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DIRECT INTEGRALS OF STANDARD
FORMS OF W ∗-ALGEBRAS

LOTHAR M. SCHMITT

ABSTRACT. Bös [Invent. Math. 37 (1976), p. 241] proved
that standard forms of W ∗-algebras behave naturally with
respect to direct integrals. We give a new approach to disin-
tegration of standard forms, which uses the characterization
of matrix-ordered Hilbert spaces in standard forms of W ∗-
algebras obtained by Wittstock and the author [Math. Scand.
51 (1982), p. 241].

Introduction. Araki [1], Connes [3] and Haagerup [7] developed
standard forms of W ∗-algebras. Connes [3] characterized the ordered
Hilbert spaces arising in these standard forms. Penney [8] developed
direct integrals of selfdual cones. Based on [3], and [8], Bös showed
in [2] that standard forms behave naturally with respect to direct
integrals. Wittstock and the author [11, 12] characterized the Hilbert
spaces arising in standard forms of W ∗-algebras among matrix ordered
spaces. In this note we give a self contained and simplified approach
to disintegration of standard forms. In fact proper use of a result of
Elliott [5] makes it possible to work with only a few consequences of
the measurable choice theorem due to Sainte-Beuve [9]. Furthermore
disintegration of matrix order allows us to dispense with the rather
technical direct integral of orientations [2] and is therefore more natural
from a categorial point of view.

1. Technical preliminaries.

1.1 Separability conditions.

PROPOSITION. Let M be a W ∗-algebra. Then the following condi-
tions are equivalent:

a) M has a separable predual M ∗.
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b) The Hilbert space H in the standard form (M ,H ,J ,H+) [7, p.
241] of M is separable.

c) M has a faithful W ∗-representation on a separable Hilbert space.

PROOF. (a) ⇒ (b) follows from Bures’s inequality, see [13, §10.24,
Proposition]. (c) ⇒ (a) is [10, Proposition 2.1.1].

Disintegration of W ∗-algebras exists in the above case [4, 14] and
other special situations.

1.2 Direct integrals of selfdual cones. Let (Γ, μ) be a σ-finite measure
space. Let {H (γ), γ ∈ Γ} be a measurable family of Hilbert spaces and
set

H =
∫ ⊕

Γ

H (γ)dμ(γ).

In what follows we shall assume that a disintegration of H as above
is given, but we do not assume H to be separable. If H+ is a cone
in H , then we shall call H+ compatible with Γ if the projections in
the diagonal algebra L = L∞(Γ, μ) map H+ into H+. The following
Lemma is essentially due to Penney [8] and is used to fix our notation.

1.2.1. LEMMA. Let H+ be a selfdual cone in H compatible with Γ.

(a) The conjugate linear symmetry J associated with H+ by [3,
Proposition 4.1] is a decomposable operator, i.e.,

J =
∫ ⊕

Γ

J (γ)dμ(γ).

(b) There exists a sequence {ξk(γ), k ∈ N } in H J = {ξ ∈ H | ξ =
J ξ} such that {ξk(γ), k ∈ N } is dense in H (γ)J (γ) a.e.

(c) With the sequence {ξk, k ∈ N } as in (b) set

H (γ)+ = {ξ+
k (γ), k ∈ N },

where ξk = ξ+
k − ξ−k , ξ+

k ⊥ ξ−k , ξ+
k ∈ H+ is the canonical decomposition

of ξk [3, Proposition 4.1]. Then H (γ)+ is a selfdual cone in H (γ) with
associated conjugate linear symmetry J (γ) a.e.
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(d) ξ ∈ H+ ⇔ 〈ξ(γ), ξ+
k (γ)〉 ≥ 0 a.e. ∀k ∈ N .

(e) If x =
∫ ⊕
Γ

x(γ)dμ(γ) ∈ B(H ) is a decomposable operator [14, p.
273], then x is positive with respect to H+ if and only if x(γ) is positive
with respect to H+(γ) a.e.

PROOF. (a). J commutes with L since H+ is compatible with Γ.
Hence J is decomposable by a conjugate linear version of [4; II.2.5,
Theorem 1].

(b). Take {(1 + J )ξ0
k, k ∈ N } for a fundamental sequence [14, p.

270] {ξ0
k, k ∈ N } ⊂ H .

(c). Apply the proof of [8, Theorem II.10].

(d). The set {ξ|〈ξ(γ), ξ+
k (γ)〉 ≥ 0 a.e. ∀k ∈ N } is a selfdual cone,

which contains H+.

(e). By (d) x is positive if and only if 〈x(γ)ξ+
k (γ), ξ+

j (γ)〉 ≥ 0 a.e.
∀k, j ∈ N .

Following Penney [8, Definition II.6], we shall write

H+ =
∫ ⊕

Γ

H (γ)+dμ(γ)

in the situation of Lemma 1.2.1. For the remainder of this section we
shall keep the notation of Lemma 1.2.1, and shall moreover assume that
the following conditions hold:

C1: μ is finite and the measurable family of Hilbert spaces

{H (γ), γ ∈ Γ} is constant, i.e., H = L2(Γ,K )
for some separable Hilbert space K .

C2: H (γ)+ = {0} for all γ ∈ Γ for which H (γ)+ is not selfdual.

For a closed, convex subset A of K let d(η, A), η ∈ K, denote the
distance between η and A, taken to be ∞ in the case A = ∅. In
addition, let U(r), r > 0, be the open ball of radius r in K . The
following three lemmata are essentially consequences of the measurable
selection theorem due to von Neumann, Aumann and Sainte-Beuve, see
[9].
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1.2.2. LEMMA. The following functions are measurable:

(a)
h : Γ ×K → R +

h(γ, η) = d(η,H (γ)+), γ ∈ Γ, η ∈ K .

(b)
f : Γ ×K 3 → R + ∪ {∞}
f(γ, η) = d(η1, η2 + H (γ)+ ∩ η3 −H (γ)+),

γ ∈ Γ, η = (η1, η2, η3) ∈ K 3.

PROOF. (a). h(γ, η) = inf ||η − ξ+
k (γ)|| is measurable since

(γ, η) → (ξ+
k (γ), η) ∈ K 2 and the inner product are measurable.

(b). Let PΓ(γ, η) = γ. We conclude from [9, Theorem 4] that

Γm
k =

⋃
�∈N

PΓ

{
(γ, η)| ||η2 + ξ+

k (γ) − η3 + ξ+
� (γ)|| <

1
m

}
, k, m ∈ N ,

is a measurable subset of Γ. Now

fm
k (γ, η) =

{ ||η1 − η2 − ξ+
k (γ)||, γ ∈ Γm

k

∞, γ �∈ Γm
k

is a measurable function on Γ ×K 3. We have

(1) d
(
η1, η2 + H (γ)+

⋂
η3 −H (γ)+ + U

( 1
m

)) ≤ inf
k

fm
k (γ, η),

(2) inf
k

fm
k (γ, η) ≤ d

(
η1, η2 + H (γ)+

⋂
η3 −H (γ)+ + U

(
1

m + 1

))
.

An application of the parallelogram law shows that the left hand side
of (1) converges to f(γ, η) as m → ∞.

1.2.3. LEMMA. Let ρ ∈ H , η, η1, η2 ∈ H J be such that η1 ≤ η ≤ η2

and ||ρ − η|| = d(ρ, [η1, η2]). Then

||ρ(γ) − η(γ)|| = d(ρ(γ), [η1(γ), η2(γ)]) a.e.
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PROOF. Let Ω be the set of (γ, ηγ) ∈ Γ ×K such that

(1)
{

d(ηγ , [η1(γ), η2(γ)]) = 0
d(ρ(γ), [η1(γ), η2(γ)]) = ||ρ(γ) − ηγ ||

}
if η1(γ) ≤ η2(γ),

(2) ηγ = 0 if η1(γ) �≤ η2(γ).

Ω is measurable by Lemma 1.2.2. Hence γ → ηγ is measurable by [9,
Theorem 4] and has range in [η1, η2]. Clearly∫

||ρ(γ) − ηγ ||2dμ(γ) ≤
∫

||ρ(γ) − η(γ)||2dμ(γ)

and therefore ηγ = η(γ) a.e.

For ρ ∈ H+ let F (ρ) = ∪�∈N [0, �ρ] denote the face generated by ρ.
For any face F ⊂ H+ let PF denote the projection onto span CF . PF

commutes with J and L . The following statement is taken from Bös’s
paper [2].

1.2.4. LEMMA. Suppose F is a closed face in H+.

(a) There exists ρ ∈ F such that F = F (ρ).

(b) ξ ∈ F ⇔ ξ(γ) ∈ F (ρ(γ)) a.e.

(c) (PF η)(γ) = PF (ρ(γ))η(γ) a.e., η ∈ H .

(d) F (ρ(γ)) is a face a.e.

(e) If ρ, ρ′ ∈ H+ are such that F = F (ρ) and F⊥ = F (ρ′), then
F (ρ(γ))⊥ = F (ρ′(γ)) a.e.

PROOF. Let ρk ∈ F be such that ||ξ+
k − ρk|| = d(ξ+

k , F ), k ∈ N . We
define ρ =

∑
2−k||ρk||−1ρk, where the summation is taken over all k

with ρk �= 0. Fix ξ ∈ F . For a fixed k ∈ N , set

N = {γ | ||ξ+
k (γ) − ρ(γ)|| > ||ξ+

k (γ) − ξ(γ)||}.
Then ρ′ = (1 − χN )ρk + χNξ ∈ F and ||ξ+

k − ρ′k|| < ||ξ+
k − ρk|| unless

μ(N) = 0. Consequently

(1) ||ξ(γ) − ρk(γ)|| ≤ 2||ξ(γ) − ξ+
k (γ)|| a.e.



566 L.M. SCHMITT

Now let 0 ≤ η� ≤ � · ρ be such ||ξ − η�|| = d(ξ, [0, �ρ]). Lemma 1.2.3
and (1) show that γ �→ ||ξ(γ) − η�(γ)|| is a decreasing sequence of L2-
functions which converges pointwise to zero a.e. Lebesgue’s Theorem
shows that ξ = lim η�. These arguments show (a) and (b). In order
to show (c) one can assume that η ∈ H J and then apply a similar
argument using the order intervals [−�ρ, �ρ]. To show (d) consider
the set Ω of (γ, ξ, η) ∈ Γ × K 2 with ||ξ|| ≤ 1, η �= 0; η, ξ − η ∈
H (γ)+; inf� d(ξ, [0, �ρ(γ)]) = 0; inf� d(η, [0, �ρ(γ)]) > 0. Ω is measurable
by Lemma 1.2.2. Its projection on Γ, N = PΓ(Ω), is measurable by [9,
Theorem 4]. Let Ω′ = Γ\N×{(0, 0)}∪Ω. By [9, Theorem 3] there exist
measurable functions ξ1, η1 such that (γ, ξ1(γ), η1(γ)) ∈ Ω′ for γ ∈ Γ.
Hence, by (b), ξ1 ∈ F, 0 ≤ η1 ≤ ξ1 ⇒ η1 ∈ F ⇒ μ(N) = 0. Finally, to
prove (e) let Ω be the set of (γ, η) ∈ Γ ×K such that

0 < ||η|| ≤ 1; η ∈ H (γ)+; 〈η, ρ(γ)〉 = 0; d(η, F (ρ′(γ))) > 0.

As in the proof of (d) the projection of Ω on Γ is a μ-null set.

1.3. Direct integrals of matrix ordered Hilbert spaces. If V is a set,
then we shall denote the set of n × n matrices with entries in V by
Mn(V ), n ∈ N . If V is a vector space we shall also write Vn for
Mn(V ). Let Γ, μ,H (γ) and H be as in 1.2, without the additional
assumptions C1 and C2. Then {H (γ)n, γ ∈ Γ} is a measurable field of
Hilbert spaces and H n can be identified with∫ ⊕

γ

H (γ)ndμ(γ).

Let {H+
n ⊂ H n, n ∈ N } be a family of selfdual cones such that

(H ,H+
n , n ∈ N ) is a matrix-ordered space. We shall say that {H+

n , n ∈
N } is compatible with Γ if each projection in L is completely positive.
By [12, Theorem 2.2] it is equivalent to say that L is in the center
of the matrix multiplier algebra [12, Definition 2.1] of (H ,H+

n ). [12,
Lemma 1.3] shows that the antilinear symmetry J n associated with
H+

n equals J 1 ⊗ st , where st is the adjoint operation on Mn(C ).

Let {ξk
n, k ∈ N } be an enumeration of the elements in (1 +

J n)Mn({ξ0
k, k ∈ N }) for a fundamental sequence {ξ0

k, k ∈ N } in H .
We define, for γ ∈ Γ,

H (γ)+n = {α∗ξk+
m (γ)α|α ∈ Mm,n(Q ); m, k∈ N },
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where Mm,n(Q ) denotes the m × n matrix over Q . The construction
in the proof of Lemma 1.2.1 shows that (H (γ),H (γ)+n ) is a matrix
ordered Hilbert space a.e. In this situation we shall write

(H ,H+
n ) =

∫ ⊕

Γ

(H (γ),H (γ)+n dμ(γ)

and call this a direct integral of matrix-ordered Hilbert spaces with
selfdual cones.

2. Direct integrals of standard forms.

2.1. THEOREM. let (Γ, μ) be a σ-finite measure space and let

(H ,H+
n ) =

∫ ⊕

Γ

(H (γ),H (γ)+n )dμ(γ)

be a direct integral of matrix-ordered Hilbert spaces with selfdual cones.
Let M respectively M γ, denote the matrix multiplier algebra of
(H ,H+

n ), respectively (H (γ),H (γ)+n ), for γ ∈ Γ\N , where N is the
μ-null set for which M γ is not defined. Let M γ = C for γ ∈ N .
Then the following statements are equivalent:

(a) (M ,H ,H+
n ) is a matrix-ordered standard form [12, Definition

1.4]

(b) (M γ ,H (γ),H (γ)+n ) is a matrix-ordered standard form a.e. If
one of the above conditions is satisfied then

M =
∫ ⊕

Γ

M γdμ(γ).

PROOF. We may assume without loss of generality that the additional
conditions C1 and C2 hold.

(a) ⇒ (b). L is in the center of M . By [5, Lemma 4] M can
be disintegrated into a direct integral of W ∗-algebras M (γ), γ ∈ Γ.
M ′ = J MJ implies M (γ)′ = J (γ)M (γ)J (γ) a.e. To obtain
(b) and the last statement of the theorem it is sufficient to show that
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M (γ) = M γ a.e. Let {xk, k ∈ N } be a countable ∗-subalgebra of
M over Q such that M (γ) = {xk(γ), k ∈ N }′′. Then xk(γ) ∈ M γ

a.e., since M is the matrix multiplier algebra of (H ,H+
n ). Kaplansky’s

density theorem shows that M (γ) ⊂ M γ . Now, by [12, Theorem 2.2],

M (γ)′ = J (γ)M (γ)J (γ) ⊂ J (γ)M γJ (γ) ⊂ M ′
γ ⊂ M (γ)′ a.e.

(b) ⇒ (a). Suppose that F = F⊥⊥ is a face in H+
n and η ∈

PFH n∩H J
n . We apply Lemma 1.2.4: let ρ ∈ F be such that F = F (ρ);

then η(γ) ∈ PF (ρ(γ))H (γ)n ∩ H (γ)Jn and F (ρ(γ))⊥⊥ = F (ρ(γ)) a.e.
By [11; Theorem 1.3, Lemma 1.5] it follows that η(γ)+ ∈ F (ρ(γ)) a.e.
Hence η+ ∈ F . Applying [11; Theorem 1.3, Lemma 1.5], again we are
done.

The following two theorems include the main results of Bös [2]. Recall
that, for a selfdual cone H+ in a Hilbert space H ,

D (H+) = {δ ∈ B (H )| exp(tδ)H+ = H+ ∀t ∈ R }.

2.2. THEOREM. Let (Γ, μ) be a σ-finite measure space and let

(H ,H+) =
∫ ⊕

Γ

(H (γ),H (γ)+)dμ(γ)

be a direct integral of ordered Hilbert spaces with selfdual cones. Then

(a) D (H+) = {δ =
∫ ⊕
Γ

δ(γ)dμ(γ) | δ(γ) ∈ D (H (γ)+) a.e.}
(b) H+ is homogeneous [3, Definition 5.1] and orientable [3, Defini-

tion 4.1.1] if and only if the following conditions hold:

(1) H (γ)+ is homogeneous and there exists an orientation Iγ on
D (H (γ)+)/Z(D (H (γ)+)) a.e.

(2) If δ =
∫ ⊕
Γ

δ(γ)dμ(γ) ∈ D (H+), then there exists a measur-
able, bounded field δi(γ) ∈ D (H (γ)+) such that δi(γ) ∈ Iγ(δ(γ) +
Z(D (H (γ)+))) a.e.

PROOF. Assume without loss of generality that the additional condi-
tions C1 and C2 hold.



W ∗-ALGEBRAS 569

(a). If δ ∈ D (H+), p ∈ L is a projection and ξ, η ∈ H+, then
〈δpξ, (1 − p)η〉 = 0 by [6, Theorem 3]. Hence pδ = pδp = δp and δ

is decomposable. Also p ∈ Z(D (H )+). If δ =
∫ ⊕
Γ

δ(γ)dμ(γ), then by
[6, Theorem 3] and Lemma 1.2.1 there exists λ0 > 0 such that, for all
λ ∈ Q with |λ| > λ0, (λ− δ(γ))−1 is positive a.e. This shows ⊂ in (a).
The converse inclusion follows directly from [6, Theorem 1(iii)].

(b). Suppose that H is homogeneous and orientable. Let M be
the W ∗-algebra with standard form (M ,H ,J ,H+), which exists by
[3, Theorem 5.2]. The proof of (a) and [3, Proposition 4.10] shows
that L ⊂ M . Hence M =

∫ ⊕
Γ

M (γ)dμ(γ) is decomposable by
[5, Lemma 4]. Now one checks that (M (γ),H (γ),J (γ),H (γ)+) is
a standard form a.e. This shows (1). If δ ∈ D (H+) then δ =
x + J xJ , x ∈ M , by [3, Theorem 3.4]. Let x =

∫ ⊕
Γ

x(γ)dμ(γ) and
δi(γ) = ix(γ) + J (γ)ix(γ)J (γ). δi(γ) satisfies (2). Conversely, H+

is orientable if (1) and (2) are satisfied. Let F be a closed face in
H+. By Lemma 1.2.4 there exists ρ and ρ′ in H+ such that F = F (ρ)
and F⊥ = F (ρ′). Let ξ, η ∈ H+ with ξ⊥η. By Lemma 1.2.4 and [6,
Theorem 1(iii)] applied to H (γ)+, we obtain

〈PF ξ, η〉 =
∫

Γ

〈PF (ρ(γ))ξ(γ), η(γ)〉dμ(γ)

=
∫

Γ

〈PF (ρ′(γ))ξ(γ), η(γ)〉dμ(γ) = 〈PF⊥ ξ, η〉.

Hence H+ is homogeneous, again by [6, Theorem 1(iii)].

2.3. THEOREM. Let (Γ, μ) be a σ-finite measure space and let

(M, H) =
∫ ⊕

Γ

(M(γ), H(γ))dμ(γ)

be a direct integral of W ∗-algebras {M(γ), γ ∈ Γ} acting on Hilbert
spaces {H(γ), γ ∈ Γ}. Let (M ,H ,H+

n ) be the matrix-ordered standard
form of M . Then there exists a direct integral of matrix-ordered
standard forms (M (γ),H (γ),H (γ)+n ) of M(γ) such that

(M ,H ,H+
n ) =

∫ ⊕

Γ

(M (γ),H (γ),H (γ)+n )dμ(γ).
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If φ, respectively φγ, is the W ∗-isomorphism between M and M ,
respectively M(γ) and M (γ), then

φ =
∫ ⊕

Γ

φγdμ(γ) [4; §II.3, Definition 3].

PROOF. As Bös [2] points out, [4; II.3, Proposition 11] remains
valid under the above hypothesis by virtue of [5, Lemma 4]. Now
the existence of the disintegration

(M ,H ) =
∫ ⊕

Γ

(M (γ),H (γ))dμ(γ)

follows, as well as the last statement in the theorem. §1.3 and Theorem
2.1 show that the matrix-order automatically disintegrates as stated.
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algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121 155.

4. J. Dixmier, Von Neumann algebras, North Holland. Amsterdam-New York-
Oxford, 1981.

5. G.A. Elliott, An extension of some results of Takesaki in the reduction theory
of von Neumann algebras, Pacific J. Math. 39 (1971), 145 148.

6. D.E. Evans and H.Hanche-Olsen, The generators of positive semigroups, J.
Funct. Anal. 32 (1979), 207 212.

7. U. Haagerup, The standard form of von Neumann algebras, Math Scand. 37
(1975), 271 283.

8. R.C. Penney, Selfdual cones in Hilbert space, J. Funct. Anal. 21 (1976),
305 215.

9. M.F. Sainte-Beuve, On the extension of von Neumann-Aumann’s theorem, J.
Funct. Anal. 17 (1974), 112 129.

10. S. Sakai, C∗-algebras and W ∗-algebras, Springer Verlag, Berlin-Heidelberg-
New York, 1971.

11. L.M. Schmitt, Characterization of L2(M ) for injective W ∗-algebras M .
Math. Scand. 57 (1985), 267 280.



W ∗-ALGEBRAS 571

12. and G. Wittstock, Characterization of matrix-ordered standard form
of W ∗-algebras, Math. Scand. 51 (1982), 241 260.
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