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1. Introduction. In this article, we will be concerned with various
aspects of comparison theory for idempotents (or finitely generated
projective modules) over unital rings, particularly over unital C∗-
algebras.

The usual way equivalence and comparison is studied is via K-theory,
which involves “stabilizing” the relations. There is a very extensive and
powerful body of machinery allowing the computation of the K-groups
of many rings; the problem is then to relate the K-theory data back
to the actual structure of the ring and its projective modules. This
process has become known as nonstable K-theory.

We will discuss several aspects of nonstable K-theory and develop
some new relationships based on results in the theory of abelian
semigroups. Then we will apply these results to solve nonstable K-
theory problems for certain “rationalized” rings. Actually, a majority
of the paper is devoted to developing the semigroup theory; in fact, a
more appropriate title might be “applications of abelian semigroups in
algebraic K-theory.”

1.1 Review of K0-Theory. Let us first give a very brief review of the
construction of K0(A) for a unital ring A, in order to establish notation.
A much more complete treatment of the subject can be found in [3].

Definition 1.1.1. Let p and q be idempotents in A. p ∼ q if there
are x, y ∈ A with xy = p, yx = q. p ≺ q if p is equivalent to an
idempotent r with qr = rq = q and r �= q. p � q if p ≺ q or p ∼ q.
A is finite if 1A �≺ 1A; A is stably finite if the n × n matrix algebra
Mn(A) is finite for all n. M∞(A) is the (nonunital) ring lim−→Mn(A),
where Mn(A) is embedded in Mn+1(A) in the upper left-hand corner,
extended by zeros.
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Recall that there is a one-to-one correspondence between equivalence
classes of idempotents in M∞(A) and isomorphism classes of finitely
generated projective modules over A. If A = C(X) for a compact
Hausdorff space X, then these classes are also in one-one correspon-
dence with the isomorphism classes of complex vector bundles on X.
Each of these sets has a natural operation of “direct sum,” making it
into an abelian semigroup.

Definition 1.1.2. V (A) is the semigroup of equivalence classes of
idempotents in M∞(A), or of isomorphism classes of finitely generated
projective modules over A. V0(A) is the subsemigroup of nonzero
elements in V (A).

V (A) has an identity [0], but V0(A) does not have an identity in
general. (Note, however, that V0(A) can have an identity (1.1.3(b)).)

Examples 1.1.3. (a) Let A be the integers Z or any field (or, more
generally, any PID.) Then V (A) is isomorphic to the additive semigroup
of nonnegative integers, and V0(A) is isomorphic to the natural numbers
N.

(b) Let A be the Cuntz algebra O2 [3, 6.3.2]. A is not finite.
V (A) is isomorphic to the semigroup J with elements {0, 1}, with
0+0 = 0, 0+1 = 1+0 = 1+1 = 1. V0(A) is the one-element semigroup,
which is a group. (Actually, if A is any purely infinite simple unital
C∗-algebra, then V0(A) is a group [7].)

We define K0(A) to be the Grothendieck group of V (A) (or of V0(A))
[3, 1.3]. (Note: the subscript 0 in K0 has a completely different
meaning than the subscript in V0.) The semigroups V (A) and V0(A)
need not have cancellation, even if A is commutative, so the natural
homomorphism φ : V (A) → K0(A) is not generally injective. If p and
q are idempotents in matrix algebras over A, then [p] = [q] in K0(A) if
and only if p and q are stably equivalent, i.e., if there is an idempotent
r with p ⊕ r ∼ q ⊕ r.

We can put a preordering on K0(A) by taking K0(A)+ to be φ(V (A)).
This is a partial ordering if A is stably finite. This preordering
determines stable comparability of idempotents, i.e., [p] ≤ [q] in K0(A)
if and only if there is an r with p ⊕ r � q ⊕ r.
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1.2. Nonstable K-Theory. Probably the central question in nonstable
K-theory is

Question 1.2.1. Let p and q be idempotents in M∞(A) which
are stably equivalent [respectively stably comparable]. Under what
conditions does it follow that p and q are equivalent [respectively
comparable]?

One can more specifically ask whether a given ring A has cancellation
or strict cancellation:

Definition 1.2.2. A has cancellation if p ⊕ r ∼ q ⊕ r for some r
implies p ∼ q. A has strict cancellation if p ⊕ r ≺ q ⊕ r implies p ≺ q.

Cancellation implies strict cancellation, but the converse is probably
false (cf. 2.1.6.) A ring with strict cancellation must be stably finite;
but even a commutative ring need not have strict cancellation.

A has cancellation if and only if the semigroup V (A) has cancellation.
If A is stably finite, then A has cancellation if and only if V0(A) has
cancellation (but see 1.1.3(b).)

Another nonstable K-theory question for C∗-algebras is

Question 1.2.3. Let A be a unital C∗-algebra, U1(A) its unitary
group, U1(A)0 its connected component of the identity, and μ1 the
canonical homomorphism from U1(A)/U1(A)0 to K1(A) [3, §9]. Under
what conditions is μ1 injective? When is μ1 surjective?

In addition, there are some other important questions which are,
strictly speaking, not nonstable K-theory questions, but which have a
similar flavor. For example:

Question 1.2.4. Let A be a finite ring. Is A stably finite?
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Question 1.2.5. Let p and q be idempotents in M∞(A). Write
n · p = p ⊕ · · · ⊕ p (n times.) If n · p ∼ n · q [respectively n · p ≺ n · q],
under what conditions is p ∼ q [respectively p ≺ q]?

Definition 1.2.6. A has n-power cancellation if n · p ∼ n · q implies
p ∼ q.

A is n-unperforated if n · p � n · q implies p � q.

A is strictly n-unperforated if n · p ≺ n · q implies p ≺ q.

A is [strictly] unperforated if A is [strictly] n-unperforated for all n,
and similarly for power cancellation.

The power cancellation or unperforated property seems at first glance
to be closely related to cancellation; however, further reflection will
reveal that there are fundamental conceptual differences. The main
results of this article are that the two are nevertheless intimately
related.

Finally, the concept of stable rank [14] is important in studying
nonstable K-theory questions.

See [4] for a discussion of all of these questions and related matters
for simple C∗-algebras.

1.3. Results and final comments. The main result is that if A is
a stably finite simple ring with [strict] n-unperforation for some n,
then A has [strict] cancellation. (Actually the results are somewhat
more general.) As a consequence, we show that certain tensor products
have cancellation. In particular, if A is any stably finite simple unital
C∗-algebra and B is any simple unital AF algebra, then A ⊗ B has
cancellation. So far as I know, the results of this paper are the
first cancellation theorems which do not use some kind of stable rank
arguments.

Perhaps the most remarkable fact about the results is that essentially
no C∗-algebra theory or even ring theory is used in the proofs; the
results are easy consequences of some rather simple facts in the theory
of abelian semigroups. While the semigroup results were previously
known to specialists in that field, their relevance to nonstable K-theory
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questions does not seem to have been noticed (although Cuntz and
Pedersen have used very similar arguments in [8, 2.1 and 5.2].)

In §2 we do the semigroup theory relevant for the applications.
Actually, we do somewhat more than is necessary; the extra material
such as the theory of ordered semigroups is closely related to the work
we will need to use, and I believe its inclusion is worthwhile because
of its potential applications to other nonstable K-theory problems (cf.
[4, §6]). Then in §3 we give the applications to nonstable K-theory.
While the author and many potential readers are primarily interested in
C∗-algebras, all the results of this section work equally well in general
unital rings, and are so expressed. §4 contains some consequences in
C∗-algebra theory.

2. Some semigroup theory. In this section, we will make a
digression to develop some of the theory of abelian semigroups which
will be relevant for K-theory (we will, of course, want to apply the
results to the study of V (A) and V0(A) for a unital ring A.) Although
few, if any, of the results here are new, since most potential readers
are somewhat unfamiliar with the subject we will give a concise but
reasonably self-contained treatment of the parts of the theory we will
need.

In what follows, all semigroups are always assumed to be abelian,
and will be written using additive notation. We do not assume that
our semigroups have identities. The identity of a semigroup, if it exists,
will be denoted 0. If n ∈ N, then nx will denote x + · · ·+ x (n times.)

2.1. Basic theory of semigroups.

Definition 2.1.1. If S is a semigroup, we define a preorder < on
S, called the algebraic preordering, by setting y < x if there is a z ∈ S
with x = y + z.

The algebraic preordering is a translation-invariant preorder (transi-
tive relation) on S, but it is not in general a partial order. For example,
in the extreme case where S is a group, x < y for all x, y ∈ S. It is
convenient to think of the algebraic preordering as an “ordering” even
in the case where it is not a true partial order.
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As usual, we will write y ≤ x if y < x or y = x.

Definition 2.1.2. A semigroup S is a strict semigroup if the
algebraic preordering on S is a strict partial order.

S is a strict semigroup if and only if x+y �= x for all x, y ∈ S. A strict
semigroup can never have an identity or even an idempotent. (Note
that there are important examples of semigroups with idempotents,
such as the power set of any set with union as the operation, on which
the algebraic ordering is a nonstrict partial order.)

Example 2.1.3. If A is a stably finite unital ring, then V0(A) is a
strict semigroup.

If S is a strict semigroup and φ is the canonical homomorphism from
S into its Grothendieck group G(S), then the cancellation semigroup
φ(S) of S is also a strict semigroup. So if we set G(S)+ = φ(S) ∪ {0},
then G(S) becomes an ordered group in the sense of [3, §6]. This is
called the induced order on G(S).

Definition 2.1.4. A semigroup S is archimedean if, for any x, y ∈ S,
there is an n ∈ N such that y < nx (i.e., there is a z ∈ S with
nx = y + z.)

An archimedean semigroup is one in which no element is “infinitely
large” or “infinitely small” with respect to any other. Any group is an
archimedean semigroup. An archimedean semigroup with an identity
(or even containing an idempotent) must be very close to being a group.
See [15] for a description of the structure of archimedean semigroups.

If S is an archimedean strict semigroup, then its Grothendieck group
G(S) is a simple ordered group in its induced order. See [3, §6] for a
development of the theory of ordered groups.
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Definition 2.1.5. Let n > 1. A semigroup S is n-unperforated if
nx ≤ ny implies x ≤ y.

S is strictly n-unperforated if nx < ny implies x < y.

S has n-power cancellation if nx = ny implies x = y.

S is unperforated (etc.) if it is n-unperforated (etc.) for all n.

If S is strictly n-unperforated and has n-power cancellation, then S
is n-unperforated. The converse is false in general: Zn is unperforated
but does not have n-power cancellation, and if S = N ∪ {0, 1′}, with
0+n = n for n �= 1′, 1′+1′ = 2, n+1′ = n+1 for all other n, then S is
unperforated but not strictly unperforated since 2·1′ = 2 < 2 [2 = 2+0]
but 1′ �< 1′.

If S is a strict semigroup, then S is n-unperforated if and only if it
is strictly n-unperforated and has n-power cancellation.

If S is n-unperforated (etc.), then S is k-unperforated (etc.) whenever
k is a power of n.

Recall also that a semigroup S has cancellation if x+z = y+z for some
z implies x = y. We say S has strict cancellation if x+z < y+z implies
x < y. It is easy to see that cancellation implies strict cancellation. The
converse is false:

Example 2.1.6. Let S be the semigroup N ∪ {1′}, with 1′ + 1′ = 2
and 1′ + n = n + 1′ = n + 1 for n ∈ N. Then S has strict cancellation
but not cancellation.

It will be important for our main results to have the following notion
of “stable cancellation”:

Definition 2.1.7. A semigroup S has cancellation up to powers if
whenever x + z = y + z for some z, then kx = ky for all sufficiently
large k. S has strict cancellation up to powers if x + z < y + z implies
kx < ky for all sufficiently large k. (The minimal k may depend on x
and y.)
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Proposition 2.1.8. Let S be a semigroup.

(a) If S has cancellation up to powers, then S has strict cancellation
up to powers.

(b) If S has n-power cancellation for some n and cancellation up to
powers, then S has cancellation.

(c) If S is strictly n-unperforated for some n and has strict cancella-
tion up to powers, then S has strict cancellation.

Proof. (a). Suppose x+z < y+z. Then there is a w with x+z+w =
y + z. By cancellation up to powers, k(x + w) = kx + kw = ky for all
sufficiently large k, so kx < ky for large k.

(b). If x + z = y + z, then, by cancellation up to powers, kx = ky
whenever k is a sufficiently large power of n. But then x = y by k-power
cancellation.

(c). Nearly identical to (b).

We now come to the main result, due to Kimura and Tsai [12], which
says that an archimedean semigroup “almost” has cancellation.

Theorem 2.1.9. Let S be an archimedean semigroup. Then S has
cancellation up to powers.

Proof. Suppose x + z = y + z. We can find a, b ∈ S and m, n ∈ N
with z + a = nx, z + b = my. Then

x + nx = x + z + a = y + z + a = y + nx

and similarly x + my = y + my. So in the presence of at least n x’s or
m y’s an x may be converted to a y or vice versa. Thus, if k ≥ m + n,
then

kx = nx + mx + rx = nx + my + ry = ny + my + ry = ky.

Corollary 2.1.10. If S is an archimedean semigroup with n-power
cancellation for some n, then S has cancellation. If S is archimedean
and strictly n-unperforated for some n, then S has strict cancellation.
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Proof. Follows immediately from 2.1.9 and 2.1.8.

Finally, we have a result about unperforation which is closely related
in spirit to 2.1.9. The proof is combination of 2.1.9 with the arguments
in the proof of [4, III.2.6].

Theorem 2.1.11. Let S be an archimedean semigroup, x, y ∈ S. If
nx < ny for some n, then kx < ky for all sufficiently large k.

Proof. Fix n with nx < ny. Then nx + z = ny for some z ∈ S.
There is a j such that y < jz; if m = (n − 1)j, then, for 0 ≤ r ≤ n− 1,

mnx + ry ≤ mnx + (n − 1)y < mnx + (n − 1)jz
= mnx + mz = m(nx + z) = mny

So, for 0 ≤ r ≤ n−1, (mn−r)x+ry ≤ mnx+ry < (mn−r)y+ry. Thus,
for fixed r, we have s(mn − r)x < s(mn − r)y for all sufficiently large
s by strict cancellation up to powers (2.1.9, 2.1.8(a)). Fix s relatively
prime to n and large enough that s(mn − r)x < s(mn − r)y for all r
with 0 ≤ r ≤ n − 1.

Now suppose k ≥ smn. Write k = pn − q with 0 ≤ q ≤ n − 1;
then there is an r with 0 ≤ r ≤ n − 1 with rs ≡ q mod n. For
this r, k ≡ s(mn − r)modn, so k = tn + s(mn − r); t ≥ 0 since
k ≥ smn ≥ s(mn− r). Then tnx < tny and s(mn− r)x < s(mn− r)y,
so

kx = tnx + s(mn − r)x < tny + s(mn − r)y = ky.

Corollary 2.1.12. Let S be an archimedean semigroup. Suppose
there is an n > 1 such that S is uniquely n-divisible, i.e., for any x ∈ S
there is a unique y ∈ S with ny = x. Then S has cancellation and is
strictly unperforated.

Proof. S has n-power cancellation, so S has cancellation by 2.1.9. To
show S is strictly unperforated, suppose my < mx. Then ky < kx for
some sufficiently large k which is a power of n by 2.1.11, so ky+z = kx
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for some z. By unique n-divisibility (iterated) z = kw for some w, and
then by n-power cancellation y + w = x, y < x.

2.2. Ordered semigroups. This section will not be used in the rest
of the article, except in 2.5.5. We will extend the main result of the
previous section to certain ordered semigroups where the ordering is
not the algebraic ordering. In this section, we will work only with
strict semigroups.

Definition 2.2.1. An ordered semigroup is a semigroup S with a
strict partial order < which is translation-invariant and which extends
the algebraic ordering, i.e.:

(1) If y < x, then y + z < x + z for all z.

(2) If x = y + z, then y < x.

The ordering is well-behaved if x+z = y+z implies x+w = y+w for
all w with z < w. The ordering is strictly well-behaved if x + z < y + z
implies x + w < y + w for all w with z < w.

An ordered semigroup is necessarily a strict semigroup. An ordered
semigroup with cancellation is well-behaved; in fact, the well-behaved
[respectively strictly well-behaved] property may be regarded as a weak
form of cancellation [respectively strict cancellation].

We can also define the notions of strict cancellation, strict cancellation
up to powers, and strict n-unperforation for ordered semigroups in the
obvious way; these concepts depend of course on the order structure and
not just on the algebraic structure of the semigroup. Unlike the case of
the algebraic ordering, cancellation does not imply strict cancellation
in a general ordered semigroup (2.2.2(e)). Similarly, a well-behaved
ordered semigroup is not strictly well-behaved in general (2.2.2(f)).
And, in analogy with 2.1.6, a strictly well-behaved semigroup is not
necessarily well-behaved (2.2.2(d)), so the well-behaved and strictly
well-behaved properties are independent.

Examples 2.2.2. (a) Any strict semigroup is a well-behaved, strictly
well-behaved ordered semigroup with respect to the algebraic ordering.
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(b) More generally, if S is a subsemigroup of a strict semigroup
T , then the restriction of the algebraic ordering on T to S is well-
behaved, strictly well-behaved partial ordering on S which is not in
general the same as the algebraic ordering (for example, let T = N, S =
{n : n ≥ 2}.)

(c) As a special case of (b), let T be the semigroup of all bounded
functions from a topological space X to the positive real numbers,
with pointwise addition, and S the subsemigroup of bounded lower
semicontinuous functions. The induced ordering on S is the pointwise
strict ordering, i.e., f < g if f(x) < g(x) for all x ∈ X. Since the
difference of two lower semicontinuous functions is not generally lower
semicontinuous, this ordering is not generally the algebraic ordering. S
is denoted LSC++(X).

(d) Let J be the semigroup defined in 1.1.3(b). J is an idempotent
semigroup (one in which every element is idempotent.) Let S = J×N,
and order S by (a, m) < (b, n) if and only if m < n. S is not well-
behaved because (0, 1) + (1, 1) = (1, 1) + (1, 1) and (1, 1) < (0, 2), but
(0, 1) + (0, 2) �= (1, 1) + (0, 2). S is strictly well-behaved; in fact, it has
strict cancellation.

(e) Let S be the subsemigroup {n |n ≥ 2} of N. Order S with the
usual ordering but with the exception that 2 and 3 are incomparable.
Then S has cancellation, but not strict cancellation since 2 + 2 < 3 + 2
but 2 �< 3.

(f) It is more difficult to give an example of an ordered semigroup
which is well-behaved but not strictly well-behaved. Let S = {3} ∪
{n |n ≥ 5} ⊆ N. S is a subsemigroup. Define the order on S to be
the usual order but with the following pairs incomparable: (3,5), (6,7),
(6,8), (9,10), (9,11). S has cancellation, hence is well-behaved; but it is
not strictly well-behaved since 3+5 < 5+5 and 5 < 6, but 3+6 �< 5+6.

It is possible that example (b) is the most general well-behaved,
strictly well-behaved ordered semigroup. To attempt to prove this,
if S is an ordered semigroup, let S+ be S with a zero adjoined, i.e.,
S+ = S ∪ {0}, 0 + x = x + 0 = x for all x, 0 < x for all x ∈ S. Let
S be the semigroup with generators {[x, y]|x ∈ S, y ∈ S+, y < x} and
relations

[x, 0] + [y, 0] = [x + y, 0] for all x, y ∈ S,
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[y, 0] + [x, y] = [x, 0] for all x, y ∈ S, y < x.

Think of [x, y] as x − y. S is called the full semigroup of S.

There is a homomorphism Ψ : S → S given by Ψ(x) = [x, 0]. (S, Ψ)
has the universal property that any order-preserving homomorphism
from S into a semigroup T with the algebraic ordering factors through
S.

Definition 2.2.3. S is subalgebraically ordered if Ψ is injective and
if the ordering on S is the restriction of the algebraic ordering on S.

Because of the universal property of S, S is subalgebraically ordered
if and only if S arises as in 2.2.2(b).

It seems to be a difficult problem to intrinsically characterize subal-
gebraically ordered semigroups. An obvious necessary condition is that
the ordering be well-behaved and strictly well-behaved; it is possible
that these two conditions are also sufficient.

There is a homomorphism from S to the Grothendieck group G(S)
sending [x, y] to x − y; the composition with Ψ gives the natural
homomorphism from S to G(S). Thus if Ψ(x) = Ψ(y), then x+z = y+z
for some z ∈ S. In particular, if S has cancellation, then Ψ is
injective. (Note, however, that injectivity of Ψ is not sufficient to make
S subalgebraically ordered; see 2.2.2(f).)

Problem 2.2.4. Give necessary and sufficient intrinsic conditions for
Ψ to be injective; give conditions for S to be subalgebraically ordered.

I have been unable to find a treatment of this problem in the
literature, except for the special cases treated in the old papers [1]
and [13].

Even if S is subalgebraically ordered, S seems to be too large to be
very useful in studying S. In particular, S is very far from having
cancellation. One would hope for a quotient of S which still contains S
and algebraically induces the order on S, and which is roughly as close
to having cancellation as S.
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To understand the situation better, suppose S has cancellation.
We want to order-embed S in an algebraically ordered cancellation
semigroup. This can be done if and only if the cancellation semigroup
S of S induces the right order on S. An obvious necessary condition
on S is strict cancellation; this is also sufficient because one can then
order the Grothendieck group of S by taking the image of S under the
canonical homomorphism (which is isomorphic to S) to be the nonzero
positive cone, and the induced order on S will be the original one.
This is the theorem proved in [13]. So example 2.2.2(e), which is easily
seen to be subalgebraically ordered, cannot be order-embedded in an
algebraically ordered cancellation semigroup, showing that a quotient
of S can induce a different ordering on S than S itself. S is called the
full cancellation semigroup of S.

The definition of an archimedean ordered semigroup is formally
identical to the definition for the algebraic ordering: S is archimedean
if, for any x, y ∈ S, there is an n such that y < nx. If S is archimedean,
then S is not necessarily archimedean (2.2.5(c)).

We say S is strongly archimedean if, for any x, z ∈ S and y ∈ S+

with y < x, there is an n such that ny + z < nx. An archimedean
algebraically ordered semigroup is always strongly archimedean, but
a general archimedean ordered semigroup is not necessarily strongly
archimedean (2.2.5(c)). If S is strongly archimedean, then S is
archimedean; if S has cancellation, then S is archimedean if and only
if S is strongly archimedean.

Examples 2.2.5. (a) If S is archimedean in the algebraic ordering,
then S is archimedean in any other ordering. More generally, if S is
archimedean in one ordering, then it is archimedean in any stronger
ordering.

(b) The semigroup S of 2.2.2(d) is strongly archimedean.

(c) Let S = LSC++(X) as in 2.2.2(c), with X compact. Then S is
archimedean since any lower semicontinuous positive function on X is
bounded away from 0. But S is not strongly archimedean, since if f
and g are lower semicontinuous and f < g, then g−f is not necessarily
bounded away from 0. S is isomorphic to the semigroup DSC++(X)
of all functions from X to (0,∞) which can be written as the difference
of two bounded lower semicontinuous functions. DSC++(X) is not
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archimedean since functions in DSC++(X) are not necessarily bounded
away from 0.

(d) Let S be the same semigroup as in (c), but with a different
ordering: f < g if and only if g − f is positive everywhere and
bounded away from 0. This ordered semigroup is called LSCε(X); it is
strongly archimedean. S is isomorphic to the subsemigroup DSCε(X)
of DSC++(X) consisting of all elements which are bounded away from
0. DSCε(X) is archimedean (with the algebraic ordering.)

Note that examples (b), (c) and (d) are not archimedean with respect
to the algebraic ordering (in LSC++(X), if f is continuous and g is
discontinuous no multiple of f dominates g algebraically.)

See [4, 6.3] for an example of how semigroups similar to the ones in
2.2.5(c) and (d) arise naturally in the study of simple C∗-algebras.

We now come to the analog of the main result of §2.1 for ordered
semigroups:

Theorem 2.2.6. Let S be an archimedean ordered semigroup.

(a) If S is well-behaved, then S has cancellation up to powers.

(b) If S is strictly well-behaved, then S has strict cancellation up to
powers (with respect to the given ordering).

Proof. The proof of both statements is essentially identical to the
proof of 2.1.9. We prove (b). Suppose x + z < y + z. Find n and m so
that z < nx and z < my. Then, by the strictly well-behaved property,
x + nx < y + nx, x + my < y + my. So, if k ≥ n + m,

kx = nx + mx + rx < nx + my + ry < ny + my + ry = ky.

Corollary 2.2.7. Let S be an archimedean ordered semigroup.

(a) If S is well-behaved and has n-power cancellation for some n, then
S has cancellation.

(b) If S is strictly well-behaved and is strictly n-unperforated for some
n, then S has strict cancellation.
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Theorem 2.2.6(a) says that if S is a (strict) semigroup, and S admits
an archimedean ordering under which it is well-behaved, then S must
have cancellation up to powers. (2.2.6(b) cannot be rephrased in the
same way because the notion of strict cancellation up to powers depends
on the ordering.)

The hypothesis that S be well-behaved in 2.2.6 (or something like
it) is necessary: the semigroup of 2.2.5(b) is strongly archimedean but
does not have either cancellation up to powers or strict cancellation up
to powers.

We also have an analog of 2.1.11 with a nearly identical proof:

Theorem 2.2.8. Let S be an ordered semigroup which is strictly
well-behaved and strongly archimedean, and let x, y ∈ S. If nx < ny
for some n, then kx < ky for all sufficiently large k.

2.3 Tensor products of semigroups. This section will also not be used
in an essential way in the sequel.

The theory of tensor products of abelian semigroups works out in
much the same formal way as the theory of tensor products of abelian
groups. For a complete treatment see [10].

Definition 2.3.1. Let S and T be semigroups. The tensor product
of S and T , denoted S ⊗ T , is the universal (abelian) semigroup with
generators {s ⊗ t : s ∈ S, t ∈ T} and relations {s1 ⊗ t + s2 ⊗ t =
(s1 + s2) ⊗ t, s ⊗ t1 + s ⊗ t2 = s ⊗ (t1 + t2) : s1, s2 ∈ S, t, t1, t2 ∈ T}.

If t0 is fixed, then s → s⊗ t0 is a homomorphism from S into S ⊗ T .
A fixed element of S likewise gives a homomorphism from T into S⊗T .
These homomorphisms are not injective in general.

S ⊗ T has the usual universal property: any “bilinear” map from
S × T into an abelian semigroup R induces a unique homomorphism
from S ⊗ T to R.

Proposition 2.3.2. Let S and T be semigroups.

(a) If S = lim−→Si, then S ⊗ T is naturally isomorphic to lim−→Si ⊗ T .
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(b) If S and T are archimedean, then S ⊗ T is archimedean.

(c) If S and T have cancellation, then S ⊗ T has cancellation.

(d) If S has no nontrivial idempotent quotients and T is a group, then
S ⊗ T is a group.

Proof. (a). This is a straightforward exercise left to the reader.

(b). A typical element of S ⊗ T can be written in the form
∑

si ⊗ ti.
Since

∑
si ⊗ ti > s1 ⊗ t1, it suffices to show that, for any elementary

tensor x⊗y, there is a k with x⊗y < k(s1⊗ t1). Choose m and n with
x < ms1, y < nt1. Then x ⊗ y < ms1 ⊗ y < ms1 ⊗ nt1 = mn(s1 ⊗ t1).

(c) See [11].

(d) Since {s ⊗ 0 : s ∈ S} is a subsemigroup of S ⊗ T in which every
element is idempotent, and this subsemigroup is a quotient of S, the
hypothesis implies that this subsemigroup consists of only one element,
i.e., s1⊗0 = s2⊗0 for all s1, s2 ∈ S. This element is clearly an identity
for S ⊗ T . The inverse for the element

∑
si ⊗ ti is

∑
si ⊗ (−ti).

Corollary 2.3.3. If S is archimedean and T is a group, then S⊗T
is a group.

Proof. A quotient of an archimedean semigroup is archimedean,
and an archimedean semigroup can have at most one idempotent.

Examples 2.3.4. (a) If S is any semigroup, then S ⊗N is naturally
isomorphic to S.

(b) If S is a semigroup with no nontrivial idempotent quotients
(e.g., S is archimedean), then S ⊗ Z is naturally isomorphic to the
Grothendieck group of S.

(c) If S is an idempotent semigroup (e.g., S = J of 2.2.2(d)), then
S ⊗Z is isomorphic to S. Thus the hypothesis is 2.3.2(d) is necessary.

2.4 Simple dimension semigroups. In this section, we give a descrip-
tion of the theory of simple dimension semigroups. This theory is noth-
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ing but the theory of simple dimension groups from a slightly different
point of view. We treat only simple dimension groups because the
theory of general (non-simple) dimension groups cannot be cleanly ex-
pressed in semigroup language in the same way.

We will examine certain semigroups which are inductive limits of ones
isomorphic to Nr. Not all inductive limits will fit well in our theory;
to specify the right ones, we must examine the possible connecting
homomorphisms.

Let σ be a homomorphism from Nr to Ns. Then σ extends uniquely
to a homomorphism between the Grothendieck groups Zr and Zs, hence
is given by multiplication by an s × r matrix Rσ with integer entries.
Rσ maps Nr into Ns if and only if all entries of Rσ are nonnegative
and Rσ has no zero rows (to see this, regard Rσ as giving a linear map
from Rr to Rs; this map must send Qr

+ into Qs
+ and therefore must

send points with nonnegative coordinates into points with nonnegative
coordinates).

Definition 2.4.1. σ is simple if:

(1) Either r = s = 1 or r and s are both greater than 1;

(2) All entries in Rσ are positive;

(3) σ is not the identity map on N1.

A simple map cannot be surjective; in fact, (1, 1, . . . , 1) is never in
the image. A simple map can also fail to be injective.

Proposition 2.4.2. Let σ : Nr → Ns be a composition of n simple
maps. Then σ is simple, and every entry in the matrix Rσ is at least
2n−1.

Proof. This is an easy proof by induction, since Rσ is a product of
n matrices with positive entries. Treat the cases r = s = 1 and r, s > 1
separately.
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Definition 2.4.3. A simple dimension semigroup is a semigroup S
which is isomorphic to lim−→(Nri , ρi), where each ρi : Nri → Nri+1 is
simple.

We have excluded N as a simple dimension semigroup by our insis-
tence that the identity map on N is not simple. This is an arbitrary
choice which is in slight conflict with conventions in dimension group
theory; however, excluding N makes many statements in succeeding
sections considerably cleaner.

Every simple dimension semigroup is strict, countable, archimedean,
unperforated, and has cancellation, since Nr has these properties.
Simple dimension semigroups are characterized by these properties
plus one additional property which is less obvious, due to the Effros-
Handelman-Shen theorem [9]:

Theorem 2.4.4. A semigroup is a simple dimension semigroup
if and only if it is strict, countable, archimedean, unperforated, has
cancellation and the Riesz interpolation property (if x1, x2 ≤ y1, y2,
then there is a z with x1, x2 ≤ z ≤ y1, y2), and is not isomorphic to N
(equivalently, is not finitely generated). [The cancellation hypothesis is
redundant by 2.1.10.]

Proof. The Grothendieck group of a simple dimension semigroup
is a simple dimension group with the induced order. Conversely, the
nonzero positive cone in any simple dimension group except Z is a
simple dimension semigroup (this is not entirely obvious, but is not
difficult to show.) Apply the Effros-Handelman-Shen theorem.

A representation of a simple dimension semigroup as an inductive
limit as in Definition 2.4.3 is called a Bratteli diagram for the semigroup.
An abstract simple dimension semigroup could a priori have completely
unrelated Bratteli diagrams; however, it turns out that any two Bratteli
diagrams must be equivalent in the usual sense of equivalence of
inductive systems:
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Theorem 2.4.5. Let S be a simple dimension semigroup, and let
(Nri , ρi) and (Nsi , σi) be Bratteli diagrams for S. Then there are
integers n1 < k1 < n2 < k2 < · · · and simple homomorphisms
αi : Nrni → Nski and βi : Nski → Nrni+1 with βi ◦ αi = ρni,ni+1

and αi+1 ◦ βi = σki,ki+1 .

Proof. The proof is contained in the proof of [3, 7.3.2].

The dimension semigroups in which ri = 1 for all i are particularly
important. These are classified by the generalized integers, formal
products g = 2m23m35m5 · · · , where an infinite number of factors and
infinite exponents are allowed. (We will not regard ordinary integers as
generalized integers.) The semigroup Dg corresponding to a generalized
integer g consists of all positive rational numbers whose denominators
“divide” g. A Bratteli diagram for Dg is obtained by taking any
sequence (ni) of integers ≥ 2 with g =

∏
ni, and letting σi : N → N be

multiplication by ni. Clearly every simple dimension semigroup with
all ri = 1 is obtained in this way. If g is the “universal” generalized
integer (with mp = ∞ for all primes p), then Dg = Q+.

2.5. Rationalization of semigroups. In this section, we will discuss
the “rationalization” of a semigroup with respect to a simple dimension
semigroup, and some applications of the results of the previous sections.

Definition 2.5.1. Let S be a semigroup, D a simple dimension
semigroup. The rationalization of S by D, denoted SD, is the tensor
product S ⊗ D. If D = Dg for a generalized integer g, then SDg

is
denoted Sg, called the rationalization of S by g. The rationalization of
S by Q+ is called the rational semigroup of S, denoted SQ.

The definition of SD can be rephrased without any explicit mention
of tensor products. Let (Nri , ρi) be a Bratteli diagram for D. Then
SD is isomorphic to lim−→(S ⊗Nri , 1⊗ ρi) ∼= lim−→(Sri , σi), where σi is the
obvious map from Sri to Sri+1 . (If SD is defined this way, then 2.4.5
must be used to show that the definition is independent of the Bratteli
diagram chosen.)
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If u is a fixed element in D, then there is a homomorphism ωu from
S into SD which sends x to x ⊗ u.

If D = Dg and u = 1, then Sg is a semigroup containing (a homomor-
phic image of) S, in which every element of S is divisible by any integer
“dividing” g. This is the reason for the term “rationalization.” SD can
also be regarded as a type of “localization” of S, particularly in the
case where D = Dg: then the Grothendieck group G(Sg) is isomorphic
to the localization of G(S) at g in the usual sense, regarding G(S) as a
Z-module and G(Sg) as a Z(g)-module (Z(g) is the Grothendieck group
of Dg, or the subgroup of Q generated by Dg.)

If S is archimedean, then SD is archimedean for any D. This follows
immediately from 2.3.2(b), or can be easily proved directly by noting
that the class of archimedean semigroups is closed under finite products
and under direct limits. A similar proof shows that any rationalization
of a strict semigroup is also strict.

We have the following corollary of 2.1.9 and 2.1.11, which is the main
result of this section:

Theorem 2.5.2. Let S be an archimedean semigroup, D a simple
dimension semigroup. Then SD has cancellation and is strictly unper-
forated.

Proof. Suppose x, y, z ∈ SD with x + z = y + z. Choose a Bratteli
diagram (Nri , ρi) for D, and let (Sri , σi) be the corresponding diagram
for SD; then, for some i, there are preimages x, y, z ∈ Sri of x, y, z with
x + z = y + z. Let x = (x1, . . . , xri

), and similarly for y and z. Then
xj + zj = yj + zj for 1 ≤ j ≤ ri. Since S is archimedean, there is a k0

such that kxj = kyj for all k ≥ k0 and all j, 1 ≤ j ≤ ri by 2.1.9.

Let n be such that 2n−1 ≥ k0, and let σi,i+n = σi+n−1◦· · ·◦σi : Sri →
Sri+n . If the matrix of σi,i+n is [mpq], 1 ≤ p ≤ ri+n, 1 ≤ q ≤ ri, then
σi,i+n(x) = (

∑
q m1qxq, . . . ,

∑
q mri+nqxq), and similarly for σi,i+n(y).

Since all mpq ≥ k0 by 2.4.2, we have σi,i+n(x) = σi,i+n(y) and hence
x = y, so SD has cancellation.

The proof that SD is strictly unperforated is virtually identical, using
2.1.11 in place of 2.1.9.
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It is not true that a rationalized semigroup is always unperforated or
has power cancellation:

Example 2.5.3. Let S = N×Z3, g = 2∞. Then Sg
∼= Dg ×Z3 does

not have 3-power cancellation and is not 3-unperforated. (Z3 = Z/3Z).

However, we do have

Corollary 2.5.4. Let S be an archimedean semigroup. Then its
rational semigroup SQ has cancellation and is unperforated.

Proof. It is easy to check that S ⊗ Q+ has power cancellation for
any semigroup S.

We also have an analog of 2.5.2 for ordered semigroups. If S is an
ordered semigroup, then we can order Sr by (x1, . . . , xr) < (y1, . . . , yr)
if and only if xi < yi for all i. Then Sr is archimedean [respectively
strongly archimedean, well-behaved, strictly well-behaved] if and only
if S is archimedean [respectively strongly archimedean, well-behaved,
strictly well-behaved]. So, for any D, the rationalized semigroup has a
natural ordering, which inherits all of the properties of the ordering on
S.

Theorem 2.5.5. Let S be an archimedean ordered semigroup, and
D a simple dimension semigroup.

(a) If S is well-behaved, then SD has cancellation.

(b) If S is strictly well-behaved and strongly archimedean, then SD is
strictly unperforated.

So if S is a (strict) semigroup, and S admits an ordering under which
it is archimedean and well-behaved, then any rationalization of S has
cancellation.
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3. Applications to K-Theory. In this section, all rings will be
unital unless otherwise specified.

3.1. K-Simple Rings. Although our original motivation for develop-
ing the semigroup theory was to apply it to simple C∗-algebras, the
results apply equally well to all simple rings and even to a somewhat
larger class of rings:

Definition 3.1.1. Let A be a unital ring. An idempotent in M∞(A)
is full if it is not contained in any proper two-sided ideal. Let Vf (A)
be the subsemigroup of V0(A) consisting of equivalence classes of full
idempotents. A is K-simple if every nonzero idempotent in M∞(A) is
full.

An idempotent is full if and only if the corresponding projective
module is a generator. A is K-simple if and only if Vf (A) = V0(A).
The term “K-simple” is used because such a ring might as well be
simple for the purposes of nonstable K-theory (at least for the part of
the theory we consider here).

Examples 3.1.2. (a) Any simple ring is K-simple.

(b) If A is a unital C∗ algebra and Prim(A) contains no nontrivial
compact open subsets, then A is K-simple. In particular, if Prim(A) is
Hausdorff and connected (e.g., A = C(X) for X connected), then A is
K-simple [3, 6.3.6].

Proposition 3.1.3. [3, 6.3.5] Let A be a ring. Then the semigroup
Vf (A) is archimedean.

The main result of this section is the following immediate corollary
of 3.1.3 and 2.1.9:

Theorem 3.1.4. Let A be a ring, p, q, r idempotents in M∞(A) with
p, q full. If p ⊕ r ∼ q ⊕ r, then k · p ∼ k · q for all sufficiently large k.
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Corollary 3.1.5. Let A be a ring. If A has n-power cancellation
for some n, then Vf (A) has cancellation. If A is strictly n-unperforated
for some n, then Vf (A) has strict cancellation.

Corollary 3.1.6. If A is stably finite and K-simple, and has n-
power cancellation (respectively is strictly) n-unperforated for some n,
then A has cancellation (respectively strict cancellation).

Proof of second statement. If p ⊕ r ≺ q ⊕ r, then, for some s,
we have p ⊕ r ⊕ s ∼ q ⊕ r. Then, by the theorem, k · p ⊕ k · s ∼ k · q
(i.e. k · p ≺ k · q) for some k which is a power of n. So by strict
k-unperforation p ≺ q. (One could also simply apply 2.1.10.)

Definition 3.1.7. A stably finite ring A is weakly n-unperforated
if the ordered group (K0(A), K0(A)+) has the property that nx > 0
implies x > 0 [3, 6.7.1].

Weak n-unperforation can be rephrased in the following awkward
way: A is weakly n-unperforated if, for any idempotents p, q, r ∈
M∞(A) with n · p ⊕ r ≺ n · q ⊕ r, there is an idempotent s with
p ⊕ s ≺ q ⊕ s.

Weak unperforation is quite important in the study of the ordered
group K0(A) via traces on A; see [3, §6] and [4].

Corollary 3.1.8. Let A be a stably finite ring. Then A is strictly n-
unperforated if and only if A is weakly n-unperforated and A has strict
cancellation.

Proof. It is obvious from the above rephrasing that weak n-
unperforation plus strict cancellation implies strict n-unperforation.
Conversely, strict n-unperforation obviously implies weak n-unperfora-
tion, and also implies strict cancellation by 3.1.6.
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3.2. Rationalization of rings. In this section, we will discuss appli-
cations to the K-theory of certain tensor products of rings, which may
be regarded as “rationalized” rings in the same sense as the tensor
products of 2.5 are rationalized semigroups.

We will denote by Mn the ring Mn(Z) of n×n matrices over Z. (This
notation is inconsistent with the notation of [3], where Mn denotes
Mn(C), but this will cause no confusion.)

We first describe the analog for rings of the construction of a simple
AF algebra from a scaled dimension group. Let (D, u) be a scaled
simple dimension semigroup, i.e., D is a simple dimension semigroup
and u is a fixed element of D. Let (Nri , ρi) be a Bratteli diagram
for D. Assume without loss of generality that there is an element
ν = (n11, . . . , nr11) in Nr1 with image u. Set ρ1,k(ν) = (n1k, . . . , nrkk).
Let Mk = Mn1k

⊕· · ·⊕Mnrkk
. ρk defines a unital embedding of Mk into

Mk+1 in the obvious way, using the entries of Rρk
as the multiplicities

of the partial embeddings. Let M(D,u) be the direct limit ring lim−→Mk.
2.4.5 shows that M(D,u) depends only on (D, u) and not on the choice
of the Bratteli diagram.

Definition 3.2.1. M(D,u) is called the simple AF ring of (D, u).
If (D, u) = (Dg, 1) for a generalized integer g, write Mg for M(D,u).
Write MQ for M(Q+,1).

Proposition 3.2.2. (a) M(D,u) is a K-simple ring.

(b) (V0(M(D,u)), [1]) is isomorphic to (D, u), so M(D1,u1)
∼= M(D2,u2)

if and only if (D1, u1) ∼= (D2, u2).

Proof. (a). Since Z is K-simple, any idempotent in a matrix algebra
over Mk generates an ideal which is a direct summand. But since the
matrix Rρk

has all positive entries, the image in Mk+1 of any summand
of Mk generates all of Mk+1 as an ideal.

(b). (V0(Mk), [1]) is isomorphic to ([N ∪ {0}]rk \ (0, . . . , 0),
(n1k, . . . , nrkk)), and ρk embeds this semigroup into (Nrk+1 , (n1,k+1,
. . . , nrk+1,k+1)).
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Now we can define the rationalization of a general ring with respect
to a simple dimension semigroup:

Definition 3.2.3. Let A be a (unital) ring, (D, u) a scaled simple
dimension semigroup. The rationalization of A by (D, u), denoted
M(D,u)(A), is the ring tensor product A ⊗ M(D,u). Denote A ⊗ Mg

by Mg(A) and A ⊗ MQ by MQ(A). MQ(A) is called the rational ring
of A. A is rational if A ∼= MQ(A).

The notation is consistent with the notation Mn(A) = A ⊗ Mn for
the n×n matrix algebra over A, if we regard n as corresponding to the
scaled semigroup (N, n) = ( 1

nN, 1). M(D,u)(A) may be regarded as a
sort of infinite matrix algebra over A.

Examples 3.2.4. (a) M(D,u)(Z) = M(D,u).

(b) M(D,u)(C) is the dense locally finite ∗-subalgebra of the simple
unital AF algebra with scaled dimension group (G(D), D ∪ {0}, u).

Just as in the case of semigroups, the rationalization of A by (D, u)
can be defined without explicit mention of tensor products. We have
M(D,u)(A) = lim−→A⊗Mk, and A⊗Mk is isomorphic to Mn1k

(A)⊕· · ·⊕
Mnrkk

(A). The connecting maps are defined in the obvious way by the
matrices Rρk

.

In particular, the rational ring of A can be defined to be lim−→Mn!(A),
where the embeddings are as “diagonal blocks” (i.e., a → diag(a, a, . . . ,
a)).

Proposition 3.2.5. (a) If A is simple, then M(D,u)(A) is simple.

(b) If A is K-simple, then M(D,u)(A) is K-simple.

(c) If A is stably finite, then M(D,u)(A) is stably finite.

Proof. (a) and (b) are almost identical to 3.2.2(a), and (c) is
obvious.
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Proposition 3.2.6. Vf (M(D,u)(A)) is isomorphic to the rationaliza-
tion Vf (A)D, and similarly for V0.

Proof. Similar to 3.2.2(b).

Now the main result of this section is an immediate corollary of 2.5.2
and 2.5.4:

Theorem 3.2.7. Let A be a ring, and (D, u) a scaled simple
dimension semigroup.

(a) Vf (M(D,u)(A)) has cancellation and is strictly unperforated.
Vf (MQ(A)) has cancellation and is unperforated.

(b) If A is stably finite and K-simple, then M(D,u)(A) has cancella-
tion and is strictly unperforated; MQ(A) has cancellation and is unper-
forated.

We can extend these results somewhat. The following is not the most
general statement possible, but is the best that can be easily stated:

Theorem 3.2.8. Let A be a (unital) ring which is K-simple and
stably finite. Suppose there is an n such that, for any idempotent p in
M∞(A), there is an idempotent q, unique up to equivalence, for which
n · q ∼ p. Then A has cancellation and is strictly unperforated.

Proof. Follows immediately from 2.1.12.

4. Applications to C∗-algebras. In this section, we will give some
consequences of the preceding results which are specific to the K-theory
of C∗-algebras. We will continue to assume that all C∗-algebras are
unital.

4.1. Rationalized C∗-algebras. Suppose A is a C∗-algebra and (D, u)
is a scaled simple dimension semigroup. Then M(D,u)(A) is a local C∗-
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algebra [3, §3] which is not complete. Its completion is the C∗-tensor
product A ⊗ M , where M is the simple unital AF algebra with scaled
dimension semigroup (D, u).

Definition 4.1.1. A ⊗ M is called the rationalized C∗-algebra of A
by (D, u). If (D, u) = (Q+, 1), A⊗M is called the rational C∗-algebra of
A, denoted AQ. A C∗-algebra A is rational if A ∼= AQ. More generally,
a C∗-algebra is a rationalized C∗-algebra if it is isomorphic to the
rationalization of some C∗-algebra by a simple dimension semigroup.

Since the embedding of a local C∗-algebra A into its completion A
induces an isomorphism V (A) ∼= V (A), we have

Theorem 4.1.2. Let A be a C∗-algebra, M an infinite-dimensional
simple AF algebra. Then Vf (A ⊗ M) has cancellation and is strictly
unperforated. If A is stably finite and K-simple, then A ⊗ M has can-
cellation and is strictly unperforated, i.e., a stably finite rationalized
K-simple C∗-algebra has cancellation and is strictly unperforated. A
stably finite rational K-simple C∗-algebra has cancellation and is un-
perforated.

Similar results were previously obtained in [2] under a stable rank
hypothesis. 4.1.2 is a great improvement for two reasons: first, the
stable rank hypotheses may very well not be satisfied in general, or
even in cases of interest, and secondly, techniques for calculating or
estimating stable rank are presently so rudimentary that it is usually
impossible to check the hypotheses of [2] except in very special cases.

If A is a rationalized C∗-algebra, say A = M(D,u)(B), then A =
lim−→Ak, where Ak is direct sum of matrix algebras over B. The sizes
of the matrix algebras become uniformly large as k → ∞ by 2.4.2.
So the following other nonstable K-theory results are an immediate
consequence:

Proposition 4.1.3. If A is a finite rationalized C∗-algebra, then A
is stably finite.
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Proof. A finite ⇒ each Ak finite ⇒ B stably finite ⇒ A stably
finite.

Proposition 4.1.4. If A is a rationalized C∗-algebra, then μ1 :
U1(A)/U1(A)0 → K1(A) is an isomorphism.

Proof. Let Ak = Mn1k
(B)⊕· · ·⊕Mnrkk

(B). Then U1(Ak)/U1(Ak)0∼= [Un1k
(B)/Un1k

(B)0]⊕ · · · ⊕ [Unrkk
(B)/Unrkk

(B)0], and the map μ1 :
U1(Ak)/U1(Ak)0 → K1(Ak) ∼= K1(B)rk is of the form (μn1k

, . . . , μnrkk
).

Thus the commutative diagram

· · · �

U1(Ak)
U1(Ak)0

�

μ1

�

U1(Ak+1)
U1(Ak+1)0

�

μ1

� · · · �

U1(A)
U1(A)0

�

μ1

· · · � K1(Ak) � K1(Ak+1) � · · · � K1(A)

is actually of the form

· · · �

Un1k
(B)

Un1k
(B)0

⊕ · · · ⊕ Unrkk
(B)

Unrkk
(B)0

�

(μn1k
, · · · , μnrkk

)

� · · · �

U1(A)
U1(A)0

�

μ1

· · · � K1(B) ⊕ · · · ⊕ K1(B) � · · · � K1(A)

Since n1k, . . . , nrkk → ∞ as k → ∞, it is easy to see that the direct
limits in the rows are isomorphic.

Proposition 4.1.5. If A is a rational C∗-algebra, then the stable
rank of A is 1,2, or ∞.

Proof. A ∼= Mn(A) for all n, so the result follows from [14, 6.1].

Of course, most of the results of §3 such as 3.1.4, 3.1.5, 3.1.6, 3.1.8,
and 3.2.8 also apply verbatim to C∗-algebras.
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4.2. K-Theory with Localized Coefficients. If B is any C∗-algebra,
then the map A → A⊗B is a functor from the category of C∗-algebras
to itself (if B is not nuclear, then the maximal or minimal cross norm
must be specified.) One can then define a B-isomorphism as A1 ∼B A2

if A1 ⊗ B ∼= A2 ⊗ B, and similarly for stable B isomorphisms. In
particular, the map A → AQ is a functor from the category of C∗-
algebras to the category of rational C∗-algebras, which can be used
to define rational isomorphisms and stable rational isomorphisms for
C∗-algebras.

The notion of rationalization can be used to define K-theory and KK-
theory with coefficients (cf., [3, 23.15.6]). Let g be a generalized integer;
suppose for simplicity that Z(g) is a subring of Q (this is equivalent to
requiring that the exponent mp is 0 or ∞ for all p.) Let M be the UHF
algebra corresponding to g; then M ∼= M ⊗ M .

Definition 4.2.1. If A is a C∗-algebra, then the K-theory of A with
coefficients in Z(g), denoted K∗(A;Z(g)), is K∗(A ⊗ M). If A and B
are C∗-algebras, define KK(A, B;Z(g)) to be KK(A ⊗ M, B ⊗ M) ∼=
KK(A, B ⊗ M). KK(A, B;Q) = KK(AQ, BQ).

KK(A, B;Z(g)) is a Z(g)-module. K∗(A;Z(g)) ∼= K∗(A)⊗Z Z(g), but
KK(A, B;Z(g)) �∼= KK(A, B)⊗ZZ(g) in general (take A = M, B = C.)
The usual properties of KK-theory (homotopy invariance, stability,
Bott periodicity, exact sequences for semisplit extensions) carry over
to these KK-theories with coefficients. In addition, there are versions
of the Universal Coefficient Theorem and the Künneth Theorem for
Tensor Products [3, §23]. All of these results follow easily from the
corresponding results in ordinary KK-theory (they may be regarded
as special cases.)

In the case of KK-theory with rational coefficients, the theory can
be developed from scratch with some technical simplifications. In
particular, the rational versions of the UCT and KTP are very easy
to state and prove (cf. [3, 23.2–23.4]):
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Theorem 4.2.2. (Universal Coefficient Theorem.) Let A and
B be separable C∗-algebras, with A ∈ N [3, 22.3.4]. Then

KK(A,B;Q)∼=Hom(K0(A;Q), K0(B;Q))⊕Hom(K1(A;Q), K1(B;Q)).

Theorem 4.2.3. (Künneth Theorem for Tensor Products.)
Let A and B be separable C∗-algebras, with A ∈ N . Then

K0(A ⊗ B;Q) ∼= [K0(A;Q) ⊗Q K0(B;Q)] ⊕ [K1(A;Q) ⊗Q K1(B;Q)].

It is less clear that there is a rational version of the Künneth Theorem,
since the ordinary Künneth Theorem [3, 23.1.2] has a finite generation
hypothesis.

KK-Theory with rational coefficients, although not as rich a theory
as ordinary KK-theory, is of interest in certain contexts. For example,
it seems to be natural to consider rational KK-theory in connection
with the Chern Character.

4.3 Rational C∗-algebras with many projections. Sharper results than
the ones in §4.1 can be obtained in the case of C∗-algebras with “many”
projections. Recall that A has the (SP) property if every nonzero
hereditary C∗-subalgebra of A contains a nonzero projection, and A
has (HP) if every hereditary C∗-subalgebra of A has an approximate
identity of projections. A has stable (HP) if all matrix algebras over A
have (HP).

Proposition 4.3.1. [6, 1.9] Every rationalized unital C∗-algebra has
(SP).

There are, however, rational C∗-algebras which do not have (HP) [6,
1.6]. In the presence of (HP), the following result is a corollary of 4.1.2
and [3, 6.5.2] (cf. [4, 4.3.7]):

Theorem 4.3.2. Let A be rationalized unital K-simple C∗-algebra
with (HP). Then the following are equivalent:
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(1) A is finite.

(2) A has cancellation.

(3) A has stable rank 1, i.e., the invertible elements in A are dense.

Definition 4.3.3. A stably finite unital C∗-algebra A has stable
strict comparability if, for all projections p, q ∈ M∞(A) with τ (p) < τ (q)
for all normalized quasitraces τ on A, it follows that p ≺ q.

The Fundamental Comparability Question is whether every stably
finite simple unital C∗-algebra has stable strict comparability. See [4]
for a complete discussion of strict comparability and the Fundamental
Comparability Question.

Theorem 4.3.4. Let A be a finite rationalized K-simple unital C∗-
algebra with (HP). Then A has stable strict comparability.

Proof. By [4, 3.4.9], A has stable strict comparability if and only
if A has strict cancellation and enough quasitraces. A has strict
cancellation by 4.1.2 and enough quasitraces by [4, 4.3.8] (cf. [5,
III.1.3].)
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