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A CLASSIFICATION OF SOME NONCOMMUTATIVE TORI
BERNDT BRENKEN

ABSTRACT. A detailed description of the isomorphism
classes of rational nocommutative tori is given using a clas-
sification of rational antisymmetric bicharacters on Z4. A
canonical form for such a torus is presented. An illustration
of the extent to which Kq can fail to distinguish the isomor-
phism classes of these tori is also given.

Isomorphism classes of the canonical smooth subalgebras of
the C*-algebras associated with an arbitrary antisymmetric
bicharacter p on Z3 are in a one-to-one correspondence with
the isomorphism classes of p. The same is true for the C*-
algebras themselves except in some cases where the possibility
exists that (at most) two different bicharacters on Z3 may
yield isomorphic C*-algebras.

1. In the following G denotes the abelian group Z%,d € N,d > 2.
For a,b € Z let (a) denote the ideal generated by a, write alb if
(b) C (a) and write (a,b) for the greatest common divisor of a and
b. The quotient ring Z /(a) is denoted Z,. Let T denote the group
{zeCllz]=1}. If f: X - Tis amap, f : X — T is the map
defined by f(z) = f(z) (z € X). If A is an abelian group, the (group
of) characters of A, Hom(A,T) is also written A.

To each p € Hom(G A G, T) associate a C*-algebra A,, the universal
C*-algebra generated by d unitaries uq, ... ,uq subject to the relations
uju; = p(e; A ej)uuj ({e1,-..,eq} the standard basis of G). Denote
by A7° the dense subalgebra of smooth elements with respect to the
canonical action of T (see [3] and references therein). The algebra A,
has a trace 7 which induces a homomorphism 7, : Ko(4,) = R. This
homomorphism does not depend on the trace chosen [5]. If p is rational,
that is, range of p is a finite subgroup of T, call A, a rational d-torus.
For ¢ € [0,1] and p : A2Z2 — T defined by p(e; A ez) = exp(2mwic),
denote the C*-algebra A, by A, the usual rotation algebra [7, 8].

Given an abelian group H, two elements hq, hy of Hom(G A G, H) are
isomorphic or congruent (written hy ~ hg) if there is an o € Aut(G)
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with hi(a A @) = hy. The C*-algebras associated with congruent
characters of A2G are isomorphic via an isomorphism restricting to
an isomorphism of their canonical smooth subalgebras.

If the rank of G is two or if p is rational, isomorphic C*-algebras
give rise to congruent characters [7, 8, 4]. In the rational case more
is actually true, namely, a certain functor is invertible [4, 2]. In
each of the following three cases isomorphic smooth subalgebras yield
isomorphic characters: rankG is three and p is nondegenerate; rankG is
four and p is injective; rankG is arbitrary and p has generic Diophantine
properties [2, 3].

Let p be a character of GAG. Since G is finitely generated, range(p) is
isomorphic to T'® F,., with T a finitely generated torsion subgroup of T’
and F;. a free rank r subgroup of T, r € N (. Fix such an identification
for each isomorphism class of p and refer to F,. as the free part of
range(p). There is an n € N with 7' = {exp(2min~'p)|p€ Z} ~ Z,,.
Call r the rank of p (= rank(p)) and n the torsion order of p (= ord(p)).
Note rank(p) = 0 if and only if p™ is the trivial character for n = ord(p)
if and only if p is rational.

Since G A G is free, there is a homomorphism ¢ : G A G — R with
p = exp(2mig). If ¢’ € Hom(GAG,R ) and p’ = exp(27i¢’),then p ~ p’
if and only if there is an a € Aut(G) with ¢(a A a) = ¢’ mod Z. If
{exp(2mib;)|j = 1,...,r} is a basis of F, and 6y = n~!, there are
i, € Hom(GAG,Z),i=0,1,...,r, with p = exp(2mi(fopo + - - - +
0,¢,)) and p' = exp(2mi(fopy + - -+ + 0,¢..)). It follows that p ~ p’ if
and only if there is an o € Aut(G) with p;(aAa) =}, i =1,...,r,
and mpo(a A ) = my[, where m : Z — Z,, is the canonical quotient
map.

Thus the isomorphism class of a character is determined by the simul-
taneous isomorphism class of certain finite sets {mpo, ¥1,... , ¢} with
i € Hom(G A G,Z) and mpy € Hom(G A G,Z,). The isomorphism
class of a single element of Hom(GAG,Z ) or Hom(GAG,Z ) is known
([6] and [1] respectively).

2. Given p € Hom(G A G,T), p is rational if and only if there
is a ¢ € Hom(G A G,Q) with p = exp(2mip). Let L(p) = {g €
G|p(gNG)=1} ={g€ G|o(gNG) € Z}, arank d free submodule of
G. The invariants of the finitely generated torsion Z-module G/L(p)
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completely describe the isomorphism class of G/L(p) and are given by
a sequence of decreasing ideals of Z .

The sequence of invariants is of the form (p2s) = (p2s—1) 2 -+ 2
(p2) = (p1). To see this, let (n) denote the smallest ideal occuring as
an invariant. Then n = ord(p),ny € Hom(G A G,Z) and there is an
a € Aut(G),a1,... ,ar € N with aq]az|--|ag,2k =dor 2k =d — 1
and np(aAa) = Zle a;ezi—1 N ey; [6]. If 6; = (a;,n), we have §; =1
(since range(p) is Z,,) and 6;|0;41,1 < i <k —1. Let n; = n6j_1 and
s =max{j|d; < n}. Then

G/L(p)=Zp, XZp, X+ XLy, XZL,,.

If d = 2k + 1 define C(p) = 0. If d = et C(p) be the
element of Z, given by C(w(ny)) = w(Pf(n ) f (5,;11) where
m: Z — Z, [1]. Since £Pf (n(p) = Pf(np(a A a)) = -ay, and

(ajéj_l,nj) = 1 we have (a;6; Long) = 1, (Pf(np)éyt - 5k1,nk) =1
and (Pf (np)d;t-- 61 ,n) = &, = nlnkl. In other words, if a is a
representative of C(p) then (a,n) = nin, . Note that C(p) may be
rewritten as 7(Pf (p)nkd; -6, 10%) = m(nn, 'Pf (¢) H?Zl nj). Thus,
once n is known, we need only compute the class of nj 'Pf (ap)H?Zlnj
mod Z, which involves knowing n; and the product of all the n;, not
necessarily each n;. This will be useful in the proof of Corollary 3.

It is clear from §1 that the isomorphism class of p is the same as the
isomorphism class of m(ny). The following theorem is an immediate
consequence of results in [1] and [4].

THEOREM 1. Assume p,p' € Hom(G A G,T) are rational. Then A,
is isomorphic to A, if and only if G/L(p) and G/L(p") are isomorphic
and C(p) = £C(p).

COROLLARY 2. Given A, with p a rational character of A2Z 4,
there is a unique sequence of positive integers ni, ... ,ns with 2s <
d,n; = ord(p),1 < ng|---|n1, and a unique integer p,0 < p < ny/2
with ning' = (p,n) if 2s = d;p = nin, ' otherwise, such that A, is
isomorphic to A, -1 ® A, 1 ® @A 1 ®A, 1 ® C(T-2).

1 2 s—1 1
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PROOF. Let n = ord(p). We have shown that there is a unique
sequence ni,...,ns of positive integers such that the invariants of
G/L(p) are (ns) = (ns) 2 -+ 2 (n1) = (n1) with n; = n. Define p = 4
if 2s < d. If 2s = d, let p be the unique integer with 0 < p < ny/2 and
7(p) = £C(p). Note (p,n) = nin;'. Define p’ € Hom(G A G, T) to be
exp(2mip') with

/ -1 -1 -1
© =n; etNex+---+n, 1ez,_3Neas_2+ png ezs_1 Aegs.

Then G/L(p') and G/L(p) are isomorphic and C(p) = £C(p"). Theo-
rem 1 implies A, and A,/ are isomorphic. Finally, A, is isomorphic to
the above tensor product of rotation algebras. O

COROLLARY 3. Let A1 = ®{A,, 1 ® C(T") and Ay = @A, ®
C(T°) with integers 0 < s; < t;,0 < ¢; < rj, 1 = (s4,t3) = (gi,73) and
b,c € {0,1}. Then A is isomorphic to A, if and only if

(i) 20 +b=2k+c (=4d).
(ii)
Zy X2y X XLy XLy 22y XLy X o Xly, XLy,.

(iii) If d is even (so b = ¢ = 0), then
k k

Si(tl,tz,.. . ,tk,)71 = ini(Tl,. .. ,T‘k,)71 mod Z .
= i=1

=1

PROOF. If ¢; € Hom(A?Z2** Q) and ¢, € Hom(A2Z?!+¢ Q)
are defined as ¢p; = Ze siti_legi_l A ez, 3 = Zk qiri_legi_l A e,
then A; ~ A, for p; = exp(2mip;), j = 1,2. Thus A; and
A are isomorphic if and only if p; is isomorphic to p;. This is
equivalent to 2¢ +b = 2k + ¢ (= d),Z?%/L(py) and Z?/L(p,) are
isomorphic (a restatement of condition (ii)) and C(p1) = £C(p2).
Since C(p1) = C(p2) = 0 unless d is even, we need only consider
the case when d is even, in other words, when b = ¢ = 0. To show
C(p1) = £C(p2), it suffices to show

k k
ny 'Pf (1) an = £n; 'Pf (p2) an mod Z,
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where n; are described in the discussion preceding Theorem 1. However,
ng = (t1,...,tg) = (r1,...,7) (the greatest common divisor of this
set of integers) and I*n; = II*t; = O*r;. Thus

k k
n, 'Pf (¢1) Hn,- = Hsi(tl, o ty) 7t

and
k k

n,:le(gog) Hnl = H%’(Tl:--- )"t O

The condition that b,c € {0,1} is not a restriction, since s; is
allowed to be zero and Ag = C(T?). Condition (ii) above implies that
ord(p1) = ord(p2); thus the least common multiple of the ¢; is equal to
the least common multiple of the r;.

Thus, for p a prime, the algebras A4, = ®ZAS”]71 and Ay = ®€Aqip71
are isomorphic if and only if the number of ¢ with (s;,p) = p is equal
to the number of i with (g;, p) = p and II’s; = +11%q; mod pZ.

3. Given arbitrary p € Hom(G A G,T) with p = exp(2wip) and
¢ € Hom(G AG,R), there is an identification of Ko(4,) with A®*"Z?
mapping the class of the unit to 1 in A°Z¢ = Z such that the map 7,
becomes the map exp, ¢ ([6]). An isomorphism « : K¢(A4,) = Ko(A4,)
is trace preserving if 7 a = 7, for 7,7’ traces on A,, A, respectively.

THEOREM 4. Let A, be a rational d-torus with trace 7. There is
abe [0,1]NQ and a trace preserving isomorphism « : Ko(A1) —
Ko(Ap ® C(T9%)) mapping the class of the unit to the class of the
unat.

PROOF. Since A; is a rational d-torus, there is a b € [0,1] N Q
with bZ = 7.(®,50A*"Z%). Let Ay = Ay, ® C(T92) and 7 be a
trace on Ajy. Choose b; € ®r>0A?"Z? with Tixb; = b, 7 = 1,2,
Since bZ is free, the one element sets {b;}, j = 1,2, can each be
extended to a basis of ®,~oA%"Z?. Writing b = ¢m~! with (¢,m) = 1,
it follows that range (7j;.) = Z + bZ = m 'Z and that the one
element set {¢ —mb;} of ker(7;,) can be extended to a basis of ker(7;,),
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j = 1,2. Choosing u,v € Z with mv + fu = 1,7, (ub; + v) = m~ %
Thus Ko(Aj) ~ ker(rj.) @ Z (ubj + v). It follows that there is an
isomorphism « : K¢(A1) — Ko(Asz) with a(l — mby) = £ — mby,
a(ker(r14)) = ker(724) and a(uby + v) = uby +v. Since u(¢ — mb;) =
1 —mv —mub; =1 — m(ubj + v), it is immediate that a1l =1. O

4. If G = Z3, many considerations are simplified. For ex-
ample, if ¢ € Hom(A?Z3 R) with p = exp(2mip) then, since
AZ3 = 0, .(Ko(4,)) = expp(Z & A?Z3) = Z + range(p) and
exp(2mity, (Ko(A,))) = exp(27i range(p)) = range(p). Thus range(p)
is easily recovered from K(A,) and 7y, so range(p) = range(p’) if there
is a trace preserving isomorphism of Ky(A4,) to Ko(A,).

The canonical identification of A2Z? with Z3 allows an element
p € Hom(A%Z3,T) to be viewed as a character X, of Z3. Since the
action of Aut(Z?) on A%2Z3 becomes an action of SL(3,Z) on Z?3, we
have p ~ p' if and only if there is a 8 € SL(3,Z ) with X, = X,». These
classes are easily computed. Recall that X, X' € Z™ are isomorphic
(write X ~ X') if there is a § € Aut(Z™) with x5 = X'.

The isomorphism classes of characters on Z™ are determined in
[9]. In most cases the range of a character completely determines its
isomorphism class. For the sake of completeness and of providing an
alternate approach, we give the essentials below.

Since the range of a character X of Z™ is isomorphic to Z" &
Z,,r,n € Ng, we may view X as a map of Z™ onto Z" ® Z,,. The
submodule ker(X) of Z™ has invariants aq,... ,as with aj]as]|---|as
and Zg, X -+ X Zgy, X Z™ % ~Z™/kerXx ~ Z" & Z,. The torsion
subgroups are isomorphic, and, since Z, X Z. ~ Z, if and only if
(b,¢) =1 and d = be, it follows that a; =--- =as_1 = 1,as = n. Thus
there is a basis {e1,... ,en} of Z™ with {e1,... ,es_1,nes} a basis of
ker(X). Note that X(es) is a generator of Z,,. It is possible to arrange
that {X(est+1),...,X(em)} is any given basis of Z", since X induces an
isomorphism of Z ™ /ker(X) modulo its torsion subgroup with Z".

If n = 1,ker(X) is complemented and thus range(X) is a complete
invariant for the isomorphism class of x. In fact, range(X) is a com-
plete invariant whenever 7 < m — 1 or, equivalently whenever s > 1.
In this case it is straightforward to see that there isa 8 € SL(m, Z ) with
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B(ker(X)) = ker(Xx) and B(e;) = e; for i # s — 1, s such that X(8(es)) is
the generator 1 of Z ,.

If r =m—1and n > 1, we need the element ¢(Xx) = {£X(e;1)} (where
X(e1) is the generator of Z,, described above, since s = 1), defined in
[10]. In this case range(X) and ¢(X) are complete invariants for the
isomorphism class of X. We shall quickly show #(X) is an invariant. For
B € Aut(Z™) we have just seen that there is a basis {f1,..., fm} of
Z™ with nf; a basis of ker(X3). Choose v € Aut(Z™) with y(e;) =
B(f). 16 7(ex) = 37, 11565, 0 = X(n(9(er))) = 7y nx(e;) and
ny1; = 1, = 0 for § > 2. Since dety = £1, it follows that v;; = %1
and X(B(f1)) = X(v(e1)) = £X(e1).

Ifr <m—1lorr=m—1andn = 1it is easily verified that X3 = x’ for
afB € Aut(Z™) if and only if X' = X’ fora 8’ € SL(m,Z),x, X' € Zm.
If m is odd then X ~ X’ if and only if there is a 8 € SL(m,Z) with
X8 =x"or XB=X.

THEOREM 5. Assume p1,pe € Hom(A?Z3,T). If A, and A,, are
1somorphic then p1 ~ pa or p; =~ pa.

PROOF. It is enough to show that if A, and A,, are isomorphic
then X; ~ X2 (where X; is the character defined by p;,j = 1,2). Let
7; be a trace on A,,,j7 = 1,2. The isomorphism of algebras induces
a trace preserving isomorphism o : Ko(A4,,) — Ko(A,,) mapping 1
to 1. It is clear from the above discussion that it suffices to prove
t(X1) = t(X2) if rank(p1) = 2 and ord(p1) = n > 1. It is also clear that
if t(X;) = {#w; mod nZ} then there is a basis {exp(2mif;)| k = 1,2}
of the free part of range(p;), a basis {ex(j) A e;(J)|k < i < 3}
of A’Z® and ¢; € Hom(A?Z3,R) defined by ¢;(e1(j) A e2(j)) =
win™t pi(e2(5) Aes(s)) = 01,0i(es(j) Aei(j)) = 62 such that p; =
exp(2mip;),j = 1,2. Identify Ko(A,,) with Z & A*Z? in such a way
that 7j, = 1@ ¢;,5 =1,2.

Since « preserves the trace, a(ker(m7.)) = ker(rm,) for m: R — F
(a group homomorphism), in particular for 7 : R — R/Q, the
canonical quotient map. Thus « is an isomorphism (mapping 1 to 1) of
the rank two abelian groups ker(n7;.) = Z @ Zei(j) Aea2(j),5 = 1,2,
and a(e1(1) Aez(1)) = ntea(2) Aez(2) for some n € Z. It follows that
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exp(2miwan 1) = exp(2miTa.(e1(2) A €2(2)))

= exp(£2mita. (n £ e1(2) A e2(2)))

= exp(E2mita.a(er(1) A ea(1)))
xp(£2miT14(e1(2) A e2(2)))

= exp(+2miwin ) and t(X1) = t(X2). O

Il
@

Using the remark preceding Theorem 5 we may also conclude that if
p,p € Hom(A%Z?3 T) and rank(p) < 1 or rank(p) = 2 with ord(p) =
then A, is isomorphic to A,, if and only if p ~ p'.

COROLLARY 6. Assume p,p' € Hom(A*Z?,T). Then A is isomor-
phic to A%} if and only if p ~ 0.

PROOF. If p is nondegenerate this is contained in [2]. Since p is
nondegenerate if and only if rank(p) > 2, consider p with rank(p) < 1.
An isomorphism of Ap° with A%? extends to an isomorphism of 4, with
A, (2], so the comment preceding the Corollary shows p =~ p’. 0

It would be of interest to know if A, is isomorphic to A; for some
p € Hom(A2Z3,T) with p % p. If so, it provides an interesting example
of a C*-algebra with nonisomorphic differential structures. It is known
that the dimension range fails to distinguish the algebras A, and A;
for such p [2].
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