ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Spring 1990

DIRECT INTEGRALS OF STANDARD FORMS OF W*-ALGEBRAS

LOTHAR M. SCHMITT

ABSTRACT. Bös [Invent. Math. **37** (1976), p. 241] proved that standard forms of W^* -algebras behave naturally with respect to direct integrals. We give a new approach to disintegration of standard forms, which uses the characterization of matrix-ordered Hilbert spaces in standard forms of W^* -algebras obtained by Wittstock and the author [Math. Scand. **51** (1982), p. 241].

Introduction. Araki [1], Connes [3] and Haagerup [7] developed standard forms of W^* -algebras. Connes [3] characterized the ordered Hilbert spaces arising in these standard forms. Penney [8] developed direct integrals of selfdual cones. Based on [3], and [8], Bös showed in [2] that standard forms behave naturally with respect to direct integrals. Wittstock and the author [11, 12] characterized the Hilbert spaces arising in standard forms of W^* -algebras among matrix ordered spaces. In this note we give a self contained and simplified approach to disintegration of standard forms. In fact proper use of a result of Elliott [5] makes it possible to work with only a few consequences of the measurable choice theorem due to Sainte-Beuve [9]. Furthermore disintegration of matrix order allows us to dispense with the rather technical direct integral of orientations [2] and is therefore more natural from a categorial point of view.

1. Technical preliminaries.

1.1 Separability conditions.

PROPOSITION. Let \mathcal{M} be a W^* -algebra. Then the following conditions are equivalent:

a) \mathcal{M} has a separable predual \mathcal{M}_* .

Copyright ©1990 Rocky Mountain Mathematics Consortium

This research was supported by NSF grant #DMS 8403631 a.4.

Received by the editors on July 17, 1987 and, in revised form, on February 8, 1988.

b) The Hilbert space \mathcal{H} in the standard form $(\mathcal{M}, \mathcal{H}, \mathcal{J}, \mathcal{H}^+)$ [7, p. 241] of \mathcal{M} is separable.

c) \mathcal{M} has a faithful W^* -representation on a separable Hilbert space.

PROOF. (a) \Rightarrow (b) follows from Bures's inequality, see [13, §10.24, Proposition]. (c) \Rightarrow (a) is [10, Proposition 2.1.1]. \Box

Disintegration of W^* -algebras exists in the above case [4, 14] and other special situations.

1.2 Direct integrals of selfdual cones. Let (Γ, μ) be a σ -finite measure space. Let $\{\mathcal{H}(\gamma), \gamma \in \Gamma\}$ be a measurable family of Hilbert spaces and set

$$\mathcal{H}\,=\int_{\Gamma}^{\oplus}\mathcal{H}\left(\gamma
ight)d\mu(\gamma).$$

In what follows we shall assume that a disintegration of \mathcal{H} as above is given, but we do not assume \mathcal{H} to be separable. If \mathcal{H}^+ is a cone in \mathcal{H} , then we shall call \mathcal{H}^+ compatible with Γ if the projections in the diagonal algebra $\mathcal{L} = L^{\infty}(\Gamma, \mu) \operatorname{map} \mathcal{H}^+$ into \mathcal{H}^+ . The following Lemma is essentially due to Penney [8] and is used to fix our notation.

1.2.1. LEMMA. Let \mathcal{H}^+ be a selfdual cone in \mathcal{H} compatible with Γ .

(a) The conjugate linear symmetry \mathcal{J} associated with \mathcal{H}^+ by [3, Proposition 4.1] is a decomposable operator, i.e.,

$$\mathcal{J} = \int_{\Gamma}^{\oplus} \mathcal{J}(\gamma) d\mu(\gamma).$$

(b) There exists a sequence $\{\xi_k(\gamma), k \in \mathbf{N}\}$ in $\mathcal{H}^{\mathcal{J}} = \{\xi \in \mathcal{H} | \xi = \mathcal{J}\xi\}$ such that $\{\xi_k(\gamma), k \in \mathbf{N}\}$ is dense in $\mathcal{H}(\gamma)^{\mathcal{J}(\gamma)}$ a.e.

(c) With the sequence $\{\xi_k, k \in \mathbf{N}\}$ as in (b) set

$$\mathcal{H}(\gamma)^+ = \{\xi_k^+(\gamma), k \in \overline{\mathbf{N}}\},\$$

where $\xi_k = \xi_k^+ - \xi_k^-, \xi_k^+ \perp \xi_k^-, \xi_k^+ \in \mathcal{H}^+$ is the canonical decomposition of ξ_k [3, Proposition 4.1]. Then $\mathcal{H}(\gamma)^+$ is a selfdual cone in $\mathcal{H}(\gamma)$ with associated conjugate linear symmetry $\mathcal{J}(\gamma)$ a.e.

$W^*\text{-}\mathrm{ALGEBRAS}$

(d)
$$\xi \in \mathcal{H}^+ \Leftrightarrow \langle \xi(\gamma), \xi_k^+(\gamma) \rangle \ge 0$$
 a.e. $\forall k \in \mathbf{N}$.

(e) If $x = \int_{\Gamma}^{\oplus} x(\gamma) d\mu(\gamma) \in \mathcal{B}(\mathcal{H})$ is a decomposable operator [14, p. 273], then x is positive with respect to \mathcal{H}^+ if and only if $x(\gamma)$ is positive with respect to $\mathcal{H}^+(\gamma)$ a.e.

PROOF. (a). \mathcal{J} commutes with \mathcal{L} since \mathcal{H}^+ is compatible with Γ . Hence \mathcal{J} is decomposable by a conjugate linear version of [4; II.2.5, Theorem 1].

(b). Take $\{(1 + \mathcal{J})\xi_k^0, k \in \mathbf{N}\}$ for a fundamental sequence [14, p. 270] $\{\xi_k^0, k \in \mathbf{N}\} \subset \mathcal{H}$.

(c). Apply the proof of [8, Theorem II.10].

(d). The set $\{\xi | \langle \xi(\gamma), \xi_k^+(\gamma) \rangle \ge 0$ a.e. $\forall k \in \mathbf{N} \}$ is a selfdual cone, which contains \mathcal{H}^+ .

(e). By (d) x is positive if and only if $\langle x(\gamma)\xi_k^+(\gamma),\xi_j^+(\gamma)\rangle \ge 0$ a.e. $\forall k,j \in \mathbb{N}$. \Box

Following Penney [8, Definition II.6], we shall write

$$\mathcal{H}^{+} = \int_{\Gamma}^{\oplus} \mathcal{H}(\gamma)^{+} d\mu(\gamma)$$

in the situation of Lemma 1.2.1. For the remainder of this section we shall keep the notation of Lemma 1.2.1, and shall moreover assume that the following conditions hold:

 C_1 : μ is finite and the measurable family of Hilbert spaces

 $\{\mathcal{H}(\gamma), \gamma \in \Gamma\}$ is constant, i.e., $\mathcal{H} = L^2(\Gamma, \mathcal{K})$ for some separable Hilbert space \mathcal{K} .

 C_2 : $\mathcal{H}(\gamma)^+ = \{0\}$ for all $\gamma \in \Gamma$ for which $\mathcal{H}(\gamma)^+$ is not selfdual.

For a closed, convex subset A of \mathcal{K} let $d(\eta, A), \eta \in K$, denote the distance between η and A, taken to be ∞ in the case $A = \emptyset$. In addition, let U(r), r > 0, be the open ball of radius r in \mathcal{K} . The following three lemmata are essentially consequences of the measurable selection theorem due to von Neumann, Aumann and Sainte-Beuve, see [9].

1.2.2. LEMMA. The following functions are measurable:

(a)
$$\begin{aligned} h: \Gamma \times \mathcal{K} \to \mathbf{R}^+ \\ h(\gamma, \eta) &= d(\eta, \mathcal{H}(\gamma)^+), \quad \gamma \in \Gamma, \eta \in \mathcal{K}. \end{aligned}$$

(b)

$$f: \Gamma \times \mathcal{K}^{3} \to \mathbf{R}^{+} \cup \{\infty\}$$

$$f(\gamma, \eta) = d(\eta_{1}, \eta_{2} + \mathcal{H}(\gamma)^{+} \cap \eta_{3} - \mathcal{H}(\gamma)^{+}),$$

$$\gamma \in \Gamma, \eta = (\eta_{1}, \eta_{2}, \eta_{3}) \in \mathcal{K}^{3}.$$

PROOF. (a). $h(\gamma, \eta) = \inf ||\eta - \xi_k^+(\gamma)||$ is measurable since $(\gamma, \eta) \to (\xi_k^+(\gamma), \eta) \in \mathcal{K}^2$ and the inner product are measurable. (b). Let $P_{\Gamma}(\gamma, \eta) = \gamma$. We conclude from [9, Theorem 4] that

$$\Gamma_{k}^{m} = \bigcup_{\ell \in \mathbf{N}} P_{\Gamma} \Big\{ (\gamma, \eta) | \ ||\eta_{2} + \xi_{k}^{+}(\gamma) - \eta_{3} + \xi_{\ell}^{+}(\gamma)|| < \frac{1}{m} \Big\}, k, m \in \mathbf{N},$$

is a measurable subset of $\Gamma.$ Now

$$f_k^m(\gamma,\eta) = \begin{cases} ||\eta_1 - \eta_2 - \xi_k^+(\gamma)||, & \gamma \in \Gamma_k^m \\ \infty, & \gamma \notin \Gamma_k^m \end{cases}$$

is a measurable function on $\Gamma \times \mathcal{K}^3$. We have

(1)
$$d\left(\eta_1, \eta_2 + \mathcal{H}(\gamma)^+ \bigcap \overline{\eta_3 - \mathcal{H}(\gamma)^+ + U(\frac{1}{m})}\right) \leq \inf_k f_k^m(\gamma, \eta)$$

(2)
$$\inf_{k} f_{k}^{m}(\gamma,\eta) \leq d\left(\eta_{1},\eta_{2}+\mathcal{H}(\gamma)^{+}\bigcap\eta_{3}-\mathcal{H}(\gamma)^{+}+U\left(\frac{1}{m+1}\right)\right).$$

An application of the parallelogram law shows that the left hand side of (1) converges to $f(\gamma, \eta)$ as $m \to \infty$. \square

1.2.3. LEMMA. Let $\rho \in \mathcal{H}, \eta, \eta_1, \eta_2 \in \mathcal{H}^{\mathcal{J}}$ be such that $\eta_1 \leq \eta \leq \eta_2$ and $||\rho - \eta|| = d(\rho, [\eta_1, \eta_2])$. Then

$$||\rho(\gamma) - \eta(\gamma)|| = d(\rho(\gamma), [\eta_1(\gamma), \eta_2(\gamma)]) \ a.e.$$

$W^*\text{-}\mathrm{ALGEBRAS}$

PROOF. Let Ω be the set of $(\gamma, \eta_{\gamma}) \in \Gamma \times \mathcal{K}$ such that

(1)
$$\begin{cases} d(\eta_{\gamma}, [\eta_1(\gamma), \eta_2(\gamma)]) = 0\\ d(\rho(\gamma), [\eta_1(\gamma), \eta_2(\gamma)]) = ||\rho(\gamma) - \eta_{\gamma}|| \end{cases} \quad \text{if } \eta_1(\gamma) \le \eta_2(\gamma),$$

(2) $\eta_{\gamma} = 0 \text{ if } \eta_1(\gamma) \nleq \eta_2(\gamma).$

Ω is measurable by Lemma 1.2.2. Hence $\gamma \to \eta_{\gamma}$ is measurable by [9, Theorem 4] and has range in $[\eta_1, \eta_2]$. Clearly

$$\int ||\rho(\gamma) - \eta_{\gamma}||^2 d\mu(\gamma) \le \int ||\rho(\gamma) - \eta(\gamma)||^2 d\mu(\gamma)$$

and therefore $\eta_{\gamma} = \eta(\gamma)$ a.e. \square

For $\rho \in \mathcal{H}^+$ let $F(\rho) = \bigcup_{\ell \in \mathbf{N}} [0, \ell\rho]$ denote the face generated by ρ . For any face $F \subset \mathcal{H}^+$ let P_F denote the projection onto $\overline{\operatorname{span}_{\mathbf{C}} F}$. P_F commutes with \mathcal{J} and \mathcal{L} . The following statement is taken from Bös's paper [2].

1.2.4. LEMMA. Suppose F is a closed face in \mathcal{H}^+ . (a) There exists $\rho \in F$ such that $F = \overline{F(\rho)}$. (b) $\xi \in F \Leftrightarrow \xi(\gamma) \in \overline{F(\rho(\gamma))}$ a.e. (c) $(P_F\eta)(\gamma) = P_{F(\rho(\gamma))}\eta(\gamma)$ a.e., $\eta \in \mathcal{H}$. (d) $\overline{F(\rho(\gamma))}$ is a face a.e. (e) If $\rho, \rho' \in \mathcal{H}^+$ are such that $F = \overline{F(\rho)}$ and $F^{\perp} = \overline{F(\rho')}$, then $F(\rho(\gamma))^{\perp} = \overline{F(\rho'(\gamma))}$ a.e.

PROOF. Let $\rho_k \in F$ be such that $||\xi_k^+ - \rho_k|| = d(\xi_k^+, F), k \in \mathbf{N}$. We define $\rho = \sum 2^{-k} ||\rho_k||^{-1} \rho_k$, where the summation is taken over all k with $\rho_k \neq 0$. Fix $\xi \in F$. For a fixed $k \in \mathbf{N}$, set

$$N = \{\gamma \mid ||\xi_k^+(\gamma) - \rho(\gamma)|| > ||\xi_k^+(\gamma) - \xi(\gamma)||\}.$$

Then $\rho' = (1 - \chi_N)\rho_k + \chi_N \xi \in F$ and $||\xi_k^+ - \rho'_k|| < ||\xi_k^+ - \rho_k||$ unless $\mu(N) = 0$. Consequently

(1)
$$||\xi(\gamma) - \rho_k(\gamma)|| \le 2||\xi(\gamma) - \xi_k^+(\gamma)||$$
 a.e.

Now let $0 \leq \eta_{\ell} \leq \ell \cdot \rho$ be such $||\xi - \eta_{\ell}|| = d(\xi, [0, \ell\rho])$. Lemma 1.2.3 and (1) show that $\gamma \mapsto ||\xi(\gamma) - \eta_{\ell}(\gamma)||$ is a decreasing sequence of L^2 functions which converges pointwise to zero a.e. Lebesgue's Theorem shows that $\xi = \lim \eta_{\ell}$. These arguments show (a) and (b). In order to show (c) one can assume that $\eta \in \mathcal{H}^{\mathcal{J}}$ and then apply a similar argument using the order intervals $[-\ell\rho, \ell\rho]$. To show (d) consider the set Ω of $(\gamma, \xi, \eta) \in \Gamma \times \mathcal{K}^2$ with $||\xi|| \leq 1, \eta \neq 0; \eta, \xi - \eta \in$ $\mathcal{H}(\gamma)^+; \inf_{\ell} d(\xi, [0, \ell\rho(\gamma)]) = 0; \inf_{\ell} d(\eta, [0, \ell\rho(\gamma)]) > 0$. Ω is measurable by Lemma 1.2.2. Its projection on $\Gamma, N = P_{\Gamma}(\Omega)$, is measurable by [9, Theorem 4]. Let $\Omega' = \Gamma \setminus N \times \{(0,0)\} \cup \Omega$. By [9, Theorem 3] there exist measurable functions ξ_1, η_1 such that $(\gamma, \xi_1(\gamma), \eta_1(\gamma)) \in \Omega'$ for $\gamma \in \Gamma$. Hence, by (b), $\xi_1 \in F, 0 \leq \eta_1 \leq \xi_1 \Rightarrow \eta_1 \in F \Rightarrow \mu(N) = 0$. Finally, to prove (e) let Ω be the set of $(\gamma, \eta) \in \Gamma \times \mathcal{K}$ such that

 $0 < ||\eta|| \le 1; \quad \eta \in \mathcal{H}(\gamma)^+; \quad \langle \eta, \rho(\gamma) \rangle = 0; \ d(\eta, F(\rho'(\gamma))) > 0.$

As in the proof of (d) the projection of Ω on Γ is a μ -null set. \Box

1.3. Direct integrals of matrix ordered Hilbert spaces. If V is a set, then we shall denote the set of $n \times n$ matrices with entries in V by $M_n(V), n \in \mathbf{N}$. If V is a vector space we shall also write V_n for $M_n(V)$. Let $\Gamma, \mu, \mathcal{H}(\gamma)$ and \mathcal{H} be as in 1.2, without the additional assumptions C1 and C2. Then $\{\mathcal{H}(\gamma)_n, \gamma \in \Gamma\}$ is a measurable field of Hilbert spaces and \mathcal{H}_n can be identified with

$$\int_{\gamma}^{\oplus} \mathcal{H}(\gamma)_n d\mu(\gamma).$$

Let $\{\mathcal{H}_n^+ \subset \mathcal{H}_n, n \in \mathbf{N}\}$ be a family of selfdual cones such that $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbf{N})$ is a matrix-ordered space. We shall say that $\{\mathcal{H}_n^+, n \in \mathbf{N}\}$ is compatible with Γ if each projection in \mathcal{L} is completely positive. By [12, Theorem 2.2] it is equivalent to say that \mathcal{L} is in the center of the matrix multiplier algebra [12, Definition 2.1] of $(\mathcal{H}, \mathcal{H}_n^+)$. [12, Lemma 1.3] shows that the antilinear symmetry \mathcal{J}_n associated with \mathcal{H}_n^+ equals $\mathcal{J}_1 \otimes \mathrm{st}$, where st is the adjoint operation on $M_n(\mathbf{C})$.

Let $\{\xi_n^k, k \in \mathbf{N}\}$ be an enumeration of the elements in $(1 + \mathcal{J}_n)M_n(\{\xi_k^0, k \in \mathbf{N}\})$ for a fundamental sequence $\{\xi_k^0, k \in \mathbf{N}\}$ in \mathcal{H} . We define, for $\gamma \in \Gamma$,

$$\mathcal{H}(\gamma)_n^+ = \{ \alpha^* \xi_m^{k+}(\gamma) \alpha | \alpha \in M_{m,n}(\mathbf{Q}); \ m, k \in \mathbf{N} \},\$$

 W^* -ALGEBRAS

where $M_{m,n}(\mathbf{Q})$ denotes the $m \times n$ matrix over \mathbf{Q} . The construction in the proof of Lemma 1.2.1 shows that $(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_n^+)$ is a matrix ordered Hilbert space a.e. In this situation we shall write

$$(\mathcal{H},\mathcal{H}_{n}^{+}) = \int_{\Gamma}^{\oplus} (\mathcal{H}(\gamma),\mathcal{H}(\gamma)_{n}^{+}d\mu(\gamma)$$

and call this a direct integral of matrix-ordered Hilbert spaces with selfdual cones.

2. Direct integrals of standard forms.

2.1. THEOREM. let (Γ, μ) be a σ -finite measure space and let

$$(\mathcal{H},\mathcal{H}_{n}^{+}) = \int_{\Gamma}^{\oplus} (\mathcal{H}(\gamma),\mathcal{H}(\gamma)_{n}^{+})d\mu(\gamma)$$

be a direct integral of matrix-ordered Hilbert spaces with selfdual cones. Let \mathcal{M} respectively \mathcal{M}_{γ} , denote the matrix multiplier algebra of $(\mathcal{H}, \mathcal{H}_n^+)$, respectively $(\mathcal{H}(\gamma), \mathcal{H}(\gamma)_n^+)$, for $\gamma \in \Gamma \setminus N$, where N is the μ -null set for which \mathcal{M}_{γ} is not defined. Let $\mathcal{M}_{\gamma} = \mathbf{C}$ for $\gamma \in N$. Then the following statements are equivalent:

(a) $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ is a matrix-ordered standard form [12, Definition 1.4]

(b) $(\mathcal{M}_{\gamma}, \mathcal{H}(\gamma), \mathcal{H}(\gamma)_n^+)$ is a matrix-ordered standard form a.e. If one of the above conditions is satisfied then

$$\mathcal{M} = \int_{\Gamma}^{\oplus} \mathcal{M}_{\gamma} d\mu(\gamma).$$

PROOF. We may assume without loss of generality that the additional conditions C1 and C2 hold.

(a) \Rightarrow (b). \mathcal{L} is in the center of \mathcal{M} . By [5, Lemma 4] \mathcal{M} can be disintegrated into a direct integral of W^* -algebras $\mathcal{M}(\gamma), \gamma \in \Gamma$. $\mathcal{M}' = \mathcal{J}\mathcal{M}\mathcal{J}$ implies $\mathcal{M}(\gamma)' = \mathcal{J}(\gamma)\mathcal{M}(\gamma)\mathcal{J}(\gamma)$ a.e. To obtain (b) and the last statement of the theorem it is sufficient to show that

 $\mathcal{M}(\gamma) = \mathcal{M}_{\gamma}$ a.e. Let $\{x_k, k \in \mathbf{N}\}$ be a countable *-subalgebra of \mathcal{M} over \mathbf{Q} such that $\mathcal{M}(\gamma) = \{x_k(\gamma), k \in \mathbf{N}\}''$. Then $x_k(\gamma) \in \mathcal{M}_{\gamma}$ a.e., since \mathcal{M} is the matrix multiplier algebra of $(\mathcal{H}, \mathcal{H}_n^+)$. Kaplansky's density theorem shows that $\mathcal{M}(\gamma) \subset \mathcal{M}_{\gamma}$. Now, by [12, Theorem 2.2],

$$\mathcal{M}(\gamma)' = \mathcal{J}(\gamma)\mathcal{M}(\gamma)\mathcal{J}(\gamma) \subset \mathcal{J}(\gamma)\mathcal{M}_{\gamma}\mathcal{J}(\gamma) \subset \mathcal{M}_{\gamma}' \subset \mathcal{M}(\gamma)' \text{ a.e.}$$

(b) \Rightarrow (a). Suppose that $F = F^{\perp \perp}$ is a face in \mathcal{H}_n^+ and $\eta \in P_F \mathcal{H}_n \cap \mathcal{H}_n^{\mathcal{J}}$. We apply Lemma 1.2.4: let $\rho \in F$ be such that $F = \overline{F(\rho)}$; then $\eta(\gamma) \in P_{F(\rho(\gamma))} \mathcal{H}(\gamma)_n \cap \mathcal{H}(\gamma)_n^{\mathcal{J}}$ and $F(\rho(\gamma))^{\perp \perp} = \overline{F(\rho(\gamma))}$ a.e. By [11; Theorem 1.3, Lemma 1.5] it follows that $\eta(\gamma)^+ \in \overline{F(\rho(\gamma))}$ a.e. Hence $\eta^+ \in F$. Applying [11; Theorem 1.3, Lemma 1.5], again we are done. \Box

The following two theorems include the main results of Bös [2]. Recall that, for a selfdual cone \mathcal{H}^+ in a Hilbert space \mathcal{H} ,

$$\mathcal{D}(\mathcal{H}^+) = \{ \delta \in \mathcal{B}(\mathcal{H}) | \exp(t\delta)\mathcal{H}^+ = \mathcal{H}^+ \quad \forall t \in \mathbf{R} \}.$$

2.2. THEOREM. Let (Γ, μ) be a σ -finite measure space and let

$$(\mathcal{H},\mathcal{H}^+) = \int_{\Gamma}^{\oplus} (\mathcal{H}(\gamma),\mathcal{H}(\gamma)^+) d\mu(\gamma)$$

be a direct integral of ordered Hilbert spaces with selfdual cones. Then

(a) $\mathcal{D}(\mathcal{H}^+) = \{ \delta = \int_{\Gamma}^{\oplus} \delta(\gamma) d\mu(\gamma) \, | \, \delta(\gamma) \in \mathcal{D}(\mathcal{H}(\gamma)^+) \, a.e. \}$

(b) \mathcal{H}^+ is homogeneous [3, Definition 5.1] and orientable [3, Definition 4.1.1] if and only if the following conditions hold:

(1) $\mathcal{H}(\gamma)^+$ is homogeneous and there exists an orientation I_{γ} on $\mathcal{D}(\mathcal{H}(\gamma)^+)/Z(\mathcal{D}(\mathcal{H}(\gamma)^+))$ a.e.

(2) If $\delta = \int_{\Gamma}^{\oplus} \delta(\gamma) d\mu(\gamma) \in \mathcal{D}(\mathcal{H}^+)$, then there exists a measurable, bounded field $\delta_i(\gamma) \in \mathcal{D}(\mathcal{H}(\gamma)^+)$ such that $\delta_i(\gamma) \in I_{\gamma}(\delta(\gamma) + Z(\mathcal{D}(\mathcal{H}(\gamma)^+)))$ a.e.

PROOF. Assume without loss of generality that the additional conditions C1 and C2 hold.

W^* -ALGEBRAS

(a). If $\delta \in \mathcal{D}(\mathcal{H}^+), p \in L$ is a projection and $\xi, \eta \in \mathcal{H}^+$, then $\langle \delta p\xi, (1-p)\eta \rangle = 0$ by [6, Theorem 3]. Hence $p\delta = p\delta p = \delta p$ and δ is decomposable. Also $p \in Z(\mathcal{D}(\mathcal{H})^+)$. If $\delta = \int_{\Gamma}^{\oplus} \delta(\gamma) d\mu(\gamma)$, then by [6, Theorem 3] and Lemma 1.2.1 there exists $\lambda_0 > 0$ such that, for all $\lambda \in \mathbf{Q}$ with $|\lambda| > \lambda_0, (\lambda - \delta(\gamma))^{-1}$ is positive a.e. This shows \subset in (a). The converse inclusion follows directly from [6, Theorem 1(iii)].

(b). Suppose that \mathcal{H} is homogeneous and orientable. Let \mathcal{M} be the W^* -algebra with standard form $(\mathcal{M}, \mathcal{H}, \mathcal{J}, \mathcal{H}^+)$, which exists by [3, Theorem 5.2]. The proof of (a) and [3, Proposition 4.10] shows that $\mathcal{L} \subset \mathcal{M}$. Hence $\mathcal{M} = \int_{\Gamma}^{\oplus} \mathcal{M}(\gamma) d\mu(\gamma)$ is decomposable by [5, Lemma 4]. Now one checks that $(\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{J}(\gamma), \mathcal{H}(\gamma)^+)$ is a standard form a.e. This shows (1). If $\delta \in \mathcal{D}(\mathcal{H}^+)$ then $\delta =$ $x + \mathcal{J}x\mathcal{J}, x \in \mathcal{M}$, by [3, Theorem 3.4]. Let $x = \int_{\Gamma}^{\oplus} x(\gamma) d\mu(\gamma)$ and $\delta_i(\gamma) = ix(\gamma) + \mathcal{J}(\gamma)ix(\gamma)\mathcal{J}(\gamma)$. $\delta_i(\gamma)$ satisfies (2). Conversely, \mathcal{H}^+ is orientable if (1) and (2) are satisfied. Let F be a closed face in \mathcal{H}^+ . By Lemma 1.2.4 there exists ρ and ρ' in \mathcal{H}^+ such that $F = \overline{F(\rho)}$ and $F^{\perp} = \overline{F(\rho')}$. Let $\xi, \eta \in \mathcal{H}^+$ with $\xi^{\perp}\eta$. By Lemma 1.2.4 and [6, Theorem 1(iii)] applied to $\mathcal{H}(\gamma)^+$, we obtain

$$\begin{split} \langle P_F \xi, \eta \rangle &= \int_{\Gamma} \langle P_{F(\rho(\gamma))} \xi(\gamma), \eta(\gamma) \rangle d\mu(\gamma) \\ &= \int_{\Gamma} \langle P_{F(\rho'(\gamma))} \xi(\gamma), \eta(\gamma) \rangle d\mu(\gamma) = \langle P_F \bot \ \xi, \eta \rangle. \end{split}$$

Hence \mathcal{H}^+ is homogeneous, again by [6, Theorem 1(iii)].

2.3. THEOREM. Let (Γ, μ) be a σ -finite measure space and let

$$(M,H)=\int_{\Gamma}^{\oplus}(M(\gamma),H(\gamma))d\mu(\gamma)$$

be a direct integral of W^* -algebras $\{M(\gamma), \gamma \in \Gamma\}$ acting on Hilbert spaces $\{H(\gamma), \gamma \in \Gamma\}$. Let $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ be the matrix-ordered standard form of \mathcal{M} . Then there exists a direct integral of matrix-ordered standard forms $(\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{H}(\gamma)_n^+)$ of $M(\gamma)$ such that

$$(\mathcal{M}, \mathcal{H}, \mathcal{H}_{n}^{+}) = \int_{\Gamma}^{\oplus} (\mathcal{M}(\gamma), \mathcal{H}(\gamma), \mathcal{H}(\gamma)_{n}^{+}) d\mu(\gamma).$$

If ϕ , respectively ϕ_{γ} , is the W^{*}-isomorphism between M and \mathcal{M} , respectively $M(\gamma)$ and $\mathcal{M}(\gamma)$, then

$$\phi = \int_{\Gamma}^{\oplus} \phi_{\gamma} d\mu(\gamma) \quad [\mathbf{4}; \, \S \text{II.3, Definition 3}].$$

PROOF. As Bös [2] points out, [4; II.3, Proposition 11] remains valid under the above hypothesis by virtue of [5, Lemma 4]. Now the existence of the disintegration

$$(\mathcal{M},\mathcal{H}) = \int_{\Gamma}^{\oplus} (\mathcal{M}(\gamma),\mathcal{H}(\gamma)) d\mu(\gamma)$$

follows, as well as the last statement in the theorem. §1.3 and Theorem 2.1 show that the matrix-order automatically disintegrates as stated. \square

REFERENCES

1. H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. **50** (1974), 309–354.

2. W. Bös, Direct integrals of selfdual cones and standard forms of von Neumann algebras, Invent. Math. **37** (1976), 241–251.

3. A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) **24** (1974), 121–155.

4. J. Dixmier, *Von Neumann algebras*, North Holland. Amsterdam-New York-Oxford, 1981.

5. G.A. Elliott, An extension of some results of Takesaki in the reduction theory of von Neumann algebras, Pacific J. Math. **39** (1971), 145–148.

6. D.E. Evans and H.Hanche-Olsen, *The generators of positive semigroups*, J. Funct. Anal. **32** (1979), 207–212.

7. U. Haagerup, The standard form of von Neumann algebras, Math Scand. 37 (1975), 271–283.

8. R.C. Penney, Selfdual cones in Hilbert space, J. Funct. Anal. 21 (1976), 305–215.

9. M.F. Sainte-Beuve, On the extension of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112–129.

10. S. Sakai, C^* -algebras and W^* -algebras, Springer Verlag, Berlin-Heidelberg-New York, 1971.

11. L.M. Schmitt, Characterization of $L^2(\mathcal{M})$ for injective W^* -algebras \mathcal{M} . Math. Scand. **57** (1985), 267–280.

 W^* -ALGEBRAS

12. — and G. Wittstock, Characterization of matrix-ordered standard form of W^* -algebras, Math. Scand. **51** (1982), 241–260.

13. S. Strătilă and L. Zsidó, *Lectures on von Neumann algebras*, Abacus Press, Turnbridge Wells, 1979.

14. M. Takesaki, *Theory of operator algebras*, Springer Verlag, Berlin-Heidelberg-New York, 1979.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KS 66045

Permanent address: Fachbereich Mathematik/Informatik, Universitat Osnabrück, D-4500 Osnabrück, West Germany