DIRECT INTEGRALS OF STANDARD FORMS OF W^{*}-ALGEBRAS

LOTHAR M. SCHMITT

Abstract

Bös [Invent. Math. 37 (1976), p. 241] proved that standard forms of W^{*}-algebras behave naturally with respect to direct integrals. We give a new approach to disintegration of standard forms, which uses the characterization of matrix-ordered Hilbert spaces in standard forms of W^{*} algebras obtained by Wittstock and the author [Math. Scand. 51 (1982), p. 241].

Introduction. Araki [1], Connes [3] and Haagerup [7] developed standard forms of W^{*}-algebras. Connes [3] characterized the ordered Hilbert spaces arising in these standard forms. Penney [8] developed direct integrals of selfdual cones. Based on $[\mathbf{3}]$, and $[\mathbf{8}]$, Bös showed in $[\mathbf{2}]$ that standard forms behave naturally with respect to direct integrals. Wittstock and the author $[\mathbf{1 1}, \mathbf{1 2}]$ characterized the Hilbert spaces arising in standard forms of W^{*}-algebras among matrix ordered spaces. In this note we give a self contained and simplified approach to disintegration of standard forms. In fact proper use of a result of Elliott [5] makes it possible to work with only a few consequences of the measurable choice theorem due to Sainte-Beuve [9]. Furthermore disintegration of matrix order allows us to dispense with the rather technical direct integral of orientations [2] and is therefore more natural from a categorial point of view.

1. Technical preliminaries.

1.1 Separability conditions.

Proposition. Let \mathcal{M} be a W^{*}-algebra. Then the following conditions are equivalent:
a) \mathcal{M} has a separable predual \mathcal{M}_{*}.

[^0]b) The Hilbert space \mathcal{H} in the standard form $\left(\mathcal{M}, \mathcal{H}, \mathcal{J}, \mathcal{H}^{+}\right)[7$, p. 241] of \mathcal{M} is separable.
c) \mathcal{M} has a faithful W^{*}-representation on a separable Hilbert space.

Proof. (a) \Rightarrow (b) follows from Bures's inequality, see $[\mathbf{1 3}, \S 10.24$, Proposition]. $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is [10, Proposition 2.1.1]. \square

Disintegration of W^{*}-algebras exists in the above case $[4,14]$ and other special situations.
1.2 Direct integrals of selfdual cones. Let (Γ, μ) be a σ-finite measure space. Let $\{\mathcal{H}(\gamma), \gamma \in \Gamma\}$ be a measurable family of Hilbert spaces and set

$$
\mathcal{H}=\int_{\Gamma}^{\oplus} \mathcal{H}(\gamma) d \mu(\gamma)
$$

In what follows we shall assume that a disintegration of \mathcal{H} as above is given, but we do not assume \mathcal{H} to be separable. If \mathcal{H}^{+}is a cone in \mathcal{H}, then we shall call \mathcal{H}^{+}compatible with Γ if the projections in the diagonal algebra $\mathcal{L}=L^{\infty}(\Gamma, \mu)$ map \mathcal{H}^{+}into \mathcal{H}^{+}. The following Lemma is essentially due to Penney $[\mathbf{8}]$ and is used to fix our notation.
1.2.1. Lemma. Let \mathcal{H}^{+}be a selfdual cone in \mathcal{H} compatible with Γ.
(a) The conjugate linear symmetry \mathcal{J} associated with \mathcal{H}^{+}by $[\mathbf{3}$, Proposition 4.1] is a decomposable operator, i.e.,

$$
\mathcal{J}=\int_{\Gamma}^{\oplus} \mathcal{J}(\gamma) d \mu(\gamma)
$$

(b) There exists a sequence $\left\{\xi_{k}(\gamma), k \in \mathbf{N}\right\}$ in $\mathcal{H} \mathcal{J}=\{\xi \in \mathcal{H} \mid \xi=$ $\mathcal{J} \xi\}$ such that $\left\{\xi_{k}(\gamma), k \in \mathbf{N}\right\}$ is dense in $\mathcal{H}(\gamma)^{\mathcal{J}(\gamma)}$ a.e.
(c) With the sequence $\left\{\xi_{k}, k \in \mathbf{N}\right\}$ as in (b) set

$$
\mathcal{H}(\gamma)^{+}=\left\{\xi_{k}^{+}(\gamma), k \in \overline{\mathbf{N}\}}\right.
$$

where $\xi_{k}=\xi_{k}^{+}-\xi_{k}^{-}, \xi_{k}^{+} \perp \xi_{k}^{-}, \xi_{k}^{+} \in \mathcal{H}^{+}$is the canonical decomposition of $\xi_{k}\left[\mathbf{3}\right.$, Proposition 4.1]. Then $\mathcal{H}(\gamma)^{+}$is a selfdual cone in $\mathcal{H}(\gamma)$ with associated conjugate linear symmetry $\mathcal{J}(\gamma)$ a.e.
(d) $\xi \in \mathcal{H}^{+} \Leftrightarrow\left\langle\xi(\gamma), \xi_{k}^{+}(\gamma)\right\rangle \geq 0$ a.e. $\forall k \in \mathbf{N}$.
(e) If $x=\int_{\Gamma}^{\oplus} x(\gamma) d \mu(\gamma) \in \mathcal{B}(\mathcal{H})$ is a decomposable operator $[\mathbf{1 4}, \mathrm{p}$. 273], then x is positive with respect to \mathcal{H}^{+}if and only if $x(\gamma)$ is positive with respect to $\mathcal{H}^{+}(\gamma)$ a.e.

Proof. (a). \mathcal{J} commutes with \mathcal{L} since \mathcal{H}^{+}is compatible with Γ. Hence \mathcal{J} is decomposable by a conjugate linear version of [4; II.2.5, Theorem 1].
(b). Take $\left\{(1+\mathcal{J}) \xi_{k}^{0}, k \in \mathbf{N}\right\}$ for a fundamental sequence $[\mathbf{1 4}, \mathrm{p}$. 270] $\left\{\xi_{k}^{0}, k \in \mathbf{N}\right\} \subset \mathcal{H}$.
(c). Apply the proof of [8, Theorem II.10].
(d). The set $\left\{\xi \mid\left\langle\xi(\gamma), \xi_{k}^{+}(\gamma)\right\rangle \geq 0\right.$ a.e. $\left.\forall k \in \mathbf{N}\right\}$ is a selfdual cone, which contains \mathcal{H}^{+}.
(e). By (d) x is positive if and only if $\left\langle x(\gamma) \xi_{k}^{+}(\gamma), \xi_{j}^{+}(\gamma)\right\rangle \geq 0$ a.e. $\forall k, j \in \mathbf{N}$.

Following Penney [8, Definition II.6], we shall write

$$
\mathcal{H}^{+}=\int_{\Gamma}^{\oplus} \mathcal{H}(\gamma)^{+} d \mu(\gamma)
$$

in the situation of Lemma 1.2.1. For the remainder of this section we shall keep the notation of Lemma 1.2.1, and shall moreover assume that the following conditions hold:
$C_{1}: \mu$ is finite and the measurable family of Hilbert spaces
$\{\mathcal{H}(\gamma), \gamma \in \Gamma\}$ is constant, i.e., $\mathcal{H}=L^{2}(\Gamma, \mathcal{K})$
for some separable Hilbert space \mathcal{K}.
$C_{2}: \mathcal{H}(\gamma)^{+}=\{0\}$ for all $\gamma \in \Gamma$ for which $\mathcal{H}(\gamma)^{+}$is not selfdual.
For a closed, convex subset A of \mathcal{K} let $d(\eta, A), \eta \in K$, denote the distance between η and A, taken to be ∞ in the case $A=\varnothing$. In addition, let $U(r), r>0$, be the open ball of radius r in \mathcal{K}. The following three lemmata are essentially consequences of the measurable selection theorem due to von Neumann, Aumann and Sainte-Beuve, see [9].
1.2.2. LEMMA. The following functions are measurable:
(a)

$$
\begin{aligned}
& h: \Gamma \times \mathcal{K} \rightarrow \mathbf{R}^{+} \\
& h(\gamma, \eta)=d\left(\eta, \mathcal{H}(\gamma)^{+}\right), \quad \gamma \in \Gamma, \eta \in \mathcal{K} .
\end{aligned}
$$

$$
f: \Gamma \times \mathcal{K}^{3} \rightarrow \mathbf{R}^{+} \cup\{\infty\}
$$

$$
\begin{align*}
& f(\gamma, \eta)=d\left(\eta_{1}, \eta_{2}+\mathcal{H}(\gamma)^{+} \cap \eta_{3}-\mathcal{H}(\gamma)^{+}\right) \tag{b}\\
& \quad \gamma \in \Gamma, \eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in \mathcal{K}^{3}
\end{align*}
$$

Proof. (a). $\quad h(\gamma, \eta)=\inf \left\|\eta-\xi_{k}^{+}(\gamma)\right\|$ is measurable since $(\gamma, \eta) \rightarrow\left(\xi_{k}^{+}(\gamma), \eta\right) \in \mathcal{K}^{2}$ and the inner product are measurable.
(b). Let $P_{\Gamma}(\gamma, \eta)=\gamma$. We conclude from $[\mathbf{9}$, Theorem 4] that

$$
\Gamma_{k}^{m}=\bigcup_{\ell \in \mathbf{N}} P_{\Gamma}\left\{(\gamma, \eta) \left\lvert\,\left\|\eta_{2}+\xi_{k}^{+}(\gamma)-\eta_{3}+\xi_{\ell}^{+}(\gamma)\right\|<\frac{1}{m}\right.\right\}, k, m \in \mathbf{N}
$$

is a measurable subset of Γ. Now

$$
f_{k}^{m}(\gamma, \eta)= \begin{cases}\left\|\eta_{1}-\eta_{2}-\xi_{k}^{+}(\gamma)\right\|, & \gamma \in \Gamma_{k}^{m} \\ \infty, & \gamma \notin \Gamma_{k}^{m}\end{cases}
$$

is a measurable function on $\Gamma \times \mathcal{K}^{3}$. We have

$$
\begin{equation*}
d\left(\eta_{1}, \eta_{2}+\mathcal{H}(\gamma)^{+} \bigcap \overline{\eta_{3}-\mathcal{H}(\gamma)^{+}+U\left(\frac{1}{m}\right)}\right) \leq \inf _{k} f_{k}^{m}(\gamma, \eta) \tag{1}
\end{equation*}
$$

(2) $\inf _{k} f_{k}^{m}(\gamma, \eta) \leq d\left(\eta_{1}, \eta_{2}+\mathcal{H}(\gamma)^{+} \bigcap \overline{\eta_{3}-\mathcal{H}(\gamma)^{+}+U\left(\frac{1}{m+1}\right)}\right)$.

An application of the parallelogram law shows that the left hand side of (1) converges to $f(\gamma, \eta)$ as $m \rightarrow \infty$.
1.2.3. Lemma. Let $\rho \in \mathcal{H}, \eta, \eta_{1}, \eta_{2} \in \mathcal{H}^{\mathcal{J}}$ be such that $\eta_{1} \leq \eta \leq \eta_{2}$ and $\|\rho-\eta\|=d\left(\rho,\left[\eta_{1}, \eta_{2}\right]\right)$. Then

$$
\|\rho(\gamma)-\eta(\gamma)\|=d\left(\rho(\gamma),\left[\eta_{1}(\gamma), \eta_{2}(\gamma)\right]\right) \text { a.e. }
$$

Proof. Let Ω be the set of $\left(\gamma, \eta_{\gamma}\right) \in \Gamma \times \mathcal{K}$ such that

$$
\begin{gather*}
\left\{\begin{array}{l}
d\left(\eta_{\gamma},\left[\eta_{1}(\gamma), \eta_{2}(\gamma)\right]\right)=0 \\
d\left(\rho(\gamma),\left[\eta_{1}(\gamma), \eta_{2}(\gamma)\right]\right)=\left\|\rho(\gamma)-\eta_{\gamma}\right\|
\end{array}\right\} \quad \text { if } \eta_{1}(\gamma) \leq \eta_{2}(\gamma) \tag{1}\\
\eta_{\gamma}=0 \text { if } \eta_{1}(\gamma) \not \leq \eta_{2}(\gamma) \tag{2}
\end{gather*}
$$

Ω is measurable by Lemma 1.2 .2 . Hence $\gamma \rightarrow \eta_{\gamma}$ is measurable by $[\mathbf{9}$, Theorem 4] and has range in $\left[\eta_{1}, \eta_{2}\right.$]. Clearly

$$
\int\left\|\rho(\gamma)-\eta_{\gamma}\right\|^{2} d \mu(\gamma) \leq \int\|\rho(\gamma)-\eta(\gamma)\|^{2} d \mu(\gamma)
$$

and therefore $\eta_{\gamma}=\eta(\gamma)$ a.e. \square

For $\rho \in \mathcal{H}^{+}$let $F(\rho)=\cup_{\ell \in \mathbf{N}}[0, \ell \rho]$ denote the face generated by ρ. For any face $F \subset \mathcal{H}^{+}$let P_{F} denote the projection onto $\overline{\operatorname{span}_{\mathbf{C}} F} . P_{F}$ commutes with \mathcal{J} and \mathcal{L}. The following statement is taken from Bös's paper [2].
1.2.4. Lemma. Suppose F is a closed face in \mathcal{H}^{+}.
(a) There exists $\rho \in F$ such that $F=\overline{F(\rho)}$.
(b) $\xi \in F \Leftrightarrow \xi(\gamma) \in \overline{F(\rho(\gamma))}$ a.e.
(c) $\left(P_{F} \eta\right)(\gamma)=P_{F(\rho(\gamma))} \eta(\gamma)$ a.e., $\eta \in \mathcal{H}$.
(d) $\overline{F(\rho(\gamma))}$ is a face a.e.
(e) If $\rho, \rho^{\prime} \in \mathcal{H}^{+}$are such that $F=\overline{F(\rho)}$ and $F^{\perp}=\overline{F\left(\rho^{\prime}\right)}$, then $F(\rho(\gamma))^{\perp}=\overline{F\left(\rho^{\prime}(\gamma)\right)}$ a.e.

Proof. Let $\rho_{k} \in F$ be such that $\left\|\xi_{k}^{+}-\rho_{k}\right\|=d\left(\xi_{k}^{+}, F\right), k \in \mathbf{N}$. We define $\rho=\sum 2^{-k}\left\|\rho_{k}\right\|^{-1} \rho_{k}$, where the summation is taken over all k with $\rho_{k} \neq 0$. Fix $\xi \in F$. For a fixed $k \in \mathbf{N}$, set

$$
N=\left\{\gamma \mid\left\|\xi_{k}^{+}(\gamma)-\rho(\gamma)\right\|>\left\|\xi_{k}^{+}(\gamma)-\xi(\gamma)\right\|\right\}
$$

Then $\rho^{\prime}=\left(1-\chi_{N}\right) \rho_{k}+\chi_{N} \xi \in F$ and $\left\|\xi_{k}^{+}-\rho_{k}^{\prime}\right\|<\left\|\xi_{k}^{+}-\rho_{k}\right\|$ unless $\mu(N)=0$. Consequently

$$
\begin{equation*}
\left\|\xi(\gamma)-\rho_{k}(\gamma)\right\| \leq 2\left\|\xi(\gamma)-\xi_{k}^{+}(\gamma)\right\| \text { a.e. } \tag{1}
\end{equation*}
$$

Now let $0 \leq \eta_{\ell} \leq \ell \cdot \rho$ be such $\left\|\xi-\eta_{\ell}\right\|=d(\xi,[0, \ell \rho])$. Lemma 1.2.3 and (1) show that $\gamma \mapsto\left\|\xi(\gamma)-\eta_{\ell}(\gamma)\right\|$ is a decreasing sequence of L^{2} functions which converges pointwise to zero a.e. Lebesgue's Theorem shows that $\xi=\lim \eta_{\ell}$. These arguments show (a) and (b). In order to show (c) one can assume that $\eta \in \mathcal{H}^{\mathcal{J}}$ and then apply a similar argument using the order intervals $[-\ell \rho, \ell \rho]$. To show (d) consider the set Ω of $(\gamma, \xi, \eta) \in \Gamma \times \mathcal{K}^{2}$ with $\|\xi\| \leq 1, \eta \neq 0 ; \eta, \xi-\eta \in$ $\mathcal{H}(\gamma)^{+} ; \inf _{\ell} d(\xi,[0, \ell \rho(\gamma)])=0 ; \inf _{\ell} d(\eta,[0, \ell \rho(\gamma)])>0 . \Omega$ is measurable by Lemma 1.2.2. Its projection on $\Gamma, N=P_{\Gamma}(\Omega)$, is measurable by $[\mathbf{9}$, Theorem 4]. Let $\Omega^{\prime}=\Gamma \backslash N \times\{(0,0)\} \cup \Omega$. By [$\mathbf{9}$, Theorem 3] there exist measurable functions ξ_{1}, η_{1} such that $\left(\gamma, \xi_{1}(\gamma), \eta_{1}(\gamma)\right) \in \Omega^{\prime}$ for $\gamma \in \Gamma$. Hence, by (b), $\xi_{1} \in F, 0 \leq \eta_{1} \leq \xi_{1} \Rightarrow \eta_{1} \in F \Rightarrow \mu(N)=0$. Finally, to prove (e) let Ω be the set of $(\gamma, \eta) \in \Gamma \times \mathcal{K}$ such that

$$
0<\|\eta\| \leq 1 ; \quad \eta \in \mathcal{H}(\gamma)^{+} ; \quad\langle\eta, \rho(\gamma)\rangle=0 ; \quad d\left(\eta, F\left(\rho^{\prime}(\gamma)\right)\right)>0
$$

As in the proof of (d) the projection of Ω on Γ is a μ-null set. \square
1.3. Direct integrals of matrix ordered Hilbert spaces. If V is a set, then we shall denote the set of $n \times n$ matrices with entries in V by $M_{n}(V), n \in \mathbf{N}$. If V is a vector space we shall also write V_{n} for $M_{n}(V)$. Let $\Gamma, \mu, \mathcal{H}(\gamma)$ and \mathcal{H} be as in 1.2 , without the additional assumptions C 1 and C 2 . Then $\left\{\mathcal{H}(\gamma)_{n}, \gamma \in \Gamma\right\}$ is a measurable field of Hilbert spaces and \mathcal{H}_{n} can be identified with

$$
\int_{\gamma}^{\oplus} \mathcal{H}(\gamma)_{n} d \mu(\gamma)
$$

Let $\left\{\mathcal{H}_{n}^{+} \subset \mathcal{H}_{n}, n \in \mathbf{N}\right\}$ be a family of selfdual cones such that $\left(\mathcal{H}, \mathcal{H}_{n}^{+}, n \in \mathbf{N}\right)$ is a matrix-ordered space. We shall say that $\left\{\mathcal{H}_{n}^{+}, n \in\right.$ $\mathbf{N}\}$ is compatible with Γ if each projection in \mathcal{L} is completely positive. By [12, Theorem 2.2] it is equivalent to say that \mathcal{L} is in the center of the matrix multiplier algebra [12, Definition 2.1] of $\left(\mathcal{H}, \mathcal{H}_{n}^{+}\right)$. [12, Lemma 1.3] shows that the antilinear symmetry \mathcal{J}_{n} associated with \mathcal{H}_{n}^{+}equals $\mathcal{J}_{1} \otimes$ st, where st is the adjoint operation on $M_{n}(\mathbf{C})$.
Let $\left\{\xi_{n}^{k}, k \in \mathbf{N}\right\}$ be an enumeration of the elements in $(1+$ $\left.\mathcal{J}_{n}\right) M_{n}\left(\left\{\xi_{k}^{0}, k \in \mathbf{N}\right\}\right)$ for a fundamental sequence $\left\{\xi_{k}^{0}, k \in \mathbf{N}\right\}$ in \mathcal{H}. We define, for $\gamma \in \Gamma$,

$$
\mathcal{H}(\gamma)_{n}^{+}=\left\{\alpha^{*} \xi_{m}^{k+}(\gamma) \alpha \mid \alpha \in M_{m, n}(\mathbf{Q}) ; m, k \overline{\in \mathbf{N}\}}\right.
$$

where $M_{m, n}(\mathbf{Q})$ denotes the $m \times n$ matrix over \mathbf{Q}. The construction in the proof of Lemma 1.2 .1 shows that $\left(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right)$is a matrix ordered Hilbert space a.e. In this situation we shall write

$$
\left(\mathcal{H}, \mathcal{H}_{n}^{+}\right)=\int_{\Gamma}^{\oplus}\left(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+} d \mu(\gamma)\right.
$$

and call this a direct integral of matrix-ordered Hilbert spaces with selfdual cones.

2. Direct integrals of standard forms.

2.1. THEOREM. let (Γ, μ) be a σ-finite measure space and let

$$
\left(\mathcal{H}, \mathcal{H}_{n}^{+}\right)=\int_{\Gamma}^{\oplus}\left(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right) d \mu(\gamma)
$$

be a direct integral of matrix-ordered Hilbert spaces with selfdual cones. Let \mathcal{M} respectively \mathcal{M}_{γ}, denote the matrix multiplier algebra of $\left(\mathcal{H}, \mathcal{H}_{n}^{+}\right)$, respectively $\left(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right)$, for $\gamma \in \Gamma \backslash N$, where N is the μ-null set for which \mathcal{M}_{γ} is not defined. Let $\mathcal{M}_{\gamma}=\mathbf{C}$ for $\gamma \in N$. Then the following statements are equivalent:
(a) $\left(\mathcal{M}, \mathcal{H}, \mathcal{H}_{n}^{+}\right)$is a matrix-ordered standard form $[\mathbf{1 2}$, Definition 1.4]
(b) $\left(\mathcal{M}_{\gamma}, \mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right)$is a matrix-ordered standard form a.e. If one of the above conditions is satisfied then

$$
\mathcal{M}=\int_{\Gamma}^{\oplus} \mathcal{M}_{\gamma} d \mu(\gamma)
$$

Proof. We may assume without loss of generality that the additional conditions C1 and C2 hold.
(a) $\Rightarrow(\mathrm{b}) . \mathcal{L}$ is in the center of \mathcal{M}. By $[\mathbf{5}$, Lemma 4] \mathcal{M} can be disintegrated into a direct integral of W^{*}-algebras $\mathcal{M}(\gamma), \gamma \in \Gamma$. $\mathcal{M}^{\prime}=\mathcal{J} \mathcal{M} \mathcal{J}$ implies $\mathcal{M}(\gamma)^{\prime}=\mathcal{J}(\gamma) \mathcal{M}(\gamma) \mathcal{J}(\gamma)$ a.e. To obtain (b) and the last statement of the theorem it is sufficient to show that
$\mathcal{M}(\gamma)=\mathcal{M}_{\gamma}$ a.e. Let $\left\{x_{k}, k \in \mathbf{N}\right\}$ be a countable ${ }^{*}$-subalgebra of \mathcal{M} over \mathbf{Q} such that $\mathcal{M}(\gamma)=\left\{x_{k}(\gamma), k \in \mathbf{N}\right\}^{\prime \prime}$. Then $x_{k}(\gamma) \in \mathcal{M}_{\gamma}$ a.e., since \mathcal{M} is the matrix multiplier algebra of $\left(\mathcal{H}, \mathcal{H}_{n}^{+}\right)$. Kaplansky's density theorem shows that $\mathcal{M}(\gamma) \subset \mathcal{M}_{\gamma}$. Now, by [12, Theorem 2.2],

$$
\mathcal{M}(\gamma)^{\prime}=\mathcal{J}(\gamma) \mathcal{M}(\gamma) \mathcal{J}(\gamma) \subset \mathcal{J}(\gamma) \mathcal{M}_{\gamma} \mathcal{J}(\gamma) \subset \mathcal{M}_{\gamma}^{\prime} \subset \mathcal{M}(\gamma)^{\prime} \text { a.e. }
$$

(b) \Rightarrow (a). Suppose that $F=F^{\perp \perp}$ is a face in \mathcal{H}_{n}^{+}and $\eta \in$ $P_{F} \mathcal{H}_{n} \cap \mathcal{H}{ }_{n}^{\mathcal{J}}$. We apply Lemma 1.2.4: let $\rho \in F$ be such that $F=\overline{F(\rho)}$; then $\eta(\gamma) \in P_{F(\rho(\gamma))} \mathcal{H}(\gamma)_{n} \cap \mathcal{H}(\gamma)_{n}^{\mathcal{J}}$ and $F(\rho(\gamma))^{\perp \perp}=\overline{F(\rho(\gamma))}$ a.e. By [11; Theorem 1.3, Lemma 1.5] it follows that $\eta(\gamma)^{+} \in \overline{F(\rho(\gamma))}$ a.e. Hence $\eta^{+} \in F$. Applying [11; Theorem 1.3, Lemma 1.5], again we are done.

The following two theorems include the main results of Bös [2]. Recall that, for a selfdual cone \mathcal{H}^{+}in a Hilbert space \mathcal{H},

$$
\mathcal{D}\left(\mathcal{H}^{+}\right)=\left\{\delta \in \mathcal{B}(\mathcal{H}) \mid \exp (t \delta) \mathcal{H}^{+}=\mathcal{H}^{+} \quad \forall t \in \mathbf{R}\right\}
$$

2.2. THEOREM. Let (Γ, μ) be a σ-finite measure space and let

$$
\left(\mathcal{H}, \mathcal{H}^{+}\right)=\int_{\Gamma}^{\oplus}\left(\mathcal{H}(\gamma), \mathcal{H}(\gamma)^{+}\right) d \mu(\gamma)
$$

be a direct integral of ordered Hilbert spaces with selfdual cones. Then
(a) $\mathcal{D}\left(\mathcal{H}^{+}\right)=\left\{\delta=\int_{\Gamma}^{\oplus} \delta(\gamma) d \mu(\gamma) \mid \delta(\gamma) \in \mathcal{D}\left(\mathcal{H}(\gamma)^{+}\right)\right.$a.e. $\}$
(b) \mathcal{H}^{+}is homogeneous $[\mathbf{3}$, Definition 5.1] and orientable [3, Definition 4.1.1] if and only if the following conditions hold:
(1) $\mathcal{H}(\gamma)^{+}$is homogeneous and there exists an orientation I_{γ} on $\mathcal{D}\left(\mathcal{H}(\gamma)^{+}\right) / Z\left(\mathcal{D}\left(\mathcal{H}(\gamma)^{+}\right)\right)$a.e.
(2) If $\delta=\int_{\Gamma}^{\oplus} \delta(\gamma) d \mu(\gamma) \in \mathcal{D}\left(\mathcal{H}^{+}\right)$, then there exists a measurable, bounded field $\delta_{i}(\gamma) \in \mathcal{D}\left(\mathcal{H}(\gamma)^{+}\right)$such that $\delta_{i}(\gamma) \in I_{\gamma}(\delta(\gamma)+$ $\left.Z\left(\mathcal{D}\left(\mathcal{H}(\gamma)^{+}\right)\right)\right)$a.e.

Proof. Assume without loss of generality that the additional conditions C1 and C2 hold.
(a). If $\delta \in \mathcal{D}\left(\mathcal{H}^{+}\right), p \in L$ is a projection and $\xi, \eta \in \mathcal{H}^{+}$, then $\langle\delta p \xi,(1-p) \eta\rangle=0$ by [6, Theorem 3]. Hence $p \delta=p \delta p=\delta p$ and δ is decomposable. Also $p \in Z\left(\mathcal{D}(\mathcal{H})^{+}\right)$. If $\delta=\int_{\Gamma}^{\oplus} \delta(\gamma) d \mu(\gamma)$, then by [6, Theorem 3] and Lemma 1.2.1 there exists $\lambda_{0}>0$ such that, for all $\lambda \in \mathbf{Q}$ with $|\lambda|>\lambda_{0},(\lambda-\delta(\gamma))^{-1}$ is positive a.e. This shows \subset in (a). The converse inclusion follows directly from [6, Theorem 1(iii)].
(b). Suppose that \mathcal{H} is homogeneous and orientable. Let \mathcal{M} be the W^{*}-algebra with standard form $\left(\mathcal{M}, \mathcal{H}, \mathcal{J}, \mathcal{H}^{+}\right)$, which exists by [3, Theorem 5.2]. The proof of (a) and [3, Proposition 4.10] shows that $\mathcal{L} \subset \mathcal{M}$. Hence $\mathcal{M}=\int_{\Gamma}^{\oplus} \mathcal{M}(\gamma) d \mu(\gamma)$ is decomposable by [5, Lemma 4]. Now one checks that $\left(\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{J}(\gamma), \mathcal{H}(\gamma)^{+}\right)$is a standard form a.e. This shows (1). If $\delta \in \mathcal{D}\left(\mathcal{H}^{+}\right)$then $\delta=$ $x+\mathcal{J} x \mathcal{J}, x \in \mathcal{M}$, by [3, Theorem 3.4]. Let $x=\int_{\Gamma}^{\oplus} x(\gamma) d \mu(\gamma)$ and $\delta_{i}(\gamma)=i x(\gamma)+\mathcal{J}(\gamma) i x(\gamma) \mathcal{J}(\gamma) . \quad \delta_{i}(\gamma)$ satisfies (2). Conversely, \mathcal{H}^{+} is orientable if (1) and (2) are satisfied. Let F be a closed face in \mathcal{H}^{+}. By Lemma 1.2.4 there exists ρ and ρ^{\prime} in \mathcal{H}^{+}such that $F=\overline{F(\rho)}$ and $F^{\perp}=\overline{F\left(\rho^{\prime}\right)}$. Let $\xi, \eta \in \mathcal{H}^{+}$with $\xi^{\perp} \eta$. By Lemma 1.2.4 and [6, Theorem 1(iii)] applied to $\mathcal{H}(\gamma)^{+}$, we obtain

$$
\begin{aligned}
\left\langle P_{F} \xi, \eta\right\rangle & =\int_{\Gamma}\left\langle P_{F(\rho(\gamma))} \xi(\gamma), \eta(\gamma)\right\rangle d \mu(\gamma) \\
& =\int_{\Gamma}\left\langle P_{F\left(\rho^{\prime}(\gamma)\right)} \xi(\gamma), \eta(\gamma)\right\rangle d \mu(\gamma)=\left\langle P_{F} \perp \xi, \eta\right\rangle
\end{aligned}
$$

Hence \mathcal{H}^{+}is homogeneous, again by $[\mathbf{6}$, Theorem $1($ iii $)$.
2.3. ThEOREM. Let (Γ, μ) be a σ-finite measure space and let

$$
(M, H)=\int_{\Gamma}^{\oplus}(M(\gamma), H(\gamma)) d \mu(\gamma)
$$

be a direct integral of W^{*}-algebras $\{M(\gamma), \gamma \in \Gamma\}$ acting on Hilbert spaces $\{H(\gamma), \gamma \in \Gamma\}$. Let $\left(\mathcal{M}, \mathcal{H}, \mathcal{H}_{n}^{+}\right)$be the matrix-ordered standard form of M. Then there exists a direct integral of matrix-ordered standard forms $\left(\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right)$of $M(\gamma)$ such that

$$
\left(\mathcal{M}, \mathcal{H}, \mathcal{H}_{n}^{+}\right)=\int_{\Gamma}^{\oplus}\left(\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}\right) d \mu(\gamma)
$$

If ϕ, respectively ϕ_{γ}, is the W^{*}-isomorphism between M and \mathcal{M}, respectively $M(\gamma)$ and $\mathcal{M}(\gamma)$, then

$$
\phi=\int_{\Gamma}^{\oplus} \phi_{\gamma} d \mu(\gamma) \quad[\mathbf{4} ; \S \text { II.3, Definition 3]. }
$$

Proof. As Bös [2] points out, [4; II.3, Proposition 11] remains valid under the above hypothesis by virtue of [5, Lemma 4]. Now the existence of the disintegration

$$
(\mathcal{M}, \mathcal{H})=\int_{\Gamma}^{\oplus}(\mathcal{M}(\gamma), \mathcal{H}(\gamma)) d \mu(\gamma)
$$

follows, as well as the last statement in the theorem. §1.3 and Theorem 2.1 show that the matrix-order automatically disintegrates as stated.

REFERENCES

1. H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309-354.
2. W. Bös, Direct integrals of selfdual cones and standard forms of von Neumann algebras, Invent. Math. 37 (1976), 241-251.
3. A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121-155.
4. J. Dixmier, Von Neumann algebras, North Holland. Amsterdam-New YorkOxford, 1981.
5. G.A. Elliott, An extension of some results of Takesaki in the reduction theory of von Neumann algebras, Pacific J. Math. 39 (1971), 145-148.
6. D.E. Evans and H.Hanche-Olsen, The generators of positive semigroups, J. Funct. Anal. 32 (1979), 207-212.
7. U. Haagerup, The standard form of von Neumann algebras, Math Scand. 37 (1975), 271-283.
8. R.C. Penney, Selfdual cones in Hilbert space, J. Funct. Anal. 21 (1976), 305-215.
9. M.F. Sainte-Beuve, On the extension of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129.
10. S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer Verlag, Berlin-HeidelbergNew York, 1971.
11. L.M. Schmitt, Characterization of $L^{2}(\mathcal{M})$ for injective W^{*}-algebras \mathcal{M}. Math. Scand. 57 (1985), 267-280.
12. and G. Wittstock, Characterization of matrix-ordered standard form of W^{*}-algebras, Math. Scand. 51 (1982), 241-260.
13. S. Strǎtilǎ and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Turnbridge Wells, 1979.
14. M. Takesaki, Theory of operator algebras, Springer Verlag, Berlin-HeidelbergNew York, 1979.

Department of Mathematics, University of Kansas, Lawrence, KS 66045
Permanent address: Fachbereich Mathematik/Informatik, Universitat Osnabrück, D-4500 Osnabrück, West Germany

[^0]: This research was supported by NSF grant \#DMS 8403631 a. 4.
 Received by the editors on July 17, 1987 and, in revised form, on February 8, 1988.

