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ON SUMS OF UNISERIAL MODULES

K. BENABDALLAH, A. BOUANANE AND SURJEET SINGH

Let R be any ring. Following [2] a module MR is called a TAG-module
if it satisfies the following two conditions.

(I) Every finitely generated submodule of a homomorphic image of
M is a direct sum of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic
image of M , for any submodule W of U , any homomorphism f :
W → V can be extended to a homomorphism g : U → V provided
the composition length d(U/W ) ≤ d(V/f(W )).

A module MR satisfying condition (I) is called a QTAG-module [9].
Through a number of papers it has been seen that the structure theory
of these modules is similar to that of torsion abelian groups and that
these modules occur over any ring. In this paper, in addition to
further developing their structure theory, we give some applications of
these modules to ring theory. In §2, Proposition 2.3 and Theorem 2.5
give some new characterizations of TAG-modules and QTAG-modules
respectively. In §3 we determine when the class of QTAG modules over
a ring R is closed under direct sums and use these results to give some
characterizations of generalized uniserial rings (Theorem 3.5). Even if
the class of QTAG-modules over a ring is closed under direct sums,
it need not be closed under extensions. In §4 we determine when,
over a commutative ring R, the class of TAG-modules is closed under
extensions; these rings are precisely those which do not admit any
homomorphic image which is a special ring in the sense defined by
Shores [6, Theorem 4.9].

1. Preliminaries. All the rings considered here are with unity,
and the modules are unital right modules unless otherwise stated.
For any module M with finite composition length, d(M) denotes its
(composition) length. For any module MR, J(M) and ER(M) (or
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simply E(M)) denote the Jacobson radical and the injective hull of
M respectively. For the concepts like quasi-injective modules, right
or left perfect rings, semi-perfect rings, etc., we refer to Stenström
[11]. For definition and properties of M -injective modules, we re-
fer to [1]. Further, soc(M) denotes the socle of M , and, for any
n ≥ 0, socn(M) is defined inductively as follows: soc0(M) = 0 and
socn+1(M)/ socn(M) = soc(M/ socn(M)). For any subset X of M ,
ann(X) denotes the annihilator of X. A module MR is said to be se-
rial if its lattice of submodules is linearly ordered under inclusion, and
if in addition it has finite length, it is said to be uniserial. For the
basic concepts like height, exponent, basic submodules and others in
a TAG-module (so in QTAG-modules) we refer to Singh [7] and [8]
(see also [10]). For concepts in the theory of commutative rings, we
refer to Larsen and McCarthy [5]. A commutative ring R is called a
ZPI-ring if every ideal of R can be written as a product of prime ideals
in R [5]; these are precisely the finite direct sums of Dedekind domains
and special primary rings [5, Theorem 9.10]. For any module M over
a commutative ring R, given a maximal ideal P of R, the P -primary
component M(P ) is {x ∈ M : xPn = 0 for some n ≥ 0}. Any TAG-
module over any commutative ring is the direct sum of its primary
components. Finally A ⊂′ B denotes that A is an essential submodule
of the module B.

2. Some general results. It is obvious that any submodule of
a homomorphic image of a QTAG-module is a QTAG-module. The
following two lemmas were proved in [10].

LEMMA 2.1. Let A and B be two uniserial submodules of a QTAG-
module M such that A ∩ B = 0. Let σ be any homomorphism from a
submodule W of A into B such that d(A/W ) ≤ d(B/σ(W )). Then σ
can be extended to a homomorphism σ : A → B.

LEMMA 2.2. Let A and B be any two uniserial submodules of a
QTAG-module M such that A ∩ B �= 0 and d(A) ≤ d(B). Then there
exists a monomorphism σ : A → B which is the identity on A ∩ B.
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We now prove

PROPOSITION 2.3. A QTAG-module MR is a TAG-module if and
only if any uniserial submodule of any homomorphic image of M is
quasi-injective.

PROOF. “Only if ” is obvious. Conversely, let any uniserial submodule
of any homomorphic image of MR be quasi-injective. Let U and V be
any two uniserial submodules of a homomorphic image of M and, for
some submodule W of U , let f : W → V be a non-zero homomorphism
such that d(U/W ) ≤ d(V/f(W )). We need to show that f can be
extended to the homomorphism f : U → V . In view of Lemma 2.1
we may assume that U ∩ V �= 0. Let d(U) ≤ d(V ). By Lemma 2.2,
U embeds in V . As V is quasi-injective, V is U -injective. Hence, in
this case, f can be extended to a homomorphism f : U → V . Now, let
d(U) > d(V ). By Lemma 2.2 there exists an embedding g : V → U .
Now g ◦ f : W → U can be extended to a homomorphism j : U → U .
Now

ker(f) = ker(j),
d(j(U)) = d(U/W ) + d(W/ ker f)

≤ d(V/f(W )) + d(f(W ))
= d(V ) = d(g(V )).

Thus j(U) ⊂ g(V ). We get g−1 ◦ j : U → V where g−1 is defined on
g(V ). This mapping extends f . Hence M is a TAG-module.

COROLLARY 2.4. Over commutative rings, QTAG-modules are TAG-
modules.

PROOF. Since any uniserial module over a commutative ring is quasi-
injective, the result follows from Proposition 2.3.

We now establish a characterization of QTAG-modules.
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THEOREM 2.5. A module MR is a QTAG-module if and only if it
satisfies the following conditions.

(i) Any cyclic submodule of M is a sum of uniserial submodules.

(ii) For any pair U, V of uniserial submodules of a homomorphic
image of M, U + V is a direct sum of uniserial submodules.

PROOF. A QTAG-module clearly satisfies (i) and (ii). Let M be a
module satisfying (ii), and let U, V be two uniserial submodules of a
homomorphic image of M . Suppose that d(U) ≤ d(V ). We first show
that V is an absolute summand of U + V . Let K be a complement
of V in U + V . Thus (V ⊕ K)/K ⊂′ (U + V )/K. This shows that
(U + V )/K is uniform. Since (U + V )/K is a sum of two uniserial
submodules of M/K, by (ii), (U + V )/K is uniserial. Further, since
d[(U +K)/K] ≤ d[(V +K)/K] we get (U +V )/K = (V +K)/K. Hence
U +V = V ⊕K. This proves that V is an absolute summand of U +V .
We now show by induction that the sum of any n uniserial submodules
of a homomorphic image of M is a direct sum of uniserial submodules.
It follows from above that the sum of two uniserial submodules of a
homomorphic image of M is a direct sum of (not more than two)
uniserial modules. To apply induction let n > 2 and suppose that,
given any sum L = V1 + V2 + · · ·+ Vn−1 of n− 1 uniserial submodules
of a homomorphic image of M , any Vi of largest composition length is
a summand of L and that L is a direct sum of k uniserial submodules
for some k ≤ n − 1. Consider N = U1 + U2 + · · · + Un, where all the
Ui’s are uniserial submodules of a homomorphic image of M . Without
loss of generality we may suppose that d(Ui) ≤ d(Un) for 1 ≤ i ≤ n−1.
Then Un−1 + Un = K ⊕ Un and

N/K =
∑

i �=n−1

(Ui + K)/K.

So, by the induction hypothesis,

N/K = L/K ⊕ [(Un ⊕ K)/K]

for some submodule L of N containing K. Then

N = L ⊕ Un.
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Since L is a sum of n−1 uniserial submodules, the induction hypothesis
gives that N is a direct sum of ≤ n uniserial submodules. Hence if, in
addition, M satisfies (i), we get that any finitely generated submodule
of a homomorphic image of M , being a sum of uniserial submodules,
is a direct sum of uniserial submodules. Hence the result follows.

We now give an example to show that conditions (i) and (ii) in
Theorem 2.5 are independent of each other.

Example 2.6. (i) does not imply (ii). Let R be any commutative
local ring with J = J(R), J2 = 0 and dim R/JJ > 1. Now J =
⊕∑

i∈Γ Ui, where Ui are minimal ideals of R. Notice that any cyclic
R-module which is also uniform is uniserial and is of composition
length ≤ 2. Let S be a simple R-module and E = E(S). As
J2 = 0, E = soc2(E), and any cyclic submodule of E, being uniform, is
uniserial. So E satisfies condition (i). For each i ∈ Γ let Ki =

∑
j �=i Uj .

Then J = Ui ⊕ Ki, Ni = R/Ki are mutually non-isomorphic uniserial
R-modules, each of length two. Since S ≈ soc(Ni), there exists an
embedding σi : Ni → E. Consider any two distinct elements i, j ∈ Γ.
Then σi(Ni) + σj(Nj) is a uniform module, but, being a sum of two
non-isomorphic uniserial modules each of length two, it is not a direct
sum of uniserial modules. Hence E satisfies (i) but not (ii).

Any non-torsion, abelian group satisfies (ii) but not (i).

3. Direct sums. In general the class of TAG-modules and the class
of QTAG-modules over a ring R need not be closed under direct sums.
This is evident from Example 2.6 where the module E(S) is a sum
of TAG-modules, but E(S) is not a TAG-module and is not even a
QTAG-module because of Corollary 2.4.

PROPOSITION 3.1. For any ring R, the class of QTAG-modules is
closed under direct sums if and only if every finite length R-module is a
direct sum of uniserial modules; in that case every QTAG-module over
R is a TAG-module.
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PROOF. Let the class of QTAG-modules over R be closed under direct
sums. Then the sum of QTAG-submodules of an R-module is a QTAG-
module. Let MR be any finite length module. Consider the case when
M is uniform. If M is not uniserial, there exists a positive integer k such
that sock(M) is uniserial but sock+1(M) is not uniserial. We can find
x, y ∈ sock+1(M) such that xR and yR are simple modulo sock(M)
and neither of them contains the other. Then xR∩ yR = sock(M). So
xR + yR is not a QTAG-module, however each of xR and yR being
uniserial is a QTAG-module. This gives a contradiction. Hence M is
uniserial. In general M is a subdirect sum of finitely many finite length
uniform (hence QTAG)-modules. Consequently M is a QTAG-module,
and, by the definition, M is a finite direct sum of uniserial modules.

The converse is obvious, since, given any two QTAG-modules MR

and NR, any finitely generated submodule of M ⊕N is of finite length.

A ring R, over which the class of TAG (QTAG)-modules is closed
under direct sums, is called a TAG (respectively QTAG)-ring. Over a
commutative ring these concepts are the same. If a commutative ring
R has a maximal ideal P such that P/P 2 �= 0 and is not simple as an
R-module, we can easily find an ideal A such that P 2 < A < P, R/A
is of finite length, but R/A is not uniserial. Then R/A is not a TAG-
module. Using this, the above proposition gives

COROLLARY 3.2. A commutative ring R is a TAG-ring if and only
if, for any maximal ideal P , there is no ideal between P and P 2.

The following example shows that a TAG-ring need not be a QTAG-
ring.

Example 3.3. Let R be a local ring such that its Jacobson radical J
has the properties, J2 = 0, dim (JR/J) = 1 and dim (R/JJ) > 1. Then
RR is not quasi-injective, and hence RR is not a TAG-module. However
RR is a QTAG-module. Since, by Proposition 3.1, any uniserial module
over a QTAG-ring is quasi-injective, we get that R is not a QTAG-
ring. However it can be easily seen that, over R, the TAG-modules
are precisely the completely reducible modules. So the class of TAG-
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modules over R is closed under direct sums and hence R is a TAG-ring.

LEMMA 3.4. Let R be any semi-primary QTAG-ring. Then R is a
generalized uniserial ring.

PROOF. Now R = e1R ⊕ e2R ⊕ · · · ⊕ etR for some orthogonal,
indecomposable idempotents e1, e2, . . . , et. As R is semi-primary, each
eiR is a local module. Let J = J(R). Suppose that, for some i, eiJ �= 0
and eiJ/eiJ

2 is not simple. We can find a right ideal A such that
eiJ

2 ⊂ A ⊂ eiJ and eiJ/A is a direct sum of two simple modules.
Then M = eiR/A is a finite length module, which is not a direct
sum of uniserial modules. This is a contradiction. Thus, for each
i, eiJ/eiJ

2 is either zero or simple. This in turn yields that each eiR is
a uniserial module. Consequently RR is a TAG-module, and hence so
is every finitely generated R-module. Hence, by [4, Theorem 1.3], R is
a generalized uniserial ring. (See also [9, Theorem 4.1]).

THEOREM 3.5. The following are equivalent for a ring R:

(a) R is generalized uniserial.

(b) R is a left perfect right QTAG-ring.

(c) R is a right perfect right QTAG-ring.

(d) R is a semi-perfect QTAG-ring with J(R) a TAG-module.

PROOF. That (a) implies (b), (c) and (d) is obvious. Let R satisfy
(b) or (c). Let J = J(R). For any positive integer n, if Jn �= 0, then
Jn �= Jn+1. We show that J is nilpotent. Let Jn �= 0 for every n, and
A = ∩nJn. Write R = e1R ⊕ e2R ⊕ · · · ⊕ etR for some orthogonal,
indecomposable idempotents ei. Then A =

∑
eiA with eiA = ∩neiJ

n.
Consider the ring R = R/A. R is a QTAG-ring which is left or right
perfect and is not generalized uniserial. So, without loss of generality,
we take A = 0. There exists at least one i such that eiJ

n �= eiJ
n+1 for

every n. By Lemma 3.4, eiR/eiJ
n is a uniserial module of length n.

Write

soc(eiR) = An ⊕ [ soc(eiR) ∩ eiJ
n].
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Suppose for some value of n, say, for n = k, we have Ak �= 0. Since
eiR/eiJ

k is uniserial, we get that soc(eiR/eiJ
k) is a simple module.

Consequently Ak is a minimal right ideal contained in eiR and Ak ⊂/
eiJ

k. Then (Ak + eiJ
k+1)/eiJ

k+1 = soc(eiR/eiJ
k+1) = eiJ

k/eiJ
k+1.

Consequently Ak ⊂ eiJ
k. This is a contradiction. Hence soc(eiR) ⊂

∩neiJ
n = 0. Similarly, for some j, soc(Rej) = 0. Since R is left or

right perfect, either every non-zero right R-module or every non-zero
left R-module has non-zero socle. This gives a contradiction. Hence
each of (b) and (c) implies (a). Let (d) hold. Now J(R) is semi-artinian
and, by [11; Chapter VIII, Property 2.6], J = J(R) is T -nilpotent on
the right R-module J . Consequently, J itself is left T -nilpotent. Hence,
by [11; Chapter VIII, Property 5.1], R is left perfect. Hence (d) implies
(b).

It is obvious from Corollary 3.2 that any Prüfer domain is a QTAG-
ring. Using [5, Theorem 9.10] it follows that any noetherian commuta-
tive TAG-ring is a ZPI-ring. However the structure of non-commutative
QTAG-rings, even those satisfying the ascending chain condition, is not
yet clear.

4. Extensions. In general the class of QTAG-modules over a ring
R is not closed under extensions. For example the ring R in Example
2.6 as an R-module is an extension of J(R) by R/J(R), both of which
are QTAG-modules. However RR is not a QTAG-module. In general
the structure of rings over which the class of QTAG-modules is closed
under extensions is not known. In this section we determine which
commutative rings have this property. As defined by Shores [6] a
commutative ring R is called a special ring if R is a non-noetherian
semi-prime ring such that soc(R) is a maximal ideal. In Theorem 4.9
we show that the class of QTAG-modules over a commutative ring R
is closed under extensions if and only if R is a QTAG-ring having no
homomorphic image a special ring. We start with some general results.

LEMMA 4.1. Let R be a QTAG-ring and let 0 → A → B → C → 0 be
an exact sequence of R-modules such that A and C are QTAG-modules.
Then the following are equivalent:

(1) B is a QTAG-module.
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(2) For any finitely generated submodule K of B, A ∩ K is finitely
generated.

(3) For any cyclic submodule xR of B, xR ∩ A is finitely generated.

(4) For any cyclic submodule xR of B, xR + A is a TAG-module.

The lemma follows from the fact that any finite length R-module is
a QTAG-module by Proposition 3.1.

LEMMA 4.2. Let R be a QTAG-ring, and let 0 → A → B → C → 0 be
an exact sequence of R-modules, where A and C are QTAG-modules,
but B is not a QTAG-module. There exists a cyclic extension yR in
B of a non-zero submodule A′ of A such that yR is not a QTAG-
module, yR/A′ is uniserial and A′ is not finitely generated. Further,
there exists a cyclic extension zR of A′ by a uniserial module such that
A′ is essential in zR and zR is not a QTAG-module.

PROOF. By Lemma 4.1 there exists x ∈ B such that xR + A is not a
QTAG-module. Clearly xR is not a QTAG-module. Since xR/xR ∩ A
is a QTAG-module,

xR/xR ∩ A = ⊕∑n
i=1 xiR

for some uniserial submodules xiR. At least one of the xiR, say x1R,
is not a QTAG-module. Clearly x1R is an extension of x1R ∩ A and
x1R/x1R ∩ A is uniserial. Further, if x1R ∩A is finitely generated, we
get x1R is of finite length and that in turn gives x1R, a QTAG-module;
this leads to a contradiction. Hence x1R ∩ A is not finitely generated.
Let K be a complement of A′ = x1R ∩ A in x1R. Then x1R/K is a
desired extension of A′.

Henceforth we consider commutative rings, for which the concepts of
TAG-modules and QTAG-modules (and also the concepts of TAG-rings
and QTAG-rings) are the same.
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LEMMA 4.3. Let R be a commutative TAG-ring and let 0 → A →
B → C → 0 be an exact sequence of R-modules, where C is any TAG-
module and A is a serial TAG-module. Then B is a TAG-module.

PROOF. If A is uniserial (more generally of finite length), by Lemma
4.1, B is a TAG-module. Thus we may suppose that A is of infinite
length. In other words A is h-divisible. Let B not be a TAG-module.
By Lemma 4.2 there exists x ∈ B such that xR is not a TAG-module
and xR/xR ∩ A is uniserial. As xR ∩ A is not finitely generated, we
get xR ∩ A = A. Hence A ⊂ xR. By Lemma 4.2 there exists a cyclic,
essential extension zR of A such that zR/A is uniserial. If, for some
u ∈ zR\A, uR∩A is finitely generated, by Proposition 3.1, uR is a TAG-
module. Consequently uR + A is a TAG-module. As A is h-divisible,
by [10, Remark 3.6], A is a summand of uR + A. This contradicts
the fact that A ⊂′ zR. Hence A ⊂ uR. Consequently zR is a serial
module. So without loss of generality we can take zR/A to be a simple
module. Let I = ann(z). Then zR ≈ R/I and R/I is a valuation
ring with maximal ideal M/I. Since A is h-divisible, A(M/I) = A.
Further, A ≈ M/I as R/I-modules. However A contains a uniserial
submodule K of length 2. Clearly K(M/I) �= 0 while K(M/I)2 = 0.
Thus M/I �= (M/I)2 and M/I is a principal ideal. This in turn gives
that A is cyclic. This is a contradiction.

COROLLARY 4.4. Let R be a commutative TAG-ring and let 0 →
A → B → C → 0 be an exact sequence of R-modules, where A and C
are TAG-modules. Then any finite rank h-divisible submodule of A is
a summand of B.

PROOF. Let D be a finite rank h-divisible submodule of A. Write
D = D1 ⊕ D2 ⊕ · · · ⊕ Dn, where Di are infinite length serial modules.
For n = 1, D = D1 and A = A1⊕D. Since (B/A1)/(A/A1) ≈ C, B/A1

is an extension of the serial TAG-module D by the TAG-module C.
Consequently, by Lemma 4.3, B/A1 is a TAG-module. As A/A1 is
h-divisible, we get

B/A1 = (A/A1) ⊕ (E/A1)
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for some submodule E of B containing A1. This in turn gives
B = D ⊕ E, since A = D ⊕ A1. Hence the result holds for n = 1.
To apply induction, let n > 1 and the result hold for n − 1. So

B = (D1 ⊕ D2 ⊕ · · · ⊕ Dn−1) ⊕ B′

for some submodule B′ of B. Then

A = (D1 ⊕ D2 ⊕ · · · ⊕ Dn−1) ⊕ (A ∩ B′),
D = (D1 ⊕ D2 ⊕ · · · ⊕ Dn−1) ⊕ (D ∩ B′).

Now D∩B′ is a rank one h-divisible submodule of A∩B′. Further, B′

is an extension of A ∩ B′ by C, so, by the case when the rank is one,
D ∩ B′ is a summand of B′. Consequently D is a summand of B.

THEOREM 4.5. Let R be a commutative TAG-ring having a maximal
ideal M which is a TAG-module. Then:

(1) For any maximal ideal P �= M , the P -primary component of M
is a summand of R.

(2) Every primary component of M is uniserial.

(3) For the prime radical N of R, R/N is a Von-Neumann regular
ring.

PROOF. Let P be a maximal ideal of R. First we show that the P -
primary component M(P ) is bounded. Let the contrary hold. Then
M would have a non-zero P -primary, h-divisible, serial homomorphic
image, say M/K. By (4.4), M/K is a summand of R/K, and hence
M/K is finitely generated. This is a contradiction. Thus M(P ) is
bounded. So there exists a positive integer n such that M(P ) · Pn = 0.
Now M = M(P ) ⊕ LP , where LP =

∑
Q �=P M(Q), Q ∈ max(R), the

set of all maximal ideals of R. Then MPn = LP gives LP ⊂ Pn.
Let P �= M . Then R = M + Pn = M(P ) + Pn = M(P ) ⊕ Pn,
since M(P ) ∩ Pn = M(P )P

n = 0. This proves (1). Since R/Pn is
uniserial, we get that M(P ) is uniserial. Also, (M(P ) ∩ P )n = 0 gives
M(P )∩P ⊂ N , the prime radical of R. Let P = M . Then Mn+1 = LM

and Mn+1
(M) = 0. Consequently M(M) ⊂ N . In this case R/Mn+1 has

maximal ideal M/Mn+1, which is isomorphic to M(M) as an R-module.
Consequently M(M) is also uniserial. This proves (2).



26 K. BENABDALLAH, A. BOUANANE AND S. SINGH

It follows from the above paragraph that

K = M(M) ⊕
∑

P �=M

M(P ) ∩ P ⊂ N.

Now
M/K ≈ ⊕

∑

P �=M

M(P )/(M(P ) ∩ P ).

However, for P �= M in max(R), R = M(P ) + P gives R/P ≈
M(P )/(M(P ) ∩P ). Hence M/K is a direct sum of fields. Consequently
R/K is a Von-Neumann regular ring. Hence K = N and (3) follows.

REMARK 4.6. The examples of rings considered in the above theorem
can be easily constructed. Consider any prime number p and any family
{z/〈pni〉 : i ∈ I} of rings, such that sup{ni : i ∈ I} = n, a positive
integer. Consider the ring

S = ⊕
∑

Z/〈pni〉.

S is also a Z/〈pn〉-module. So we can form the ring

R = Z/〈pn〉 × S

in which addition is defined component-wise and the multiplication is
given by

(k, x)(l, y) = (kl, ky + lx + xy).

R satisfies the hypothesis of Theorem 4.5.

THEOREM 4.7. Let A be a TAG-module with finitely many non-
zero primary components, over a commutative TAG-ring R. Then any
extension of A by a TAG-module is a TAG-module.

PROOF. Let B be an extension of A such that B/A is a TAG-module.
If B is not a TAG-module, by Lemma 4.2, there exists a cyclic essential
extension xR of a submodule A′ of A such that xR/A′ is uniserial and
xR is not a TAG-module. Let Ki, i = 0, 1, 2, . . . , n, be the finite chain
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of all submodules of xR containing A′ with K0 = A′ and Kn = xR. Let
Kj be the largest, among the Ki’s, which is a TAG-module. Clearly
j < n. Since A has only finitely many primary components, so has Kj .
Now Kj+1/Kj is simple. Let y ∈ Kj+1\Kj . Then yR+Kj = Kj+1 and
yR is not a TAG-module. Let I = ann(y). Then R/I is a TAG-ring.
It has a maximal ideal isomorphic to yR ∩ Kj . Since yR ∩ Kj is a
TAG-module, by Theorem 4.5, every primary component of yR∩Kj is
uniserial. However yR∩Kj has only finitely many primary components.
Consequently yR∩Kj is finitely generated. Hence, by Lemma 4.1, yR
is a TAG-module. This is a contradiction.

Finally we determine the structure of a commutative ring R over
which the class of TAG-modules is closed under extensions; such a ring
is called a strongly TAG-ring. We start with the following lemma,
which can be easily proved.

LEMMA 4.8. Let R be a commutative TAG-ring. Then the following
conditions are equivalent.

(1) R is a strongly TAG-ring.

(2) Any cyclic extension of a TAG-module over R by a TAG-module
over R is a TAG-module.

(3) Any cyclic extension of a TAG-module over R by a simple R-
module is a TAG-module.

THEOREM 4.9. A commutative ring R is a strongly TAG-ring if and
only if it is a TAG-ring admitting no special ring as a homomorphic
image.

PROOF. Notice that if R is a special ring then R is Von Neumann
regular. So R is a TAG-ring. RR is an extension of the TAG-module
soc(R) by the TAG-module R/ soc(R), however RR itself is not a TAG-
module. So a special ring is not a strongly TAG-ring. Consequently
if R is a strongly TAG-ring, it has no homomorphic image which is a
special ring.
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Conversely, let R be a TAG-ring having no homomorphic image a
special ring. Let R be not a strongly TAG-ring. By Lemma 4.8, there
exists a cyclic module xR having a maximal submodule K which is a
TAG-module, but xR is not a TAG-module. Let I = ann(x). Then
S = R/I is a TAG-ring having a maximal ideal M which is a TAG-
module. Then M is not finitely generated and, by Theorem 4.5, for
any maximal ideal P of S, the P -primary component M(P ) of M is
uniserial; if, further, P �= M , then M(P ) is a summand of R. If N is
the prime radical of S, then, by Remark 4.6, S/N is a special ring.
Obviously S/N is a homomorphic image of R. This is a contradiction.

There exist many Prüfer domains each of whose non-zero element is
contained in only finitely many maximal ideals (see [3]); all such Prüfer
domains are strongly TAG-rings.
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