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THE SQUARE CLASS INVARIANT

CRAIG M. CORDES AND DAVID L. FOREMAN

A. Solow introduced the square class invariant in [6] and showed in [6,
7, 8] that the square class invariant or the square class invariant plus
the determinant classify quadratic forms over some particular fields. It
was hoped that this new invariant might be helpful in the classification
problem. However, in this paper we will determine all non-pythagorean
fields over which the square class invariant classifies quadratic forms
and will see that the answer is tied very closely to value sets of forms.
In what appears below, the notation follows that in [4].

DEFINITION. Let g be a quadratic form over a field . The square
class invariant for g is a function m, : F'/F? — Z given by my(aF?) =n
where ¢ = n(a) +p and a & D(p).

It is clear that m, is related closely to the value set of ¢q. Indeed,
D(q) = {a € F|lmg(a) > 1} where we write my(a) for mg(aF?).
We will show that when the square class invariant classifies forms for
non-pythagorean fields, the field’s anisotropic forms are determined
uniquely by their value sets. Such fields are called C-fields and were
introduced in [2]. Although there exist C-fields when the level, s(F), is
greater than 2, the square class invariant fails to classify forms over any
non-pythagorean field when the level is greater than 2. We suspect the
complete answer is that the square class invariant classifies quadratic
forms over a non-pythagorean field if and only if F' is a C-field and
s(F) < 2. Below we will verify this except for one direction in the
case when s(F) = 2 and both u(F) and the index of D(1,1) in F are
infinite.

PROPOSITION 1. Let F be a field with s(F) = 1. Then the square
class invariant classifies forms over F if and only if F' is a C-field.

PROOF. Assume the square class invariant classifies forms over F.
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Suppose f and g are anisotropic forms with D(f) = D(g). If my(a) > 2
for some a € F, then (o, a) = (a, —a) = (1, —1) is a subform of f and
thus f is isotropic. So my < 1, and similarly mg, <1 (that is, ms(a) <
1 and my(a) < 1, for all @ € F). Thus D(f) = {a € Flms(a) = 1}
and D(g) = {a € F|my(a) = 1}. But D(f) = D(g). Hence, ms = m,,
which implies f = g. Thus F is a C-field.

Now assume F' is a C-field. Suppose f and g are forms over F' with
mys = mg. Write f = 2n(1) + f’, where n is a non-negative integer
and dim f' = 0 or dim f’ > 1 and f’ is anisotropic. If dim f’ = 0,
then we write my = 0. If dim f’ > 1, then my < 1 since s = 1 and
f' is anisotropic. Similarly write g = 2k(1) + ¢g’, where k is a non-
negative integer and dimg’ = 0 or dimg’ > 1 and ¢’ is anisotropic.
Again mgy < 1. Without loss of generality, assume k& < n. Then, for
every a € F, ms(a) = 2n + myp(a) and my(a) = 2k + my(a). So
0=ms(a) —mg(a) =2(n—k) +mp(a) —mg(a) and 0 < my (o) =
2(n— k) +my(a) < 1. Hence n = k and mg (o) = my/ () for every
o € F. Thus D(f") = D(g"). But F is a C-field, so f' = ¢'. Since
n =k and f’ = ¢’, and the square class invariant classifies forms over
F.o

PROPOSITION 2. Let F' be a C-field with s(F) = 2 and either
u(F) < oo or |F/D(1,1)| < oco. Then the square class invariant
classifies quadratic forms over F'.

PROOF. Suppose ¢ and ¢ are forms over F' with my = mg. First,
suppose 9 and ¢ are both anisotropic. Since D(¢) = {a € F|my(a) >
1} and D(¢) = {a € F|my(a) > 1}, D(s)) = D(¢). Thus ¢ = ¢ since
F is a C field.

Now suppose ¥ is isotropic and ¢ is anisotropic. Since %) is isotropic,
¢ is universal and m.,(a) > 1 for every o € F. If mg(a) > 3 for some
a € F, then (o, v, @) is a subform of ¢. But (o, o, ) = {(a, —, —a),
and this contradicts ¢ being anisotropic. Thus mg(a) < 2 for every
a € F. So1 < my(a) = mg(a) < 2 for every a € F. Now suppose
there exists a non-zero form ' such that ¢ = (1,—1) + ¢’ and let
a € D(¥'). Then (1,—1,a) = (a, —a,a) = (—a, —a, —a) is a subform of
¥. But my(—a) < 2, and so ¢ = (1,—1) and my = mg = 1. Since F
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is a C-field, ¢ must be the unique anisotropic universal form. So (1,1)
is a subform of ¢ because either u(F) < oo or D(1,1) has finite index
in F. This follows from Proposition 5.3 in [2] for the first case and
from its proof in the second case. But this contradicts my = 1. Thus
it cannot occur that 1 is isotropic and ¢ is anisotropic.

Finally, suppose both ¢ and ¢ are isotropic. Write ¢ = 2n(1, —1) + 1’
and ¢ = 2k(1,—1) + ¢, where n and k are non-negative integers,
dimy’ = 0 or dim¢’ > 1 and my(1) < 3, and dim¢’ = 0 or
dim¢’ > 1 and mg (1) < 3. If dim¢’ = 0 let my = 0, and if
dim¢’ = 0 let my = 0. In any case, my(a) < 3 and my (a) < 3
for « € F and my(a) = 4n + my (@) and mg(a) = 4k + my (a)
for all & € F. Without loss of generality, assume k& < n. Then, for
every a € F, 0 = my(a) — mg(a) = 4(n — k) + my(a) — mg () and
0 <mg(a) =4(n — k) + my (o) <3. Hence n = k and my = my. If
' and ¢’ are anisotropic, then ¢’ = ¢’ by the first part of this proof.
Hence ¥ = ¢. Also by the first part of this proof, it cannot occur
that one of 9’ and ¢’ is isotropic and the other is anisotropic. Finally
suppose that ¢’ and ¢’ are both isotropic. Since my < 3,my < 3
and s(F) = 2,9’ = (1,-1) + f and ¢ = (1,—1) + g, where f and g
are anisotropic (or dim f = 0 or dimg = 0). Now, a € D(f) <
(1, 1) + (a) is a subform of ¢/ <= (a,—a) + (a) = (—a,—a,—a)
is a subform of ¢'. Thus D(f) = {a € F|my/(—a) = 3}. Similarly,
D(g) = {a € Flmg(—a) = 3}. But since my = my, D(f) = D(g). So
f = g since F is a C-field. Thus ¢’ = ¢’ and ¢ = ¢. O

Note that the condition, u(F) < co or |[F'/D(1,1)| < oo, is used only
to guarantee there exists no anisotropic universal form ¢ with mg = 1.
We believe this to be the case for any C-field with s(F') = 2 but have
been unable to find a proof.

PROPOSITION 3. Let F be a field with s(F) = 2. If the square class
tnvariant classifies the quadratic forms over F, then F is a C-field.

PROOF. Suppose F' is not a C-field. Then there exist anisotropic
forms f = g with D(f) = D(g). Let f' = (1,-1) + f and ¢’ =

(1,—1) + g. Consider my. If there exists a € F' such that my (a) > 4,
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then 4(a) = 2(1, —1) is a subform of f’. Hence, by Witt’s Cancellation
Theorem, (1, —1) is a subform of f. But f is anisotropic. Thus my < 3.

Now, my/(a) =3 <= f' = 3(a) + ¢, for some form ¢ (possibly the
O-form) < f' = (a,—a,—a)+ ¢ = (L,-1)+(—a)+¢ <<= [
(—a) +¢ <= —ac D(f).

Also, my(a) =2 <= f' = 2(a) + ¢ and a &€ D(¢), for some form
¢ <= (—a)+f=(a)+¢pand a ¢ D(a) <= a € D[(—a)+ f] and
—a & D(f).

Finally, m/(a) =1 <= a & D[(—a) + f]. Thus

3, if —a € D(f),
my(a) =9 2, if —a ¢ D(f) and a € D[(~a) + f],
1, ifa¢ D[(—a)+ f].

Similarly,

3, if —a € D(g),
mg(a) = q 2, if —a ¢ D(g) and a € D[(—a) +g],
1, ifa¢ D[(—a)+g].

Since D(f) = D(g), D[(—a) + f] = D[(—a) + g] for every a € F. So
myg = mg, but f' % ¢’ since f ¥ g. But this contradicts the fact that
the square class invariant classifies forms over F'. Hence F must be a
C-field. o

Solow [6] showed that the square class invariant classifies forms over
the following Pythagorean fields:

(1) Pythagorean fields F' which satisfy the Strong Approximation
Property and for which ¢(F) < co.

(2) Superpythagorean fields.

(3) Tterated power series fields over a field K, where K is of type 1
or 2 above.

Shapiro and Lam [5] showed that Solow’s results include all the
Pythagorean fields with finite square class group for which the square
class invariant classifies forms. Furthermore, Shapiro and Lam ex-
tended the results to Pythagorean fields with finitely many real-valued
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places. They proved that if K is a Pythagorean field with only finitely
many real-valued places, then the square class invariant classifies forms
over K if and only if K is equivalent to an iterated power series field
over k, where k is some SAP Pythagorean field.

The first part of this paper considered fields where the level was at
most 2. The following result applies to all non-Pythagorean fields with
level greater than 2.

PROPOSITION 4. Let F' be a non-Pythagorean field with s(F) > 4.
Then the square class invariant does not classify forms over F'.

PROOF. Since F' is not Pythagorean, D(1,1) 2 F2. Let a €
D(1,1) — F2. Consider f = (1,—1,—1) and g = (1,—1,—a). Both
f and g are isotropic and thus universal, so my > 1 and my > 1.
Suppose m(a) = 3 for some a € F. Then (1,—1,—-1) = (a,a,a) and
clearly a € F2 by comparing determinants. So (1,-1,-1) =2 (1,1,1)
and —1 € D(1,1). This contradicts s(F) > 4. Thus 1 < my(a) < 2,
for every a € F.

Now

myg(a) =2 <= (1,-1,-1) = (a,q,1) <= (-1,-1) = (a,a)
s —a€D({,1).

Thus
2, if —a € D(1,1),
my(a) :{ (1)

1, otherwise.

Now suppose my(a) = 3, for some a € F. Then (1,-1,—a)
(a,a,a). Again, by determinants, a € aF?, and (1,-1,—a) )
This implies that (o, —a,—a) = {(a,a,a) and that —1 € D(1,1),
another contradiction to s(F) > 4. Thus 1 < mgy(a) < 2, for every
a € F. Also

~

I

2
L
Q

mgla) =2 <= (1,-1,—a) =
= (—a,—a) = (a,a) <= —aa € D(1,1)
<= —a€ D(1,1) since o € D(1,1).

<a7 a, Oé> — <Oé, —Q, *Oé> = <a5 a, a)



96 C.M. CORDES AND D.L. FOREMAN

Thus
2, if —a € D(1,1),

1, otherwise.

my(a) = {

Hence my = mg,. But f 2 g since det f # detg. So the square class
invariant does not classify forms over F. 0O

The following theorem summarizes the propositions above and, along
with the results in [5], completely answers the question of when the
square class invariant classifies quadratic forms, at least in the presence
of certain relatively weak finiteness conditions.

THEOREM. Let F' be a field. If F is non-Pythagorean and s(F) > 4,
then the square class invariant does mot classify forms over F. If
s(F) < 2 and if the square class invariant classifies forms over F,
then F is a C-field. If F is a C-field with s(F) = 1 or with s(F) = 2
and either u(F) or |F/D(1,1)| finite, then the square class invariant
classifies forms over F'.

One might ask whether the square class invariant and another set of
invariants might be sufficient to classify forms. Solow considered adding
the determinant and found that these two invariants did work for local
fields. In fact, using the same techniques she applied to the dyadic
case [7], one can extend her results to all generalized Hilbert fields [3]
(i.e., fields having exactly two quaternion algebras). The proof of the
next proposition is a lengthy explanation of cases and is omitted. R(F)
denotes the Kaplansky radical of F.

PROPOSITION 5. Let F' be a generalized Hilbert field. Assume also
that if s(F) = 1, then R(F) = F? and that if s(F) = 2, then
—1 ¢ R(F). Then the square class invariant and determinant classify
quadratic forms over F'.

The assumptions in Proposition 5 are necessary. For example, if
F is a generalized Hilbert field with s(F) = 1 and R(F) # F2, let
d € R(F) — F? and set f = (1,1). If g is the unique four-dimensional
anisotropic form of determinant d, then my = my = 1. If we choose
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such a field with s(F) = 2 and —1 € R(F), then f = (1,—1,) and
the unique four-dimensional anisotropic form g of determinant —1 also
yield my = mgy = 1.

Once the number of quaternion algebras increases to four, however,
the square class invariant and determinant are no longer always suffi-
cient as the next result illustrates.

PROPOSITION 6. If F is a monreal field having more than two
quaternion algebras and satisfying u(F) = 4, then the square class
invariant and determinant do not classify quadratic forms over F'.

PROOF. If ¢ is a quaternion form, then mg(a) = mg(1) for every
a € F since ¢ is universal and G(¢) = D(¢$). Thus my is a constant
function, and, in particular, my = my(1) which is a power of 2.

It is well known that if «(F') = 4, then the quaternion algebras form a
subgroup of the Brauer group. Let ¢1, ¢2, ¢3 be the anisotropic quater-
nion forms corresponding to distinct quaternion algebras A, As, A3
which satisfy A;A2A3 = 1. Then det¢; = 1 for ¢ = 1,2,3. If
s(F') < 2, then mg, < 2; and so mgy, (1) = mg, (1) for some i # j.
Thus my, = mgy,;, and the square class invariant and determinant do
not classify quadratic forms. Now suppose s(F) = 4. Then my, = 1,2,
or 4 for 1 < i < 3. Say mg, = 1,mg, = 2, and my, = 4. Since
Mg, (1) = 2, Ay = [~1,—a] for some a € F' — D(1,1). Since mg,(1) =
4, A3 = [71, 71] But A1 = A2A3 = [71, 70“71, 71] = [71,0&]. Thus
mg, (1) > 2 which contradicts mg, = 1. Thus my, = mg, for some
i # j. So the square class invariant and determinant do not classify
quadratic forms over F'. O

COROLLARY. Let F be a field with R(F) = F? s(F) = 4, and
u(F) = 4. If the square class invariant and determinant classify
quadratic forms over F', then F is a C-field.

PROOF. By the Proposition, m(F'), the number of quaternion algebras
over F', must be 2. By Proposition 1 in [1] the number of anisotropic
four-dimensional forms of determinant d which represent 1 is equal
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to m(F) — |F/D(1,—d)|. In this case then the above number will
be 0if d ¢ R(F) and 1 if d € R(F'). Since u(F) = 4, every four-
dimensional form represents 1. Hence, there exists a unique anisotropic
u-dimensional form; and, by Proposition 5.3 in [2], F' is a C-field. 0
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