ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 1, Winter 1990

WHEN DO TWO GROUPS ALWAYS HAVE ISOMORPHIC EXTENSION GROUPS?

H. PAT GOETERS

What is the relationship between abelian groups A and C if $Ext(A, B) \cong Ext(C, B)$ for all abelian groups B? (problem 43 in [5]). We will address this question, restricting our attention to torsion-free abelian groups A, B and C of finite rank.

Call A and C related if $Ext(A, B) \cong Ext(C, B)$ for all B. We give a characterization of this relation in §1 and use it to show

THEOREM. Assume that one of the following hold: (a) rank A = 2; (b) A has a semi-prime endomorphism ring; or (c) A is almost completely decomposable. Write $A = D' \oplus F' \oplus G$ with F' free, D' divisible and G reduced with Hom $(G, \mathbf{Z}) = 0$.

Then C is related to A if and only if $C = D \oplus F \oplus R$ with F free; D is divisible and zero if $OT(A) \neq type \mathbf{Q}$ and nonzero if $OT(G) \neq type \mathbf{Q}$ and $D' \neq 0$; and R quasi-isomorphic to G.

Here **Z** is the ring of integers and **Q** the field of rationals, p will denote a prime of **Z**. As usual, the *p*-rank of A, $r_p(A) = \dim A/pA$. We show the

COROLLARY. Assume that one of the following hold: (a) rank A = 2; (b) A has a semi-prime endomorphism ring; or (c) A is almost completely decomposable. Then C is quasi-isomorphic to A if and only if (i) $r_p(C) = r_p(A)$ for all p; (ii) $r_p(\operatorname{Hom}(C, B)) = r_p(\operatorname{Hom}(A, B))$ for all p and groups B with rank $B \leq \operatorname{rank} A$; (iii) $\operatorname{OT}(C) = \operatorname{OT}(A)$; and (iv) rank $C = \operatorname{rank} A$.

The notation, if undefined, appears in [1], and the basic ideas from [1] are assumed. However a few facts about the outer type of A, OT(A) =

Received by the editors on August 7, 1986 and in revised form on April 7, 1987. Copyright ©1990 Rocky Mountain Mathematics Consortium

 $\sup\{\sigma | \sigma = \operatorname{type} A/K \text{ for some } K, A \text{ with } \operatorname{rank} A/K = 1\}$, and the inner type of B, $\operatorname{IT}(B) = \inf\{\sigma | \sigma = \operatorname{type} \langle a \rangle_*, 0 \neq a \in B\}$, are given.

PROPOSITION 0. Let $\tau = OT(A)$ and $\sigma = IT(B)$.

- 1. If $G \leq A$ and $C \triangleleft A$, then $OT(G) \leq \tau$ and $OT(A/C) \leq \tau$.
- 2. $\tau \leq \text{type } \mathbf{Z}_p$ if and only if $r_p(A) = \text{rank } A$.
- 3. OT(Hom(C, A)) $\leq \tau$ for any C.
- 4. $\tau \leq \sigma$ if and only if rank Hom $(A, B) = (\operatorname{rank} A)(\operatorname{rank} B)$.

5. If $\{a_1, \ldots, a_n\} \subseteq A$ is a basis for **Q**A then, for $K_i = \langle a_j | j \neq i \rangle_*$, OT(A) = type $A/K_1 \vee \cdots \vee$ type A/K_n .

Hence, by 5, OT(A) is manageable and, by 4, is a quasi-isomorphism invariant of A.

1. Groups with a semi-prime endomorphism ring. By virtue of the fact that A is torsion-free, $\text{Ext}(A, B) = D \oplus T$ where D is torsion-free divisible and T is a divisible torsion group. We excerpt the following from [8] with this notation.

THEOREM 1.1. If $\operatorname{Ext}(A, B) \neq 0$, then $\dim_{\mathbf{Q}} D = 2^{\aleph_0}$ and p-rank $T = r_p(A)r_p(B) - r_p(\operatorname{Hom}(A, B)).$

A useful characterization of when Ext(A, B) = 0 is the following. Let R(B) be the subring of **Q** generated by 1 and 1/p for all p with $pB \neq B$. Note type $R(B) \leq \text{IT}(B)$.

THEOREM 1.2. (WICKLESS [9]). Ext(A, B) = 0 if and only if $OT(A) \leq type R(B)$.

We will say that C is n-related to A if $\operatorname{Ext}(A, B) \cong \operatorname{Ext}(C, B)$ for all B of rank $\leq n$. Any group C can be written as $C = F \oplus C'$ with F free and $\operatorname{Hom}(C', \mathbb{Z}) = 0$. Since C' is n-related to A if and only if C is n-related to A, we may as well assume that $\operatorname{Hom}(C, \mathbb{Z}) = 0 = \operatorname{Hom}(A, \mathbb{Z})$ in considering these relations.

THEOREM 1.3. Assume that Hom(A, Z) = Hom(C, Z) = 0 and n > 0. The following are equivalent:

1. C is n-related to A.

2. (i) $r_p(C) = r_p(A)$ for all p; (ii) $r_p(\operatorname{Hom}(C, B)) = r_p(\operatorname{Hom}(A, B))$ for all p and all B with rank $B \leq n$; and (iii) $\operatorname{OT}(C) = \operatorname{OT}(A)$.

PROOF. We will first show that if $\operatorname{Ext}(A, B) = 0$, then $r_p(A)r_p(B) - r_p(\operatorname{Hom}(A, B)) = 0$ for all p. Consider $0 \to B \to QB \to T \to 0$ and note that p-rank $T = r_p(B)$ [1, Theorem 2]. By Theorem 1.2 and Proposition 0, rank $\operatorname{Hom}(A, B) = (\operatorname{rank} A)(\operatorname{rank} B)$, and consequently the sequence $0 \to \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, QB) \to \operatorname{Hom}(A, T) \to 0$ is exact and $\operatorname{Hom}(A, T)$ is a torsion group. In this case $\operatorname{Hom}(A, QB)$ is the divisible hull of $\operatorname{Hom}(A, B)$, and therefore p-rank $\operatorname{Hom}(A, T) = r_p(\operatorname{Hom}(A, B))$ [1, Theorem 2]. But, by [8, Theorem 1], p-rank $\operatorname{Hom}(A, T) = r_p(A)(p$ -rank $T) = r_p(A)r_p(B)$.

Hence the torsion subgroup of Ext(A, B) always has *p*-rank equal to $r_p(A)r_p(B) - r_p(\text{Hom}(A, B)).$

 $(1 \Rightarrow 2)$. Let rank $B \le n$. Since the torsion subgroups of Ext(A, B)and Ext(C, B) are isomorphic, $(*) r_p(A)r_p(B) - r_p(\text{Hom}(A, B)) = r_p(C)r_p(B) - r_p(\text{Hom}(C, B))$ for every p.

In particular, $r_p(A) = r_p(A)r_p(\mathbf{Z}) = r_p(C)r_p(\mathbf{Z}) = r_p(C)$ for all p. We can solve (*) to get (ii).

Assume that not both OT(C) and OT(A) equal $\bar{\infty}(\bar{\infty} = \text{type } \mathbf{Q})$. Say $OT(A) = \tau < \bar{\infty}$. Let p be such that $\tau \leq \text{type } \mathbf{Z}_p$. By Theorem 1.2, $\text{Ext}(A, \mathbf{Z}_p) = 0 = \text{Ext}(C, \mathbf{Z}_p)$, and, by the same theorem, $OT(C) \leq \text{type } \mathbf{Z}_p < \bar{\infty}$. By proposition 0, $r_p(C) = \text{rank } C$.

Let X be a rank-1 group of type τ . Since, by Proposition 0, OT(Hom(A, X)) $\leq \tau$, $r_p(Hom(A, X))$ = rank Hom(A, X) = rank $A = r_p(A)$. Therefore $r_p(C) = r_p(Hom(C, X))$ = rank Hom(C, X) = rank C and OT $(C) \leq$ type $X = \tau$.

Since we can repeat the argument to show $OT(C) \ge \tau$, we have established (iii).

 $(2 \Rightarrow 1)$. Let rank $B \le n$. By (iii) and Theorem 1.2, Ext(C, B) = 0 if and only if Ext(A, B) = 0. If $\text{Ext}(C, B) \ne 0$ then, by (i), (ii) and

Theorem 1.1, the torsion subgroups of Ext(C, B) and Ext(A, B) are isomorphic. Whence $\text{Ext}(C, B) \cong \text{Ext}(A, B)$ in this case, too. \Box

If A and C are quasi-isomorphic, then they are *n*-related for all *n*. However if $OT(A) = \overline{\infty}$, then $A \oplus \mathbf{Q}$ is related to A by the above.

Also if A is a nonzero divisible group, then Ext(A, B) is a vector space of dimension 2^{\aleph_0} over **Q**. For C to be related to A, C must be a nonzero divisible group plus a free group.

For E(A) = Hom(A, A), let N = N(E(A)) denote the nilradical of E(A) which is the ideal generated by all of the nilpotent right ideals of E(A). We say that E(A) is semi-prime if N = 0 or, equivalently, if $\mathbf{Q}E(A) = \mathbf{Q} \otimes E(A)$ is a semi-simple ring. Call A semi-prime if E(A) is a semi-prime ring and note that being semi-prime is a quasi-isomorphism invariant (Chapter 9 in [1]).

By a result of J. Reid [7, Corollary 4.3], if A is strongly indecomposable, then A is semi-prime if and only if every endomorphism of A is a monomorphism. If C is quasi-isomorphic to A we will write $C \sim A$. Let $S_A(C)$ denote $\langle f(A) | f : A \to C \rangle$.

THEOREM 1.4. Let A be semi-prime of rank n. The following are equivalent:

- 1. C is related to A.
- 2. C is n-related to A.

3. (i) If A is a free group plus a divisible group, then $C = D \oplus F$ with F free, and D divisible and D = 0 if and only if A is reduced.

(ii) Otherwise $C = D \oplus F \oplus R$, where F is free, D is divisible and zero if $OT(A) \neq \overline{\infty}$ and R is quasi-isomorphic to A.

PROOF. Write $A \doteq A_1^{n_1} \oplus \cdots \oplus A_k^{n_k}$ (\doteq means quasi equal) with each A_i strongly indecomposable and $A_i \nsim A_j$ if $i \neq j$. Since $A_1^{n_1} \oplus \cdots \oplus A_k^{n_k}$ is semi-prime and C is related to A if and only if C is related to $A_1^{n_1} \oplus \cdots \oplus A_k^{n_k}$, we may assume without loss of generality that $A = A_1^{n_1} \oplus \cdots \oplus A_k^{n_k}$.

Suppose $f : A_i \to A_j$ with $i \neq j$ and regard $f \in E = E(A)$. We will show that I = fE is nilpotent so that f = 0.

Let $g \in E$ and, for the natural maps $\pi_i : A \to A_i \subseteq A$ and $\pi_j : A \to A_j \subseteq A$, let $h = \pi_i g \pi_j$. Then fgf = fhf and $(fg)^n = f(hf)^{n-1}g$ with $hf \in E(A_i)$. If hf is a monomorphism, then $\alpha = hf$ is invertible in $\mathbf{Q}E(A_i)$ (Proposition 6.1 in [1]). If $k \neq 0$ is such that $k\alpha^{-1} \in E(A_i)$, then $(k\alpha^{-1}h)f = k1_{A_i}$, and, for $u = k\alpha^{-1}h, A_j \supseteq f(A_i) \oplus \ker u \supseteq kA_j$. Since A_j is strongly indecomposable and f is a monomorphism, ker u = 0, which contradicts the assumption that $A_i \approx A_j$. Whence $hf \in NE(A_i)$ is nilpotent. If $(hf)^n = 0$, then $(fg)^{n+1} = f(hf)^n g = 0$ so that fg is nilpotent. Since $\mathbf{Q}I$ is finite dimensional and contains only nilpotent elements, it is easy to check that $\mathbf{Q}I$ hence I is nilpotent.

Therefore $E(A) = E(A_1^{n_1}) \times \cdots \times E(A_k^{n_k})$. Since $E(A_i^{n_i})$ could have no nilpotent ideals, $0 = N(E(A_i^{n_i})) = \operatorname{Mat}_{n_i}(N(A_i))$ and A_i is semi-prime and strongly indecomposable. If A is divisible, the theorem follows from Theorem 1.1.

 $(2 \Rightarrow 3)$. Assume that *C* is *n*-related to *A*. If *A* is free, then *C* is clearly free by Theorem 1.3. Otherwise, if $A = F' \oplus A'$ with F' free and $\operatorname{Hom}(A', Z) = 0$, then $\operatorname{Hom}(F', A')$ is a nilpotent ideal in E(A). Hence F' = 0 and $\operatorname{Hom}(A, Z) = 0$. Similarly *A* is reduced since *A* is not divisible.

Writing $C = B \oplus F$ with F free and Hom(B, Z) = 0 we see that B is *n*-related to A. Write $B = D \oplus R$ with D divisible and R reduced. We will show that $R \sim A$.

Now, by Theorem 1.3, $r_p(R) = r_p(A)$ and $r_p(\operatorname{Hom}(R,G)) = r_p(\operatorname{Hom}(A,G))$ for every p and G with rank $G \leq n$. We will show, by induction on rank R, that if, for some summand $K = A_1^{m_1} \oplus \cdots \oplus A_k^{m_k}$ of A we have $r_p(\operatorname{Hom}(R,G)) = r_p(\operatorname{Hom}(K,G))$ for all p and groups G with rank $G \leq n$, then $R \sim A_1^{e_1} \oplus \cdots \oplus A_k^{e_k} \oplus R'$ with R' satisfying $S_A(R') \leq R'[A]$.

If rank R = 0, then there is nothing to show. Otherwise let $K = A_1^{m_1} \oplus \cdots \oplus A_k^{m_k}$ with $r_p(\operatorname{Hom}(R,G)) = r_p(\operatorname{Hom}(K,G))$ for all p and G having rank $G \leq n$. If $S_A(R) \leq R[A]$, then we are finished. Assume $S_A(R) = \sum_i S_{A_i}(R) \not\leq R[A]$.

If $pK \neq K$, then $r = \operatorname{rank} \operatorname{Hom}(R, A) \geq r_p(\operatorname{Hom}(R, K)) = r_p(\operatorname{Hom}(K, K)) > 0$. Using standard arguments, we may embed

R/R[A] into $A^r = A_i^{rn_1} \oplus \cdots \oplus A_k^{rn_k}$ and identify R/R[A] with its image. Take $\pi_j : A^r \to A_j^{rn_j}$ and $\pi : R \to R/R[A]$ to be the natural maps.

Since $S_{A_j}(R) \notin R[A]$ for some j, there is an $f : A_j \to R$ such that $f(A_j) \notin R[A]$. Since $\operatorname{Hom}(A_j, A_i) = 0$ if $i \neq j$, then $\pi_i \pi f(A_j) = 0$ and $\pi_j \pi f(A_j) = (f(A); +R[A])/R[A] \neq 0$. Therefore there is a $g \in \operatorname{Hom}(R, A_j)$ such that $0 \neq gf \in E(A_i)$. But A_j is strongly indecomposable and semi-prime so that gf is a monomorphism. As before, gf is invertible in $\mathbf{Q}E(A_j)$ and we get a quasi-splitting of $R \xrightarrow{g} A_j$, i.e., $R \sim A_j \oplus R_1$. Now $r_p(\operatorname{Hom}(R,G)) = r_p(\operatorname{Hom}(A_j \oplus R_1, G))$ for every p and G of rank $\leq n$. If $pA_j \neq A_j$, then $r_p(\operatorname{Hom}(A_j \oplus R_1, A_j)) = r_p(\operatorname{Hom}(K, A_j)) = m_j r_p(E(A_j)) \geq r_p(E(A_j)) > 0$ and $m_j \neq 0$.

Hence $r_p(\operatorname{Hom}(R,G)) = r_p(\operatorname{Hom}(A_j,G)) + r_p(\operatorname{Hom}(R_1,G)) = r_p(\operatorname{Hom}(A_j,G)) + r_p(\operatorname{Hom}(A_1^{l_1} \oplus \cdots \oplus A_k^{l_k},G)) = r_p(\operatorname{Hom}(K,G))$ for all p where $l_i = m_i$ if $i \neq j$; $l_j = m_j - 1$ and induction applies to R_1 .

Whence $R \sim A_1^{e_1} \oplus \cdots \oplus A_k^{e_k} \oplus R'$ with $S_A(R') \leq R'[A]$ as desired. Returning to the proof, $r_p(\operatorname{Hom}(R, A_i)) = r_p(\operatorname{Hom}(A, A_i)) = n_i r_p(E(A_j)) \geq e_i r_p(E(A_j))$ from which we infer that $n_i \geq e_i$ for every *i*.

Consider $K = A_1^{n_1-e_1} \oplus \cdots \oplus A_k^{n_k-e_k}$. Clearly $r_p(\operatorname{Hom}(R',G)) = r_p(\operatorname{Hom}(K,G))$ for all p and G of rank $\leq n$. If rank R' > 0, then R' has a quasi-summand A_j for some j and $S_{A_j}(R') \leq S_A(R') \leq R'[A]$ is impossible. Thus R' = 0 which implies that $r_p(\operatorname{Hom}(K,K)) = 0$ for all p. Since K is reduced, K = 0, and $n_i = e_i$ for all i. Whence $R \sim A$.

If $OT(A) \neq \overline{\infty}$, then $OT(C) \neq \overline{\infty}$ by Theorem 1.3 and D must be zero.

 $(3 \Rightarrow 1)$. The case when 3(i) holds is covered by the remark preceding the statement of the theorem. If $C = D \oplus R \oplus F$ as stated, then $\operatorname{OT}(D \oplus R) = \overline{\infty}$ if $\operatorname{OT}(A) = \overline{\infty}$ and $\operatorname{OT}(D \oplus R) = \operatorname{OT}(R) = \operatorname{OT}(A)$ if $\operatorname{OT}(A) \neq \overline{\infty}$. Since $r_p(\operatorname{Hom}(D \oplus R, G)) = r_p(\operatorname{Hom}(R, G)) =$ $r_p(\operatorname{Hom}(A, G))$ for all p and $G, D \oplus R$, hence C, is related to A. \square

COROLLARY 1.5. If A is semi-prime, then C is quasi-isomorphic to A if and only if (i) $r_p(C) = r_p(A)$ for all p; (ii) $r_p(\operatorname{Hom}(C,G)) =$

 $r_p(\operatorname{Hom}(A,G))$ for all p and G with $\operatorname{rank} G \leq \operatorname{rank} A$; (iii) $\operatorname{OT}(C) = \operatorname{OT}(A)$; and (iv) $\operatorname{rank} C = \operatorname{rank} A$.

PROOF. (\Leftarrow) If A is free, then OT(A) = OT(C) implies C is free and (iv) implies $A \cong C$. If A is divisible, then (i) and (iv) imply $A \cong C$. Otherwise, if $C \sim F \oplus D \oplus A$ then, by (iv), F = D = 0. \Box

Any finite rank group A can be decomposed $A = D \oplus F \oplus A'$ with D divisible, F free and A' reduced with $\text{Hom}(A', \mathbb{Z}) = 0$. Call A' a free and divisible complementary summand of A, or fdc-summand for short.

2. When is C related to an almost completely decomposable group A? The simplest example of a group without a semi-prime endomorphism ring is $A = X \oplus Y$ where $X, Y \leq Q$ with type X < type Y. The nilradical of E(A) is Hom(X, Y).

THEOREM 2.1. Let A be completely decomposable with a linearly ordered typeset and $n = \operatorname{rank} A$. The following are equivalent:

1. C is related to A.

2. C is n-related to A.

3. (i) If A is a free group plus a divisible, then $C = D \oplus F$ with F free and D divisible and zero if and only if A is reduced.

(ii) Otherwise write $C = D \oplus F \oplus R$ and $A = D' \oplus F' \oplus R'$ with R and R' respective fdc-summands, D and D' divisible groups and F and F' free groups. Then R is isomorphic to R', and D is zero if $OT(A) < \bar{\infty}$, and nonzero if both $OT(R') < \bar{\infty}$ and $D' \neq 0$.

PROOF. If $A = D' \oplus F'$ with D' divisible and F' free, then $C = D \oplus F$ with D divisible and F free with the further restriction that D = 0 if and only if D' = 0. We will exclude this case in the following.

 $(2 \Rightarrow 3)$. Suppose *C* is *n*-related to *A*. We may assume that $\operatorname{Hom}(A, \mathbb{Z}) = 0$. Write $A = G \oplus D'$ with D' divisible and *G* reduced, and write $C = D \oplus F \oplus R$ with *D* divisible, *F* free and *R* an fdc-summand. We will show that $R \cong G$.

Write $G = G_1 \oplus \cdots \oplus G_n$ with $G_i = X_i^{\tau_i}$ where X_i is a rank-1 group of type τ_i . Assume that $\tau_i < \tau_j$ if i < j. We will construct an embedding of R into G below.

We note that $r_p(\operatorname{Hom}(R, B)) = r_p(\operatorname{Hom}(C, B)) = r_p(\operatorname{Hom}(A, B)) = r_p(\operatorname{Hom}(G, B))$ and that $r_p(R) = r_p(G)$ for all p and all B of rank $\leq n$. For a group K and a rank-1 group X it is easy to check that $f_1, \ldots, f_l \in \operatorname{Hom}(K, X)$ are independent if and only if rank $K - \operatorname{rank}(\cap_{i=1}^l \ker f_i) = l$ (Proposition 0).

Since, for $pX_1 \neq X_1, r_p(\operatorname{Hom}(R, X_1)) = r_p(\operatorname{Hom}(G, X_1)) = r_1$ (Proposition 0), there are linearly independent maps $g_1, \ldots, g_{r_1} \in \operatorname{Hom}(R, X_1)$. Define $\theta_1 : R \to G_1$ by $\theta_1(x) = (g_1(x), \ldots, g_{r_1}(x))$. Then rank $\operatorname{Im} \theta_1 = \operatorname{rank} R - \operatorname{rank} \ker \theta_1 = r_1$ and coker θ_1 is torsion.

Assume that a map $\theta : R \to G_1 \oplus \cdots \oplus G_k$ has been constructed so that coker θ is a torsion group T, for k < n. Now $OT(Im \theta) \le OT(G_1 \oplus \cdots \oplus G_k) = \tau_k < \tau_{k+1}$ by Proposition 0. This implies rank $Hom(Im \theta, X_{k+1}) = rank Im \theta = rank Hom(G_1 \oplus \cdots \oplus G_k, X_{k+1}) = r_1 + \cdots + r_k.$

From $0 \to \ker \theta \to R \to \operatorname{Im} \theta \to 0$ we derive $0 \to \operatorname{Hom}(\operatorname{Im} \theta, X_{k+1}) \to \operatorname{Hom}(R, X_{k+1}) \stackrel{\alpha}{\to} \operatorname{Hom}(\ker \theta, X_{k+1})$. If $pX_{k+1} \neq X_{k+1}$, then $r_p(\operatorname{Hom}(R, X_{k+1})) = \operatorname{rank} \operatorname{Hom}(R, X_{k+1}) = r_p(\operatorname{Hom}(G, X_{k+1})) = \operatorname{rank} \operatorname{Hom}(R, X_{k+1}) = r_p(\operatorname{Hom}(G, X_{k+1})) = \operatorname{rank} \operatorname{Hom}(G, X_{k+1}) = r_1 + \cdots + r_{k+1}$. Hence there are linearly independent maps $f_1, \ldots, f_{r_{k+1}} \in \operatorname{Hom}(R, X_{k+1})$ so that $\alpha f_1, \ldots, \alpha f_{r_{k+1}}$ are linearly independent in $\operatorname{Hom}(\ker \theta, X_{k+1})$. Define $\phi : R \to G_1 \oplus \cdots \oplus G_{k+1}$ by $\phi(x) = (\theta(x), (f_1(x), \ldots, f_{r_{k+1}}(x)))$. Since $\ker \phi = \ker \theta \cap \cap_i \ker f_i$, $\operatorname{rank}(R/\ker \phi) = \operatorname{rank}(R/\ker \theta) + \operatorname{rank}(\ker \theta/\ker \phi) = \operatorname{rank}(G_1 \oplus \cdots \oplus G_{k+1})$ and $\operatorname{coker} \phi$ is torsion.

We have constructed a map $\theta : R \to G$ with $T = \operatorname{coker} \theta$ a torsion group. By [1, Theorem 2], $r_p(R/\ker\theta) + \dim T/pT = r_p(G) + \dim T[p]$ for all p where $T[p] = \{x \in T \mid px = 0\}$. Since $\dim T/pT \leq \dim T[p]$ and $r_p(R) = r_p(R/\ker\theta) = r_p(\ker\theta) = r_p(G)$ for all p, the inequality $r_p(G) \leq r_p(R/\ker\theta) \leq r_p(R)$ implies $r_p(\ker\theta) = 0$ for all p. Whence $\ker \theta = 0$ since R is reduced.

Let p satisfy $pX_n \neq X_n$. From $0 \to R \xrightarrow{\theta} G \to T \to 0$ we derive $0 \to \operatorname{Hom}(G, R) \to \operatorname{Hom}(R, R)$. Since $\operatorname{OT}(R) \leq \operatorname{OT}(G) =$ type $X_n, r_p(R) = \operatorname{rank} R$. By Proposition $0, r_p(\operatorname{Hom}(R, R)) = \operatorname{rank}$

Hom(R, R) = rank Hom(G, R) = $r_p(\text{Hom}(G, R))$. Let $m \neq 0$ satisfy $m1_r = f \in \text{Hom}(G, R)$. Since f is clearly 1-1, $G \sim R$ [1, Corollary 6.2]. By a theorem of Beaumont-Pierce [1, Theorem 2.3] $G \cong R$.

Now $R \oplus D$ is related to $A = G \oplus D'$ so that $OT(R \oplus D) = OT(R) \lor OT(D) = OT(A)$ by Theorem 1.3. Clearly D = 0 if $OT(A) < \bar{\infty}$. If $OT(A) = \bar{\infty}$ but $OT(G) < \bar{\infty}$, then $D \neq 0$ in order for $OT(C) = \bar{\infty}$.

 $(3 \Rightarrow 1)$. Assume $\operatorname{Hom}(C, \mathbb{Z}) = \operatorname{Hom}(A, \mathbb{Z}) = 0$ and suppose $C = R \oplus D$ with D divisible, R reduced and $R \oplus D' = A$ for some divisible group D'. Moreover D = 0 if and only if D' = 0 since the hypothesis that R is completely decomposable with linearly ordered typeset implies $\operatorname{OT}(R) < \bar{\infty}$. Therefore $\operatorname{OT}(C) = \operatorname{OT}(A)$, the hypotheses of Theorem 1.3 hold, and C is related to A. \Box

REMARK. The n in part 2 could be taken to be the maximum rank of a fdc-summand of A in the case that A is not a free plus a divisible.

Let X be a rank-1 group which is neither free nor divisible. It is easy to construct a strongly indecomposable group C of rank-2 such that any rank-1 image of C is isomorphic to X. Then, from Theorem 1.3, C is 1-related to $A = X \oplus X$, but not 2-related. If, however, both C and A are presumed almost completely decomposable, then C is related to A if and only if C is 1-related to A.

Unfortunately the proof of Theorem 2.1 does not go through under the assumption that A is almost completely decomposable. To prove the analogue in this case we must use several results about Butler groups. Recall that A is a Butler group if A is a pure subgroup of a completely decomposable group G (see [2] and [3]).

For a set S of primes, let A_S be the localization of A at S. That is, for \mathbf{Z}_S the subring of \mathbf{Q} generated by 1 and 1/p if $p \in S, A_S = \mathbf{Z}_S \otimes A$. We identify $A \leq A_S$ as usual. Using the notation from [9] let supp $A = \{p \mid pA \neq A\}$. Note that if C and A are n-related and $\operatorname{Hom}(C, \mathbf{Z}) = \operatorname{Hom}(A, \mathbf{Z}) = 0$, then $r_p(A) = r_p(C)$ for all p. In this case supp $C = \operatorname{supp} A$.

LEMMA 2.2. Assume $\operatorname{Hom}(A, \mathbb{Z}) = \operatorname{Hom}(C, \mathbb{Z}) = 0$. Then C is n-related to A if and only if C_S is n-related to A_S for every set S of primes.

PROOF. We will only consider the necessity since, if S is the set of all primes, $C_S = C$ and $A_S = A$. Let S be a set of primes. Then $OT(A_S) = OT(A) + type \mathbf{Z}_S = OT(C) + type \mathbf{Z}_S = OT(C_S)$ (see Exercise 1.2 in [1]). Therefore $Ext(A_S, B) = 0$ if and only if $Ext(C_S, B) = 0$ by Theorem 1.2.

If supp $B \subseteq S$, then QB/B has a zero *p*-component if $p \notin S$ and both A_S/A and C_S/C have a zero *p*-component if $p \in S$. This implies $0 = \operatorname{Hom}(A_S/A, \mathbf{Q}B/B) = \operatorname{Hom}(C_S/S, \mathbf{Q}B/B) = \operatorname{Ext}(A_S/A, B) =$ $\operatorname{Ext}(C_S/C, B)$ so that $\operatorname{Ext}(A_S, B) \cong \operatorname{Ext}(A, B) \cong \operatorname{Ext}(C, B) \cong$ $\operatorname{Ext}(C_S, B)$.

Note $\operatorname{supp} A_S = (\operatorname{supp} A) \cap S = (\operatorname{supp} C) \cap S = \operatorname{supp} C_S$ since $r_p(A) = r_p(C)$ for all p. For B with $\operatorname{supp} B \nsubseteq S$ take $P = (\operatorname{supp} B) \setminus \operatorname{supp} A_S$. Let $P^{\omega}B$ be the pure subgroup $\{b \in B \mid b \in p^m B \text{ for all } p \in P \text{ and } m \in \mathbb{Z}\}$. Then $P^{\omega}(B/P^{\omega}B) = 0$ (defined analogously). If $f : A_S \to B$ then $\operatorname{Im} f$ is p-divisible for all $p \in P$. Furthermore, $\operatorname{Hom}(A_S, B/P^{\omega}B) = 0$. A similar arrangement holds for C. Thus

has split exact rows.

The first isomorphism is due to $\operatorname{supp} P^{\omega}B = (\operatorname{supp} B) \setminus P \subseteq S$. The latter isomorphism is due to $r_p(A_S)r_p(B/p^{\omega}B) = 0 = r_p(C_S)r_p(B/p^{\omega}B)$ for all p. This implies the torsion subgroups of $\operatorname{Ext}(A_S, B/p^{\omega}B)$ and $\operatorname{Ext}(C_S, B/p^{\omega}B)$ are isomorphic. By the opening remark and Theorem 1.1, the two groups are isomorphic. Therefore $\operatorname{Ext}(A_S, B) \cong \operatorname{Ext}(C_S, B)$. \Box

Some key properties are preserved by our relation.

PROPOSITION 2.3. Assume that C is n-related to A for $n = \operatorname{rank} A$.

(i) If A is locally completely decomposable, then C is locally completely decomposable.

(ii) If A is a Butler group, then C is a Butler group.

PROOF. In the proof we may assume that $\operatorname{Hom}(C, \mathbf{Z}) = \operatorname{Hom}(A, \mathbf{Z}) = 0$.

(i). By Lemma 2.2, C_p is *n*-related to A_p . Hence, by Theorem 2.1, C_p is completely decomposable.

(ii). By Theorem 1.12 in [2], A is a Butler group if and only if there is a partition S_1, \ldots, S_m of the set of primes such that A_S is completely decomposable with a linearly ordered typeset for all $S \in \{S_1, \ldots, S_m\}$.

By Lemma 2.2, C_S is *n*-related to A_S for any $S \in \{S_1, \ldots, S_m\}$ and, by Theorem 2.1, C_S is completely decomposable with linearly ordered typeset. \Box

To prove a generalization of Theorem 2.1 we need a few results from [3]. Let A be a Butler group. If X is a rank-1 group of type τ , then $A[\tau] = \bigcap\{\ker f | f \in \operatorname{Hom}(A, X)\}$ and $A^*[\tau] = \bigcap\{A[\sigma] | \sigma < \tau\}$. It is easy to see that if K is a pure subgroup of A with $K \subseteq A[\sigma]$ for all $\sigma < \tau$, then $(A/K)[\sigma] = A[\sigma]/K$ and $(A/K)^*[\tau] = A^*[\tau]/K$.

THEOREM 2.4. (ARNOLD-VINSONHALER [3]). The exact sequence $0 \to A^*[\tau]/A[\tau] \to A/A[\tau] \to A/A^*[\tau] \to 0$ is split exact.

Recall that $A^*[\tau]/A[\tau]$ is homogeneous completely decomposable of type τ (see [3]).

THEOREM 2.5. Let A be an almost completely decomposable group and $n = \operatorname{rank} A$. The following are equivalent.

1. C is related to A.

2. C is n-related to A.

3. (i) If A is a free group plus a divisible group, then $C = D \oplus F$ with D divisible and zero if and only if A is reduced, and F is free.

(ii) Otherwise write $A = D' \oplus F' \oplus G$ and $C = D \oplus F \oplus R$ with Dand D' divisible, F and F' free, and R and G fdc-summands. Then R is quasi-isomorphic to G, and D = 0 if $OT(A) < \overline{\infty}$ and $D \neq 0$ if $D' \neq 0$ but $OT(G) < \overline{\infty}$.

PROOF. $(2 \Rightarrow 3)$. If A is a free group plus a divisible group, then clearly the conclusion of 3(i) must hold. Otherwise assume $\operatorname{Hom}(A, \mathbb{Z}) = \operatorname{Hom}(C, \mathbb{Z}) = 0$ and $A = D' \oplus G$ with G an fdc-summand. Without loss of generality, assume $G = A_1 \oplus A_2 \oplus \cdots \oplus A_n$, where each A_i is homogeneous completely decomposable of type τ_i and rank r_i and $\tau_i \not\geq \tau_j$ if i < j.

We will construct the map $\theta: C \to A_1 \oplus \cdots \oplus A_k$ for $1 \leq k \leq n$ such that $C/\ker \theta \sim A_1 \oplus \cdots \oplus A_k$ by induction on k. Since C is a Butler group, by Proposition 2.3, there is a splitting map $f_i: C/C[\tau_i] \to C^*[\tau_i]/C[\tau_i]$, for each i, by Theorem 2.4.

If X is a rank-1 group of type $\langle \tau_1$, then $\operatorname{Hom}(G, X) = 0$. By Theorem 1.3, $\operatorname{Hom}(C, X) = 0$ so that $C^*[\tau_1] = C$. By Theorem 2.4, $C/C[\tau_1] \cong C^*[\tau_1]/C[\tau_1] \oplus C/C^*[\tau_1] = C^*[\tau_1]/C[\tau_1]$ is homogeneous completely decomposable of type τ_1 . Since, for $pX_1 \neq$ X_1 , rank $C/C[\tau_1] = r_p(\operatorname{Hom}(C, X_1)) = r_p(\operatorname{Hom}(G, X_1)) = r_1$, we have $C/C[\tau_1] \cong A_1$.

Assume for the sake of induction, that the map $\theta : C \to \bigoplus_{i=1}^{k-1} C^*[\tau_1]/C[\tau_i]$, given by $\theta(c) = (f(c), \ldots, f_{k-1}(c))$, satisfies $\operatorname{Im} \theta \sim \bigoplus_{i=1}^{k-1} C^*[\tau_i]/C[\tau_i]$ and that $A_i \cong C^*[\tau_i]/C[\tau_i]$. Identify A_i with $C^*[\tau_i]/C[\tau_i]$.

Since our characterization is only up to quasi-isomorphism, we may assume without loss of generality that $\operatorname{Im} \theta = A_1 \oplus \cdots \oplus A_{k-1}$. Let $K = \ker \theta$, and consider $0 \to K \to C \to A_1 \oplus \cdots \oplus A_{k-1} \to 0$. Applying $\operatorname{Hom}(-, X)$ for a rank-1 group X we have $0 \to \operatorname{Hom}(A_1 \oplus \cdots \oplus A_{k-1}, X) \to \operatorname{Hom}(C, X) \xrightarrow{t} \operatorname{Hom}(K, X)$. Let $\tau = \operatorname{type} X$.

If $\tau < \tau_k$ and $pX \neq X$, then rank $\operatorname{Hom}(C, X) = r_p(\operatorname{Hom}(C, X)) = r_p(\operatorname{Hom}(G, X)) = r_p(\operatorname{Hom}(A_1 \oplus \cdots \oplus A_{k-1}, X)) = \operatorname{rank} \operatorname{Hom}(A_1 \oplus \cdots \oplus A_{k-1}, X)$ so that t = 0 since $\operatorname{Hom}(K, X)$ is torsion-free. This implies $K \subseteq C[\tau]$ and consequently $K \subseteq C^*[\tau_k]$. Moreover, $(C/K)[\tau] =$

 $C[\tau]/K$ here so that $(C/K)^*[\tau_k] = C^*[\tau_k]/K$ by the remark preceding Theorem 2.4. Therefore $C/C^*[\tau_k] = (C/K)/((C/K)^*[\tau_k]) = \oplus \{A_i | \tau_i < \tau_k\} = A/A^*[\tau_k].$

If $pX_k \neq X_k$, then $r_p(\operatorname{Hom}(C, X_k)) = \operatorname{rank} \operatorname{Hom}(C, X_k) = \operatorname{rank} C/C[\tau_k] = \operatorname{rank} A/A[\tau_k] = r_p(\operatorname{Hom}(A, X_k))$. Since $C/C^*[\tau_k] \cong A/A^*[\tau_k]$ we must have $\operatorname{rank} C^*[\tau_k]/C[\tau_k] = \operatorname{rank} A^*[\tau_k]/A[\tau_k]$ by Theorem 2.4. Hence $C^*[\tau_k]/C[\tau_k] \cong A^*[\tau_k]/A[\tau_k]$ since both are homogeneous completely decomposable of type τ_k .

Hence $C/C[\tau_k] = C^*[\tau_k]/C[\tau_k] \oplus C/C^*[\tau_k] = C^*[\tau_k]/C[\tau_k] \oplus \{C^*[\tau_i]/C[\tau_i] \mid \tau_i < \tau_k\}$ and the map $f: C \to \bigoplus \{C^*[\tau_i]/C[\tau_i] \mid \tau_i < \tau_k\}$ defined by $f(c) = (\theta(c), f_k(c))$ is an isomorphism.

Hence, by induction, there is a map $\theta : C \to G$ such that $C/\ker\theta \sim G$. Since $r_p(C) = r_p(G) + r_p(\ker\theta) = r_p(G)$ for all p, $\ker\theta$ is divisible. Then $C \cong \ker\theta \oplus \operatorname{Im} \theta \sim \ker\theta \oplus G$. Since $\operatorname{OT}(C) = \operatorname{OT}(A)$, if $\operatorname{OT}(A) < \bar{\infty}$, then $\ker\theta$ must be zero. If $\operatorname{OT}(A) = \bar{\infty}$ but $\operatorname{OT}(G) < \bar{\infty}$, then $\operatorname{OT}(C) = \bar{\infty}$ so $\ker\theta$ cannot be zero.

 $(3 \Rightarrow 1)$. This follows along the line of the proof of $(3 \Rightarrow 1)$ in theorem 2.1. \Box

In the proof of the theorem we only used the full strength of the relation in deducing that C was a Butler group.

COROLLARY 2.6. Assume C is a Butler group and A is almost completely decomposable. If $r_p(C) = r_p(A)$ and $r_p(\operatorname{Hom}(C, X)) =$ $r_p(\operatorname{Hom}(A, X))$ for all p and rank-1 groups X, then $C \sim D \oplus C'$, where D is divisible and $A = D' \oplus C'$ with D' divisible and C' reduced. In particular, C is almost completely decomposable.

PROOF. If A is divisible, then so is C. Otherwise repeat along the lines of Theorem 2.5 noting that rank Hom(A, Z) = rank Hom(C, Z).

3. Rank-2 groups. We can apply the results from §1 and §2 to settle the question for rank-2 groups. By doing so we determine a complete system of quasi-invariants for rank-2 groups.

In [7] James Reid gave a classification of rank-2 groups in terms of their quasi-endomorphism rings. This classification is similar to the Beaumont-Pierce classification (Theorem 3.3 in [1]). Of the strongly indecomposable rank-2 groups $A, \mathbf{Q}E(A)$ is either (i) a quadratic number field; (ii) \mathbf{Q} ; or (iii) the ring of upper trianglular 2×2 matrices over \mathbf{Q} with equal diagonal entries.

THEOREM 3.1. Let rank A = 2. Then C is 2-related to A if and only if

(i) If A is a free group plus a divisible, then $C = D \oplus F$ with D divisible and zero if and only if A is reduced, and F free.

(ii) Otherwise write $C = D \oplus F \oplus R$ with F free, R quasi-isomorphic to an fdc-summand of A, and D divisible and zero if $OT(A) < \overline{\infty}$ and nonzero if $OT(R) < \overline{\infty}$ and A is not reduced.

PROOF. We will only consider the necessity, and assume $\text{Hom}(C, \mathbf{Z}) = \text{Hom}(A, \mathbf{Z}) = 0.$

Theorem 2.5 handles the case that A is almost completely decomposable. The case when $\mathbf{Q}E(A)$ is a field is covered by Theorem 1.4. The final case is where $\mathbf{Q}E(A) = \left\{ \begin{bmatrix} x & y \\ 0 & x \end{bmatrix} | x, y \in \mathbf{Q} \right\}$ and A is strongly indecomposable.

Let $f: A \to A$ satisfy rank Im f = 1. Clearly $f^2 = 0$. Let $a \in A$ be such that $b = f(a) \neq 0$. Since $0 \neq b \in \ker f, a$ and b are independent and thus, for $\overline{A} = A/\langle b \rangle_*$ and $\overline{B} = A/\langle a \rangle_*$, $OT(A) = \operatorname{type} \overline{A} \lor \operatorname{type} \overline{B}$. Since \overline{A} embeds in \overline{B} as $x + \langle b \rangle_* \to f(x) + \langle a \rangle_*$, type $\overline{A} \leq \operatorname{type} \langle b \rangle_* \leq$ type $\overline{B} = OT(A)$.

Let p satisfy $p\langle b \rangle_* \neq \langle b \rangle_*$. Embed $\langle a \rangle_*$ into \overline{A} and $\langle b \rangle_*$ into \overline{B} naturally. Then $\overline{A}/\langle a \rangle_* \cong A/(\langle a \rangle_* + \langle b \rangle_*) \cong \overline{B}/\langle b \rangle_*$. Since $\overline{A}/\langle a \rangle_*$ is p-reduced, $\overline{B}/\langle b \rangle_*$ is p-reduced. Since $p\langle b \rangle_* \neq \langle b \rangle_*$, $p\overline{B} \neq \overline{B}$ and $OT(C) = OT(A) < \overline{\infty}$. Therefore $r_p(\operatorname{Hom}(C, A)) = \operatorname{rank} \operatorname{Hom}(C, A) = r_p(\operatorname{Hom}(A, A)) = \operatorname{rank} E(A) = 2$, and $OT(C) < \overline{\infty}$ so that C must be reduced and rank $C = r_p(C) = r_p(A) = 2$.

Let $f, g \in \text{Hom}(C, A)$ be independent. To show that there is a map in Hom(C, A) with a rank-2 image assume rank Im f = rank Im g = 1.

If ker $f = \ker g = K$, then $f, g \in \operatorname{Hom}(C/K, A)$ and therefore, for U = g(C) + f(C), rank U = 2. This implies that any $x \in A$ has type $\geq \operatorname{type} C/K$. But rank $\operatorname{Hom}(A, C/K) = \operatorname{rank} \operatorname{Hom}(C, C/K) \neq 0$ so any $0 \neq h : A \to C/K$ is quasi-split, a contradiction.

If ker $f \neq \text{ker } g$ but $\langle f(C) \rangle_* = \langle g(C) \rangle_* = W$, then we must have $OT(C) \leq \text{type } W$ (*C* embeds in W^2). But $OT(A) \leq \text{type } W$ implies that *W* is a summand of *A* [**6**, Corollary 1.8], a contradiction.

Define $\theta : C \to A$ by $\theta(c) = f(c) + g(c)$. If $x \in \ker \theta$, then $f(x) = -g(x) \in \langle \operatorname{Im} f \rangle_* \cap \langle \operatorname{Im} g \rangle_* = 0$ so that $x \in \ker f \cap \ker g = 0$. By the above, rank $\operatorname{Im} \theta = 2$ so that coker $\theta = T$ is torsion.

From $0 \to C \xrightarrow{\theta} A \to T \to 0$ we have $0 \to \operatorname{Hom}(A, C) \xrightarrow{\theta^*} \operatorname{Hom}(C, C)$. Since rank $\operatorname{Hom}(C, C) = \operatorname{rank} \operatorname{Hom}(A, C)$, there is an $m \neq 0$ so that $\phi = m \mathbb{1}_C : A \to C$. Clearly ϕ is 1-1 and therefore $A \sim C$.

COROLLARY 3.2. Let rank A = 2. The following are equivalent:

1. C is quasi-isomorphic to A.

2. (i) rank C = 2; (ii) $r_p(C) = r_p(A)$ for all p; (iii) $r_p(\text{Hom}(C, B)) = r_p(\text{Hom}(A, B))$ for all p and B with rank $B \leq 2$; and (iv) OT(C) = OT(A).

REFERENCES

1. David M. Arnold, *Finite Rank Torsion-Free Abelian Groups and Rings*, LNM 931, Springer-Verlag, New York, 1980.

2. ——, Pure subgroups of finite rank completely decomposable groups, Abelian Group Theory Proceedings. (Oberwolfach 1981), LNM **874**, Springer-Verlag, New York.

3. —— and Charles I. Vinsonhaler, *Pure subgroups of finite rank completely decomposable groups* II, Abelian Group Theory Proceedings. (Honolulu, 1982/83), LNM **1006**, Springer-Verlag, New York.

4. R.A. Beaumont and R.J. Wisner, *Rings with additive group which is a torsion-free group of rank two*, Acta. Math. Acad. Sci. Hungar. **20** (1959), 105–116.

5. Laszlo Fuchs, *Infinite Abelian Groups*, Vols. I and II, Academic Press, New York, 1970 and 1973, respectively.

6. H. Pat Goeters, When is Ext(A, B) torsion-free?, and related problems, Comm. Algebra **16** (1988), 1605–1619.

7. James D. Reid, On the ring of quasi-endomorphisms of a torsion-free group, in Topics in Abelian Groups, Scott, Foresman and Company, 1963.

8. Robert B. Warfield, *Extensions of torsion-free abelian groups of finite rank*, Arch. Math. **XXIII** (1972), 145–150.

9. William J. Wickless, *Projective classes of torsion-free abelian groups* II, Acta, Math., Acad. Sci. Hungar. **44** (1984), 13–20.

Department ACA, Auburn University, AL 36830

144