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WHEN DO TWO GROUPS ALWAYS HAVE
ISOMORPHIC EXTENSION GROUPS?

H. PAT GOETERS

What is the relationship between abelian groups A and C'if Ext(A, B)
>~ Ext(C, B) for all abelian groups B? (problem 43 in [5]). We will
address this question, restricting our attention to torsion-free abelian
groups A, B and C' of finite rank.

Call A and C related if Ext(A, B) = Ext(C, B) for all B. We give a
characterization of this relation in §1 and use it to show

THEOREM. Assume that one of the following hold: (a) rank A = 2; (b)
A has a semi-prime endomorphism ring; or (c) A is almost completely
decomposable. Write A= D' ® F' & G with F' free, D' divisible and G
reduced with Hom(G,Z) = 0.

Then C' s related to A if and only if C = D ® F & R with F free;
D is divisible and zero if OT(A) # typeQ and nonzero if OT(G) #
type Q and D’ # 0; and R quasi-isomorphic to G.

Here Z is the ring of integers and Q the field of rationals, p will denote
a prime of Z. As usual, the p-rank of A, r,(A4) = dim A/pA. We show
the

COROLLARY. Assume that one of the following hold: (a) rank A =
2; (b) A has a semi-prime endomorphism ring; or (c) A is almost
completely decomposable. Then C is quasi-isomorphic to A if and only
if (i) 7p(C) = 1p(A) for all p; (ii) rp(Hom(C, B)) = rp,(Hom(A, B)) for
all p and groups B with rank B < rank A; (ili) OT(C) = OT(A); and
(iv) rank C' = rank A.

The notation, if undefined, appears in [1], and the basic ideas from [1]
are assumed. However a few facts about the outer type of A, OT(A) =
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sup{o|oc = type A/K for some K, A with rank A/K = 1}, and the
inner type of B, IT(B) = inf{o|o = type (a).,0 # a € B}, are given.

PROPOSITION 0. Let 7 = OT(A) and o = IT(B).

1. If G < A and C< A, then OT(G) <7 and OT(A/C) < 7.

2. 7 < typeZ, if and only if r,(A) = rank A.

3. OT(Hom(C, A)) < 7 for any C.

4. 7 < o if and only if rank Hom(A, B) = (rank A)(rank B).

5. If{a1,...,an} C A is a basis for QA then, for K; = (a;|j # ©)«,
OT(A) = type A/K1 V ---V type A/ K,.

Hence, by 5, OT(A) is manageable and, by 4, is a quasi-isomorphism
inwvariant of A.

1. Groups with a semi-prime endomorphism ring. By virtue
of the fact that A is torsion-free, Ext(4,B) = D & T where D is
torsion-free divisible and T is a divisible torsion group. We excerpt the
following from [8] with this notation.

THEOREM 1.1. If Ext(A, B) # 0, then dimqg D = 2% and p-rank
T =r,(A)ry,(B) — rp(Hom(A4, B)).

A useful characterization of when Ext(A,B) = 0 is the following.
Let R(B) be the subring of Q generated by 1 and 1/p for all p with
pB # B. Note type R(B) <IT(B).

THEOREM 1.2. (WICKLESS [9]). Ext(A,B) = 0 if and only if
OT(A) < type R(B).

We will say that C is n-related to A if Ext(A, B) 2 Ext(C, B) for all
B of rank < n. Any group C can be written as C = F®C' with F free
and Hom(C'’,Z) = 0. Since C’ is n-related to A if and only if C' is n-
related to A, we may as well assume that Hom(C,Z) = 0 = Hom(A, Z)
in considering these relations.
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THEOREM 1.3. Assume that Hom(A,Z) = Hom(C,Z) = 0 and
n > 0. The following are equivalent:

1. C is n-related to A.

2. (i) rp(C) = rp(A) for all p; (ii) r,(Hom(C, B)) = r,(Hom(A, B))
for all p and all B with rank B < n; and (iii) OT(C) = OT(A).

PROOF. We will first show that if Ext(A, B) =0, then r,(A)r,(B) —
rp(Hom(A, B)) = 0 for all p. Consider 0 - B — QB — T — 0
and note that p-rank T' = r,(B) [1, Theorem 2]. By Theorem 1.2 and
Proposition 0, rank Hom(A, B) = (rank A)(rank B), and consequently
the sequence 0 — Hom(A, B) — Hom(A,QB) — Hom(A4,T) — 0 is
exact and Hom(A,T) is a torsion group. In this case Hom(A4, QB) is
the divisible hull of Hom(A, B), and therefore p-rank Hom(A,T) =
rp(Hom(A, B)) [1, Theorem 2|. But, by [8, Theorem 1], p-rank
Hom(A,T) = r,(A)(p-rank T) = r,(A)r,(B).

Hence the torsion subgroup of Ext(A, B) always has p-rank equal to
ro(A)ry(B) — 1, (Hom(A, B)).

(1=2). Let rank B < n. Since the torsion subgroups of Ext(A4, B
and Ext(C,B) are isomorphic, (x) r,(A)r,(B) — rp(Hom(A, B)) =
rp(C)rp(B) — rp( Hom(C, B)) for every p.

In particular, 7,(A) = rp(A)rp(Z) = r,(C)rp(Z) = 1,(C) for all p.
We can solve (x) to get (ii).

Assume that not both OT(C) and OT(A) equal co(co = type Q).
Say OT(A) = 7 < . Let p be such that 7 < typeZ, By
Theorem 1.2, Ext(A,Z,) = 0 = Ext(C, Z,), and, by the same theorem,
OT(C) < typeZ, < co. By proposition 0, r,(C') = rank C.

Let X be a rank-1 group of type 7. Since, by Proposition 0,
OT(Hom(A, X)) < 7,r,(Hom(A, X)) = rank Hom(A, X) = rank A =
rp(A). Therefore r,(C) = r,(Hom(C, X)) = rank Hom(C,X) =
rank C' and OT(C) < type X = 7.

Since we can repeat the argument to show OT(C) > 7, we have
established (iii).

(2=1). Let rank B < n. By (iii) and Theorem 1.2, Ext(C,B) =0
if and only if Ext(A, B) =0. If Ext(C, B) # 0 then, by (i), (ii) and
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Theorem 1.1, the torsion subgroups of Ext(C, B) and Ext(A, B) are
isomorphic. Whence Ext(C, B) = Ext(A, B) in this case, too. O

If A and C are quasi-isomorphic, then they are n-related for all n.
However if OT(A) = &0, then A @ Q is related to A by the above.

Also if A is a nonzero divisible group, then Ext(A, B) is a vector
space of dimension 2% over Q. For C to be related to A, C must be a
nonzero divisible group plus a free group.

For E(A) = Hom(A, A), let N = N(E(A)) denote the nilradical of
E(A) which is the ideal generated by all of the nilpotent right ideals
of E(A). We say that E(A) is semi-prime if N = 0 or, equivalently,
if QE(A) = Q® E(A) is a semi-simple ring. Call A semi-prime if
E(A) is a semi-prime ring and note that being semi-prime is a quasi-
isomorphism invariant (Chapter 9 in [1]).

By a result of J. Reid [7, Corollary 4.3], if A is strongly indecompos-
able, then A is semi-prime if and only if every endomorphism of A is

a monomorphism. If C' is quasi-isomorphic to A we will write C' ~ A.
Let S4(C) denote (f(A)| f: A— C).

THEOREM 1.4. Let A be semi-prime of rank n. The following are
equivalent:

1. C is related to A.
2. C 1s n-related to A.

3. (i) If A is a free group plus a divisible group, then C = D @ F with
F free, and D divisible and D = 0 if and only if A is reduced.

(ii) Otherwise C = D @ F @ R, where F is free, D is divisible and
zero if OT(A) # co and R is quasi-isomorphic to A.

PROOF. Write A = AT* @ --- @ A;* (= means quasi equal) with
each A; strongly indecomposable and A; ~ A; if i # j. Since
AT' @ - @ Al* is semi-prime and C' is related to A if and only if C' is
related to A7* & --- @ A", we may assume without loss of generality
that A= A" @ - @ APk,
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Suppose f: A; — A; with ¢ # j and regard f € E = E(A). We will
show that I = fFE is nilpotent so that f = 0.

Let g € E and, for the natural maps m; : A - A; C Aand m; : A —
A; C A, let h=mgm;. Then fgf = fhf and (fg)" = f(hf)"'g with
hf € E(A;). If hf is a monomorphism, then o = hf is invertible in
QE(A;) (Proposition 6.1 in [1]). If k # 0 is such that ka~! € E(4;),
then (ka'h)f = kla,, and, for v = ka=th,A; D f(A;) @ keru 2
kA;. Since A; is strongly indecomposable and f is a monomorphism,
keru = 0, which contradicts the assumption that A; ~ A;. Whence
hf € NE(A;) is nilpotent. If (hf)™ = 0, then (fg)"™* = f(hf)"g =0
so that fg is nilpotent. Since QI is finite dimensional and contains only
nilpotent elements, it is easy to check that QI hence I is nilpotent.

Therefore E(A) = E(A")x---xE(AL*). Since E(A;") could have no
nilpotent ideals, 0 = N(E(A}")) = Mat,,, (N (4;)) and A, is semi-prime
and strongly indecomposable. If A is divisible, the theorem follows from
Theorem 1.1.

(2=-3). Assume that C is n-related to A. If A is free, then C is
clearly free by Theorem 1.3. Otherwise, if A = F' & A’ with F’ free
and Hom(A’, Z) = 0, then Hom(F”, A’) is a nilpotent ideal in E(A).
Hence ' = 0 and Hom(A, Z) = 0. Similarly A is reduced since A is
not divisible.

Writing C = B @ F with F free and Hom(B, Z) = 0 we see that B
is n-related to A. Write B = D @& R with D divisible and R reduced.
We will show that R ~ A.

Now, by Theorem 1.3, rp(R) = rp(A) and r,(Hom(R,G)) =
rp(Hom(A4, G)) for every p and G with rank G < n. We will show, by
induction on rank R, that if, for some summand K = AT" @ --- @ A"
of A we have r,(Hom(R, G)) = r,( Hom(K, G)) for all p and groups G
with rankG < n, then R ~ AT & --- @ A}* & R’ with R’ satisfying
Sa(R') < R'[A].

If rank R = 0, then there is nothing to show. Otherwise let K =
AT @ - @ A" with 7,(Hom(R, G)) = rp( Hom(K, G)) for all p and
G having rank G < n. If S4(R) < R[A4], then we are finished. Assume
Sa(R) =32, 54,(R) £ RIA].

If pK # K, then r = rank Hom(R,A) > r,(Hom(R,K)) =
rp(Hom(K, K)) > 0. Using standard arguments, we may embed
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R/R[A] into A" = A7™ @ --- @ A" and identify R/R[A] with its
image. Take m; : A" — A;nj and 7 : R — R/R[A] to be the natural
maps.

Since S, (R) £ R[A] for some j, there is an f : A; — R such that
f(14j) jé }{pql Since I{OIH(14j,14i) =0ifq ?é j, then ﬂQ7Tf(/4j) =0
and m;mf(A;) = (f(A); +R[A])/R[A] # 0. Therefore there is a
g € Hom(R,A;) such that 0 # gf € E(A;). But A; is strongly
indecomposable and semi-prime so that gf is a monomorphism. As
before, gf is invertible in QE(A;) and we get a quasi-splitting of
R%Aj, ie, R ~ Aj ® R;. Now r,(Hom(R,G)) = r,(Hom(A4; @
Ry, @)) for every p and G of rank < n. IfpA; # A;, then r,( Hom(A,;&
Ry, Aj)) = rp(Hom(K, Aj)) = myry(E(4;)) = rp(E(4;)) > 0 and
m; 7£ 0.

Hence r,(Hom(R,G)) = r,(Hom(4;,G)) + rp(Hom(R1,G)) =
rp(Hom(A;,G)) + 7p( Hom(AL @ - - @ AZ’“, G)) = rp(Hom(K, G)) for
all p where l; = m; if ¢ # j; [; = m; — 1 and induction applies to R;.

Whence R ~ AT' @ --- @ A7F @ R’ with Sq(R') < R/[A] as de-
sired. Returning to the proof, r,( Hom(R, 4;)) = rp(Hom(A4, 4;)) =
nirp(E(A;)) > eirp(E(A;)) from which we infer that n; > e, for every
1.

Consider K = A7 @ --- @ Ap*" . Clearly r,(Hom(R',G)) =
rp(Hom(K, G)) for all p and G of rank < n. If rank R’ > 0, then R’
has a quasi-summand A; for some j and Sx, (R') < Sa(R') < R'[A] is
impossible. Thus R’ = 0 which implies that r,( Hom(K, K)) = 0 for
all p. Since K is reduced, K = 0, and n; = e; for all i. Whence R ~ A.

If OT(A) # co, then OT(C) # co by Theorem 1.3 and D must be

Zero.

(3=1). The case when 3(i) holds is covered by the remark preceding
the statement of the theorem. If C = D & R ® F as stated, then
OT(D® R) = x if OT(A) = 0 and OT(D & R) = OT(R) = OT(A4)
if OT(A) # oco. Since 7,(Hom(D & R,G)) = rp,(Hom(R,G)) =
rp(Hom(A, G)) for all p and G, D & R, hence C, is related to A. O

COROLLARY 1.5. If A is semi-prime, then C is quasi-isomorphic
to A if and only if (i) r,(C) = rp(A) for all p; (ii) rp(Hom(C,G)) =
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rp(Hom(A, G)) for all p and G with rank G < rank A; (ili) OT(C) =
OT(A); and (iv) rank C' = rank A.

PROOF. (<) If A is free, then OT(A) = OT(C) implies C is free and
(iv) implies A = C. If A is divisible, then (i) and (iv) imply A = C.
Otherwise, if C ~ F @ D & A then, by (iv), F =D =0.0

Any finite rank group A can be decomposed A = D@ F @ A’ with D
divisible, F' free and A’ reduced with Hom(A’,Z) = 0. Call A" a free
and divisible complementary summand of A, or fdc-summand for short.

2. When is C related to an almost completely decomposable
group A? The simplest example of a group without a semi-prime
endomorphism ring is A = X ® Y where X,Y < @Q with type
X < typeY. The nilradical of E(A4) is Hom(X,Y).

THEOREM 2.1. Let A be completely decomposable with a linearly
ordered typeset and n = rank A. The following are equivalent:

1. C is related to A.
2. C is n-related to A.

3. (i) If A is a free group plus a divisible, then C = D & F with F
free and D divisible and zero if and only if A is reduced.

(ii) Otherwise write C = D&F®R and A= D'® F' &R’ with R and
R’ respective fdc-summands, D and D’ divisible groups and F and F’
free groups. Then R is isomorphic to R, and D is zero if OT(A) < o,
and nonzero if both OT(R') < co and D' # 0.

PROOF. If A = D'@® F’ with D’ divisible and F” free, then C = D& F
with D divisible and F' free with the further restriction that D = 0 if
and only if D’ = 0. We will exclude this case in the following.

(2=3). Suppose C is n-related to A. We may assume that
Hom(A,Z) = 0. Write A = G@D’ with D’ divisible and G reduced, and
write C = D@ F @ R with D divisible, F' free and R an fdc-summand.
We will show that R = G.
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Write G = G1®--- @G, with G; = X" where Xj is a rank-1 group of
type ;. Assume that 7; < 7; if ¢ < j. We will construct an embedding
of R into G below.

We note that r,( Hom(R, B)) = r,(Hom(C, B)) = r,( Hom(A4, B)) =
rp(Hom(G, B)) and that r,(R) = 7,(G) for all p and all B of rank <
For a group K and a rank-1 group X it is easy to check that f1,..., f; €
Hom(K, X) are independent if and only if rank K —rank (N!_, ker f;) =
I (Proposition 0).

Since, for pX; # Xi,7p(Hom(R, X1)) = rp(Hom(G,X1)) = m
(Proposition 0), there are linearly independent maps ¢1,...,9, €
Hom(R, X;). Define 6y : R — G1 by 61(z) = (¢91(x),...,gr, (z)). Then
rank Im #; = rank R — rank ker #; = r; and coker #; is torsion.

n.

Assume that a map 6 : R — G1 @ --- ® G, has been constructed
so that cokerf is a torsion group T, for k < n. Now OT(Im#@) <
OT(G1 @ -+ ® Gg) = 7 < Tr41 by Proposition 0. This implies rank
Hom(Im#, X;,1) = rankIm6f = rank Hom(G1 & - -+ @ G, Xgy1) =
r 4+ 1.

From 0 — ker — R — Im# — 0 we derive 0 — Hom(Im#6, Xj11) —
Hom(R, Xk1) N Hom(ker 8, Xy y1). If pXpi1 # Xiy1, then rp( Hom
(R, Xk+1)) = rank Hom(R, Xj11) = rp(Hom(G, Xj41)) = rank Hom
(G, Xk41) = r1+ -+ + rr41. Hence there are linearly independent
maps fi,..., fr,,, € Hom(R, X}y1) so that afi,...,af, ,, are lin-
early independent in Hom(ker 6, X;41). Define ¢ : R — G1 @& -+ &
Gry1 by ¢(x) = (0(x), (fi(x),..., friy,(x))). Since ker¢ = kerd N
N; ker f;, rank (R/ ker ¢) = rank (R/ ker )+ rank (ker 8/ ker ¢) = rank
(R/ker 0) + rank (ker 6/ N; kerauf;) =r1 4 -+ 71k +rgs1 = rank (G1 @
-+ @® Gpy1) and coker ¢ is torsion.

We have constructed a map 6 : R — G with T = coker 6 a torsion
group. By [1, Theorem 2], r,(R/ ker 0) + dim T'/pT = r,(G) + dim T'[p)
for all p where T[p] = {z € T'|px = 0}. Since dimT/pT < dim T'[p]
and rp(R) = rp(R/ ker0) = rp(ker8) = r,(G) for all p, the inequality
rp(G) < rp(R/kerf) < r,(R) implies r,(kerf) = 0 for all p. Whence
ker § = 0 since R is reduced.

Let p satisfy pX, # Xn. From 0 — R5G — T
rive 0 — Hom(G,R) — Hom(R,R). Since OT(R)
type X,,, 7p(R) = rank R. By Proposition 0, r,(Hom(R, R)) = rank
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Hom(R, R) = rank Hom(G, R) = r,( Hom(G, R)). Let m # 0 satisfy
ml, = f € Hom(G, R). Since f is clearly 1-1, G ~ R [1, Corollary
6.2]. By a theorem of Beaumont-Pierce [1, Theorem 2.3] G & R.

Now R @ D is related to A = G @ D’ so that OT(R @ D) =
OT(R) v OT(D) = OT(A) by Theorem 1.3. Clearly D = 0 if
OT(A) < . If OT(A) = 0 but OT(G) < &0, then D # 0 in order for
OT(C) = .

(3=1). Assume Hom(C,Z) = Hom(A,Z) = 0 and suppose C =
R @ D with D divisible, R reduced and R ® D’ = A for some divisible
group D’. Moreover D = 0 if and only if D’ = 0 since the hypothesis
that R is completely decomposable with linearly ordered typeset implies
OT(R) < 0. Therefore OT(C) = OT(A), the hypotheses of Theorem
1.3 hold, and C is related to A. O

REMARK. The n in part 2 could be taken to be the maximum rank
of a fdc-summand of A in the case that A is not a free plus a divisible.

Let X be a rank-1 group which is neither free nor divisible. It is easy
to construct a strongly indecomposable group C' of rank-2 such that
any rank-1 image of C' is isomorphic to X. Then, from Theorem 1.3, C
is 1-related to A = X & X, but not 2-related. If, however, both C' and
A are presumed almost completely decomposable, then C' is related to
A if and only if C is 1-related to A.

Unfortunately the proof of Theorem 2.1 does not go through under
the assumption that A is almost completely decomposable. To prove
the analogue in this case we must use several results about Butler
groups. Recall that A is a Butler group if A is a pure subgroup of a
completely decomposable group G (see [2] and [3]).

For a set S of primes, let Ag be the localization of A at S. That is,
for Zg the subring of Q generated by 1 and 1/pifp € S, As =Zs® A.
We identify A < Ag as usual. Using the notation from [9] let
suppA = {p|pA # A}. Note that if C and A are n-related and
Hom(C,Z) = Hom(A,Z) = 0, then r,(A4) = r,(C) for all p. In this
case supp C = supp A.
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LEMMA 2.2. Assume Hom(A,Z) = Hom(C,Z) = 0. Then C is
n-related to A if and only if Cs is n-related to Ag for every set S of
primes.

PROOF. We will only consider the necessity since, if S is the set
of all primes, Cg = C and As = A. Let S be a set of primes.
Then OT(Ag) = OT(A) + typeZs = OT(C) + typeZs = OT(Cs)
(see Exercise 1.2 in [1]). Therefore Ext(Ag,B) = 0 if and only if
Ext(Cg, B) = 0 by Theorem 1.2.

If suppB C S, then QB/B has a zero p-component if p ¢ S and
both Ag/A and Cs/C have a zero p-component if p € S. This implies
0 = Hom(As/A,QB/B) = Hom(Cs/S,QB/B) = Ext(As/A,B) =
Ext(Cs/C, B) so that Ext(Ag,B) = Ext(4,B) = Ext(C,B) =
EXt(Cs,B).

Note supp Ag = (suppA) NS = (suppC) NS = suppCs since
rp(A) = 7,(C) for all p. For B with suppB ¢ S take P =
(supp B)\ supp Ag. Let P“B be the pure subgroup {b € B|b € p™B
for all p € P and m € Z}. Then P¥(B/P“B) = 0 (defined analo-
gously). If f: As — B then Im f is p-divisible for all p € P. Fur-
thermore, Hom(Ag, B/P“B) = 0. A similar arrangement holds for C.
Thus

0 — Ext(Cg, P*B) — Ext(Cg, B) — Ext(Cg,B/P*B) — 0

I I
0 — Ext(Ag, P“B) — Ext(Ag, B) — Ext(4s,B/P*B) — 0

has split exact rows.

The first isomorphism is due to supp PYB = (suppB)\P C
S. The latter isomorphism is due to r,(Ag)r,(B/p*B) = 0 =
rp(Cs)rp(B/p*B) for all p. This implies the torsion subgroups of
Ext(Ag, B/p*B) and Ext(Cs, B/p*B) are isomorphic. By the open-
ing remark and Theorem 1.1, the two groups are isomorphic. Therefore
Ext(Ag, B) & EXt(Cs,B). O

Some key properties are preserved by our relation.
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PROPOSITION 2.3. Assume that C is n-related to A for n = rank A.

(i) If A is locally completely decomposable, then C is locally com-
pletely decomposable.

(ii) If A is a Butler group, then C is a Butler group.

PROOF. In the proof we may assume that Hom(C,Z) = Hom(A,Z) =
0.

(i). By Lemma 2.2, C}, is n-related to A,. Hence, by Theorem 2.1,
Cp is completely decomposable.

(ii). By Theorem 1.12 in [2], A is a Butler group if and only if there
is a partition Sy, ..., Sy, of the set of primes such that Ag is completely
decomposable with a linearly ordered typeset for all S € {S1,...,S,}.

By Lemma 2.2, Cg is n-related to Ag for any S € {S1,...,S,} and,
by Theorem 2.1, C's is completely decomposable with linearly ordered
typeset. O

To prove a generalization of Theorem 2.1 we need a few results from
[3]. Let A be a Butler group. If X is a rank-1 group of type 7, then
Alr] = N{ker f|f € Hom(A4, X)} and A*[r] = N{Alo]loc < 7}. Tt is
easy to see that if K is a pure subgroup of A with K C A[o] for all
o < 1, then (A/K)[o] = Alo]/K and (A/K)*[r] = A*[7]/K.

THEOREM 2.4. (ARNOLD-VINSONHALER [3]). The ezact sequence
0 — A*[7]/Alr] — AJ/A[r] — A/A*[T] — 0 is split exact.

Recall that A*[r]/A[r] is homogeneous completely decomposable of
type 7 (see [3]).

THEOREM 2.5. Let A be an almost completely decomposable group
and n = rank A. The following are equivalent.

1. C s related to A.
2. C 1s n-related to A.

3. (i) If A is a free group plus a divisible group, then C = D @® F with
D divisible and zero if and only if A is reduced, and F is free.
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(ii) Otherwise write A=D'"®F' &G and C =D ® F ® R with D
and D' divisible, F' and F' free, and R and G fdc-summands. Then
R is quasi-isomorphic to G, and D = 0 if OT(A) < 50 and D # 0 if
D' #£0 but OT(G) < .

PROOF. (2=3). If A is a free group plus a divisible group,
then clearly the conclusion of 3(i) must hold. Otherwise assume
Hom(A,Z) = Hom(C,Z) = 0 and A = D’®G with G an fdc-summand.
Without loss of generality, assume G = A1 ® A @ - - - P A,,, where each
A; is homogeneous completely decomposable of type 7; and rankr; and
m FTjifi<j.

We will construct the map 6 : C — Ay ®--- @ Ay, for 1 < k < n such
that C/kerf ~ A; & --- @ Ay by induction on k. Since C' is a Butler
group, by Proposition 2.3, there is a splitting map f; : C/C[r;] —
C*|r;]/Clmi], for each i, by Theorem 2.4.

If X is a rank-1 group of type < 71, then Hom(G,X) = 0. By
Theorem 1.3, Hom(C,X) = 0 so that C*[ry] = C. By Theo-
rem 2.4, C/Cln] = C*[n]/Cln] & C/C*[n] = C*[m]/C[n] is ho-
mogeneous completely decomposable of type 7. Since, for pX; #
Xy, rank C/C[n] = rp(Hom(C, X7)) = rp,( Hom(G, X1)) = r1, we have
C/Cm] =2 Ay.

Assume for the sake of induction, that the map 6 : C' — ©*"'C*[r]/
C[ri], given by 0(c) = (f(c), ..., fx_1(c)), satisfies Tm 6 ~ @ C*[r;]/
C[Ti} and that Ai = O [Tl]/C[TZ] Identify Ai with C* [Tl]/C[TZ]

Since our characterization is only up to quasi-isomorphism, we may
assume without loss of generality that Im@ = Ay @ --- ® Ax_1. Let
K = kerf, and consider 0 - K — C — A1 @ --- @ A1 — 0.
Applying Hom(—, X) for a rank-1 group X we have 0 — Hom(A; ¢
@ Ag—1, X) — Hom(C,X)g Hom(K, X). Let 7 = type X.

If 7 < 7 and pX # X, then rank Hom(C,X) = r,(Hom(C, X)) =
rp(Hom(G, X)) = rp(Hom(A; & --- @ Ax_1,X)) = rank Hom(A; &
<@ A1, X) so that t = 0 since Hom(K, X) is torsion-free. This im-
plies K C CJr] and consequently K C C*[r]. Moreover, (C/K)[r] =



ISOMORPHIC EXTENSION GROUPS 141

C[r]/K here so that (C/K)*[m] = C*[m]/K by the remark pre-
ceding Theorem 2.4. Therefore C/C*[r;] = (C/K)/((C/K)*[mx]) =
EB{AZ|TZ < Tk} = A/A*[Tk]

If pXy # Xk, then r,(Hom(C, X)) = rank Hom(C, X) = rank C/
Clr] = rank A/A[r] = rp(Hom(A, X})). Since C/C*[r,] =2 AJA* 1]
we must have rank C*[r]/C[rx] = rank A*[r]/A[rx] by Theorem

2.4. Hence C*[ry]/C|ri] = A*[rx]/A[rx] since both are homogeneous
completely decomposable of type 7.

Hence C/Cr] = C*[m]/Clme] @ C/C*[m] = C*[m]/Clri]®
{C*|1]/Cm] | 7s < 7} and the map f: C — &{C*[r]/Clr]|m < 7%}
defined by f(c) = (0(c), fr(c)) is an isomorphism.

Hence, by induction, there is amap 6 : C' — G such that C/kerf ~ G.
Since 7,(C) =1,(G) + rplkerd) =r,(G) for all p, ker@ is divisible.
Then C' = kerf @ Imé ~ kerf & G. Since OT(C) = OT(A), if
OT(A) < 0, then ker § must be zero. If OT(A) = co but OT(G) < x,
then OT(C') = oo so ker # cannot be zero.

(3=-1). This follows along the line of the proof of (3=-1) in theorem
2.1.0

In the proof of the theorem we only used the full strength of the
relation in deducing that C' was a Butler group.

COROLLARY 2.6. Assume C is a Butler group and A is almost
completely decomposable. If r,(C) = r,(A) and r,(Hom(C, X)) =
rp(Hom(A, X)) for all p and rank-1 groups X, then C ~ D & C",
where D is divisible and A = D' ®C’ with D’ divisible and C' reduced.
In particular, C is almost completely decomposable.

PROOF. If A is divisible, then so is C. Otherwise repeat along the
lines of Theorem 2.5 noting that rank Hom(A, Z) = rank Hom(C, Z).
]

3. Rank-2 groups. We can apply the results from §1 and §2 to
settle the question for rank-2 groups. By doing so we determine a
complete system of quasi-invariants for rank-2 groups.
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In [7] James Reid gave a classification of rank-2 groups in terms of
their quasi-endomorphism rings. This classification is similar to the
Beaumont-Pierce classification (Theorem 3.3 in [1]). Of the strongly
indecomposable rank-2 groups A, QF(A) is either (i) a quadratic num-
ber field; (ii) Q; or (iii) the ring of upper trianglular 2 x 2 matrices over
Q with equal diagonal entries.

THEOREM 3.1. Let rank A = 2. Then C' is 2-related to A if and only
if
(i) If A is a free group plus a divisible, then C = D @& F with D
divisible and zero if and only if A is reduced, and F' free.
(ii) Otherwise write C = D@ F ® R with F free, R quasi-isomorphic
to an fdc-summand of A, and D divisible and zero if OT(A) < & and
nonzero if OT(R) < &0 and A is not reduced.

PROOF. We will only consider the necessity, and assume Hom(C,Z) =
Hom(A,Z) = 0.

Theorem 2.5 handles the case that A is almost completely decom-
posable. The case when QE(A) is a field is covered by Theorem 1.4.
The final case is where QFE(A) = { [g i] T,y € Q} and A is strongly
indecomposable.

Let f: A — A satisfy rank Im f = 1. Clearly f2 =0. Let a € A be
such that b = f(a) # 0. Since 0 # b € ker f,a and b are independent
and thus, for A = A/(b), and B = A/{a).,OT(A) = type AV type B.
Since A embeds in B as x + (b). — f(x) + (a)., type A < type (b), <
type B = OT(A).

Let p satisfy p(b). # (b).. Embed (a), into A and (b), into B nat-
urally. Then A/(a), = A/({a). + (b).) = B/(b).. Since A/{a), is p-
reduced, B/(b), is p-reduced. Since p(b), # (b}, pB # B and OT(C)
= OT(A) < &o. Therefore r,(Hom(C,A)) = rank Hom(C, A)
= 7p,(Hom(A, A)) = rankE(A) = 2, and OT(C) < & so that C
must be reduced and rank C = r,(C) = r,(A) = 2.

Let f,g € Hom(C, A) be indepedent. To show that there is a map in
Hom(C, A) with a rank-2 image assume rank Im f = rank Img = 1.
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If ker f = kerg = K, then f,g € Hom(C/K, A) and therefore, for
U =g(C)+ f(C), rank U = 2. This implies that any z € A has type
> typeC/K. But rank Hom(A4,C/K) = rank Hom(C,C/K) # 0 so
any 0 # h: A — C/K is quasi-split, a contradiction.

If ker f # kerg but (f(C)). = (9(C)). = W, then we must have
OT(C) < typeW (C embeds in W2). But OT(A) < type W implies
that W is a summand of A [6, Corollary 1.8], a contradiction.

Define § : C — A by 0(c) = f(c) + g(c). If z € ker6, then
f(z) = —g(z) € (Im f),, N (Img). = 0 so that = € ker f Nkerg = 0.
By the above, rank Im# = 2 so that coker = T is torsion.

From 0 — C % A — T — 0 we have 0 — Hom(A,C) N Hom(C, C).
Since rank Hom(C,C) = rank Hom(A4, C), there is an m # 0 so that
¢=mlg: A— C. Clearly ¢ is 1-1 and therefore A ~ C.

COROLLARY 3.2. Let rank A = 2. The following are equivalent:

1. C is quasi-isomorphic to A.

2. (i) rank C = 2; (ii) r,(C) = 7p(A) for all p; (iii) rp( Hom(C, B)) =
rp(Hom(A, B)) for all p and B with rank B < 2; and (iv) OT(C) =
OT(A).
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