [1]). Of the strongly
indecomposable rank-2 groups A,QE(A) is either (i) a quadratic num-
ber field; (ii) Q; or (iii) the ring of upper trianglular 2×2 matrices over
Q with equal diagonal entries.

THEOREM 3.1. Let rankA = 2. Then C is 2-related to A if and only
if

(i) If A is a free group plus a divisible, then C = D ⊕ F with D
divisible and zero if and only if A is reduced, and F free.

(ii) Otherwise write C = D⊕F ⊕R with F free, R quasi-isomorphic
to an fdc-summand of A, and D divisible and zero if OT(A) < ∞ and
nonzero if OT(R) < ∞ and A is not reduced.

PROOF. We will only consider the necessity, and assume Hom(C,Z) =
Hom(A,Z) = 0.

Theorem 2.5 handles the case that A is almost completely decom-
posable. The case when QE(A) is a field is covered by Theorem 1.4.
The final case is where QE(A) =

{[
x y

0 x

]∣∣∣x, y ∈ Q
}

and A is strongly
indecomposable.

Let f : A → A satisfy rank Im f = 1. Clearly f2 = 0. Let a ∈ A be
such that b = f(a) �= 0. Since 0 �= b ∈ ker f, a and b are independent
and thus, for A = A/〈b〉∗ and B = A/〈a〉∗, OT(A) = typeA ∨ typeB.
Since A embeds in B as x + 〈b〉∗ → f(x) + 〈a〉∗, typeA ≤ type 〈b〉∗ ≤
typeB = OT(A).

Let p satisfy p〈b〉∗ �= 〈b〉∗. Embed 〈a〉∗ into A and 〈b〉∗ into B nat-
urally. Then A/〈a〉∗ ∼= A/(〈a〉∗ + 〈b〉∗) ∼= B/〈b〉∗. Since A/〈a〉∗ is p-
reduced, B/〈b〉∗ is p-reduced. Since p〈b〉∗ �= 〈b〉∗, pB �= B and OT (C)
= OT (A) < ∞. Therefore rp( Hom(C, A)) = rank Hom(C, A)
= rp( Hom(A, A)) = rankE(A) = 2, and OT(C) < ∞ so that C
must be reduced and rank C = rp(C) = rp(A) = 2.

Let f, g ∈ Hom(C, A) be indepedent. To show that there is a map in
Hom(C, A) with a rank-2 image assume rank Im f = rank Im g = 1.
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If ker f = ker g = K, then f, g ∈ Hom(C/K, A) and therefore, for
U = g(C) + f(C), rank U = 2. This implies that any x ∈ A has type
≥ typeC/K. But rank Hom(A, C/K) = rank Hom(C, C/K) �= 0 so
any 0 �= h : A → C/K is quasi-split, a contradiction.

If ker f �= ker g but 〈f(C)〉∗ = 〈g(C)〉∗ = W , then we must have
OT(C) ≤ typeW (C embeds in W 2). But OT(A) ≤ typeW implies
that W is a summand of A [6, Corollary 1.8], a contradiction.

Define θ : C → A by θ(c) = f(c) + g(c). If x ∈ ker θ, then
f(x) = −g(x) ∈ 〈 Im f〉∗ ∩ 〈 Im g〉∗ = 0 so that x ∈ ker f ∩ ker g = 0.
By the above, rank Im θ = 2 so that coker θ = T is torsion.

From 0 → C
θ→A → T → 0 we have 0 → Hom(A, C) θ∗→ Hom(C, C).

Since rank Hom(C, C) = rank Hom(A, C), there is an m �= 0 so that
φ = m1C : A → C. Clearly φ is 1-1 and therefore A ∼ C.

COROLLARY 3.2. Let rankA = 2. The following are equivalent:

1. C is quasi-isomorphic to A.

2. (i) rank C = 2; (ii) rp(C) = rp(A) for all p; (iii) rp( Hom(C, B)) =
rp( Hom(A, B)) for all p and B with rank B ≤ 2; and (iv) OT(C) =
OT(A).
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