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RESONANCE PHENOMENA IN CELL POPULATION
CHEMOTHERAPY MODELS

G. F. WEBB

1. Introduction. Mathematical models of cell population dynamics
offer a means to predict the effectiveness of chemotherapy treatments.
The basic ideas of such models are to view chemotherapy as a loss
function for both normal and tumor cell populations, and to design
optimal treatment regimens in consideration of the parameters that
distinguish normal and tumor cells.

In this paper we will focus upon the qualitative analysis of peri-
odic chemotherapy applications. For this purpose we use an age- and
size-structured model of cell population dynamics with a time periodic
loss function. The normal and tumor cell populations have the same
model but with different parameters. The main difference of the two
populations is the longer mean cycle length of tumor cells. This differ-
ence results in a remarkable resonance effect in the presence of periodic
phase-specific cell loss. A marked preferential advantage for the normal
cell population occurs when the treatment period is close to the mean
cycle length of normal cells. This resonance effect is apparent through
a wide range of age- and size-dependent parameter values. It is evident
whenever a phase-sensitive loss is impressed upon two age-structured
proliferating cell populations with distinct mean division-age frequen-
cies. This resonance phenomenon was discovered by Dibrov et al. [13],
who studied it from a numerical point of view with age-structured mod-
els of cell population dynamics. A similar selective synchrony effect was
studied by Rotenberg [31]. In this paper we will present examples to
demonstrate that resonance phenomena are present in more refined cell
population models. The general age- and size-structured model we use
includes the well-known transition probability, size control, and inher-
ited properties models of cell population dynamics. It also allows for
the asymmetric division of mother cells, which some researchers believe
to be a primary explanation of cell cycle variability (M. Kimmel et al.
[22]). The use of a size-structure variable also allows a more accurate
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specification of the phase of the cell cycle sensitive to drug toxicity.

The organization of this paper is as follows: In §2 we will present a
general age- and size-structured model of cell population dynamics. In
83 we will discuss the exponential growth constants that determine the
behavior of the cell populations in the presence of periodic loss. In §4
we will illustrate with numerical examples resonance phenomena and
optimal periodic treatment scheduling.

2. An age-size structured model of cell population dynamics.
It is generally recognized that individual cells exhibit considerable
variability as they transit through the cell cycle. Structured models
of cell population dynamics account for this variability in age, mass,
volume, RNA content, and other physical measurable properties. Such
models, in various formulations, have been used extensively in the
recent literature of cell population dynamics. These models originated
in Bell and Anderson [8], Scherbaum and Rasch [34], Sinko and Streifer
[35], Trucco [39], and Von Foerster [42]. Review surveys of these
models are found in Alberghina et al. [1, 2], Bertuzzi and Gandolfi
[9], Bertuzzi et al. [10], Eisen [16], Metz and Diekmann [28], Rubinow
[32], Webb [48], and White [50]. Operator-theoretic analyses of these
models are given in Arendt et al. [4], Arino and Kimmel [5], Diekmann
et al. [14], Diekmann et al. [15], Greiner [17], Gyllenberg and Heijmans
[19], Gyllenberg and Webb [20], Heijmans [21], Metz and Diekmann
[28], Tucker and Zimmerman [40], Webb [44, 45, 46], and Webb and
Grabosch [49].

A general model of age-size structured cell population dynamics is
discussed in Webb [47]. The nonautonomous version of this model has
the formulation

(1)
Ni(a,z,t) + Ny(a,z,t) + (g(z)N(a, z,t)),

= —b(a,z,t)N(a,z,t)— d(a,z,t)N(a,z,t), a>0, x>0, t>to,

2)
N(0,z,t) = 2/ / k(z,y)b(a,y,t)N(a,y,t)dyda, x>0, t>1g
0 0

(3) N(a,z,to) = ¢¥(a,z), a>0,z>0
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In this formulation f;lz fff N(a,z,t)dz da is the total population of
cells with age between a; and as and size between x; and o at time
t, and v is the initial age-size distribution of cells at time ¢t = tg.

The processes of individual cells are governed by the growth function
g, division function k, transit function f, and mortality function h.
These functions have the following interpretations:

The age of a cell with size z that had birth size y is f; du/g(u).
The size of a cell at age a with birth size y is S(a,y), and the
birth size of a cell with size « at age a is s(a,z). The function S
satisfies S, (a,y) = g(S(a,y)), S(0,y) = y, and the function s satisfies
sq(a,z) = —g(s(a,)), s(0,z) = z. Notice that S(a,y) = = if and only
if y = s(a, ) if and only if a = f; du/g(u). The case that g(z) := c is
called linear growth of individual cells, and the case that g(x) := cz is
called exponential growth of individual cells.

The probability that a daughter cell born from a mother cell of size
z has birth size between y; and yy is fyylz k(y,z)dy. The function
k satisfies k(y,z) = 0 if y > =, fooo k(y,z)dy = 1, x > 0, and
k(y,z) = k(z — y,z), 0 < y < z. If division is symmetric with both
daughter cells of equal size, then k(y,z) = §(y — x/2), where 6(-) is the
dirac delta function.

The probability that a cell with birth size y at time ¢ survives to
division at age between a; and ay is f:lz f(a,y,t)da. The probability
that a cell born with age y at time ¢ does not divide before age
a is a(a,y,t) = f f(a,y,t)da. The per capita rate per unit of
time at time t of dividing cells of age a and size z is b(a,z,t) :=
f(a s(a, :v) t— a)/a(a s(a, z),t—a). The function « satisfies a(a, y, t)
exp[— [, b(a, S(a,y),t + &) da] and (0, y,t) = 1.

The probability that a cell born with birth size y at time t dies
between ages a; and as is faalz h(a,y,t)da. The probability that a
cell born with size y at time ¢ does not die before age a is u(a,y,t) :=
foo h(a,y,t) da. The per capita death rate per unit time at time t of cells
of age a and size z is d(a,z,t) := h(a, s(a, a:) t—a)/p(a,s(a,z),t—a).
The function p satisfies yu(a,y,t) = exp[— [, d(a, S(a,y),t+ &) da] and

1(0,y,t) = 1.

The use of both age- and size-structure variables in the formulation
(1)—(3) incorporates such features as transition probabilities, size con-
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trols, and inherited properties. This formulation includes standard age
only and size only models, as well as the RNA unequal division model
of Kimmel et al. [22] and the stochastic activator synthesis model of
Alt and Tyson [3]. The importance of asymmetric division of mother
cells into two daughter cells of unequal size is claimed in Arino and
Kimmel [5], Gyllenberg [18], and Kimmel et al. [22].

In Webb [47] it is shown that the hyperbolic partial differential
equation formulation (1)—(3) is equivalent to the functional equation
formulation

g(s(a, z))
wt—2/ / k(s(a,z),y)D(y,t — a) @)
(4)  f(a,s(a,z),t —a)u(a,s(a,z),t —a)dyda, x>0, t>1

(5) D(z,t) = ¢(z,t), >0, t<tg
In this formulation the number of dividing cells per unit time at time ¢

with size between z; and x5 is f;lz D(z,t) dz. The history of dividing
cells before the initial time ¢ = ¢y is given by .

The fluz D(z,t) of dividing cells at time t satisfies
6)  D(w.t) = / ba,z,t)N(a, 2, ) da, >0, t> to.
0

The number of cells being born per unit time at time ¢ with size between
z1 and 2 is fzzf B(z,t)dz. The flux B(z,t) of cells born at time t
satisfies

(7)  B(z,t)= 2/ k(z,u)D(u,t)du, x>0, —0o<t< oo
0

In the case of symmetric division,

(8) B(z,t) =4D(2z,t), x>0, —oo <t < 0.

The age-size density N(a,z,t) satisfies

(9) N(a,z,t) = B(s(a,z),t — a)

ala, s(a,x),t — a)u(a, s(a,z),t —a), a>0,s>0,t>t,
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and, in the case of symmetric division,

Dot o g o gls(@2)
N(a,z,t) = 4D(2s(a,x),t — a) @)

a(a, s(a,x),t — a)u(a, s(a,z),t —a), a>0, z>0,t>t.

(10)

3. The exponential growth constant. In the case that b(a,x)
and d(a,z) are independent of time, the solutions of (1)-(3) give
rise to a strongly continuous semigroup of bounded linear operators
T(t),t > to := 0 given by the formula T'(¢t)y = N(-,-,¢t). This
semigroup customarily exhibits asynchronous exponential growth in the
sense that there exists a constant A (the ezponential intrinsic growth
constant) and a distribution ¢ (the ezponential steady state) such that

(11) Jim. e MT ()Y = co,

where c is a constant that depends only on 1. In this situation, A is the
dominant real eigenvalue of the infinitesimal generator A of T'(t), t > 0.
These ideas have been exploited for various structured population
models in Arendt et al. [4], Arino and Kimmel [5], Diekmann et al.
[14], Diekmann et al. [15], Greiner [17], Gyllenberg and Heijmans
[19], Gyllenberg and Webb [20], Metz and Diekmann [28], Tucker and
Zimmerman [40], Von Foerster [42], Webb [45, 46, and Webb and
Grabosch [49].

In the case that b(a,z,t) and d(a, z,t) depend on time, the solutions
of (1)—(3) give rise to a strongly continuous evolution operator U(t,to),
t >t > 0, given by the formula U(¢,¢9)y = N(-,-,t). In our discussion
here we consider the case that b(a,z) is independent of time and
d(a,z,t) is periodic in time with period p. This model corresponds to a
cell population undergoing periodic chemotherapy. In this situation the
evolution operator typically exhibits an asymptotic behavior similar to
(11). Again, there is a constant A\ (the exponential growth constant)
such that, as t — oo,

(12) e MU, 0)Y — cp(t) = e O(1),

for some € > 0 where ¢ is a constant that depends only on v and ¢(t) is
periodic in ¢ with period p. The (period-dependent) ezponential growth
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constant X\ has the property that e*P is the dominant real eigenvalue
of the operator U(p,0):

(13) U(p, 0)¢ = e)\pdja '(/} # 0,
(14) o(t) .= e MUt 0)y, t>0.

An analysis of this problem is provided by Diekmann et al. [15] for a
size-structured cell population model. For the chemotherapy interpre-
tation of this model, the exponential growth constant A determines the
growth (A > 0) or decay (A < 0) of the populations and, hence, the
effectiveness of the treatment schedule.

For computational purposes it is useful to have an alternate formu-
lation of the eigenvalue problem (13):

THEOREM . For each p > 0, U(p,0)y) = e*Py if and only if

(15)
Y(a,z) = 2/ / k(s(a,z),u)¥(a+ d,S(a,w))q(a, z,u,a) di du,
o Jo
0<a<p, z=>0

(16)  W(a+p,z) =€ PP(a,s(p,2))r(a,z), @20, x>0,

where

(17) ) g(uw)a(a+ a,s(a,u))p(a+a,s(au),p—a—a)
. 9(s(a,2))a(a, s(a, 7)) u(a, 5(a, z),p — a)
9(x)
(18)
oun) o 22Nl pslat p2)la +p.s(a-+p.2). =)

g9(z)ala, s(a+ p,z))ula, s(a + p, x), —a)

PROOF. Let ¢ satisfy (13). Then N(a,z,p) = e’y (a,z), and (9)

implies

(19)
ePy(a, ) = B(s(a,x 7GM
Y(a,z) = B(s(a,z),p — a) @

a>0, z>0.

a(a, S(aa x)),u'(av S(aa CU),p - a)a
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Let z = s(a,z), t = p — a so that x = S(a,z) = S(p — t, 2) and (19)
implies
(20)
_ e)\pw(p B tv S(p B tv Z))g(S(p B tv Z))
5 P S A

z22>0, —co<t<p.
From (6), (7), and (9), we obtain

_M@f:2/ / E(&,u)b(a, w)N(a,u,t) dadu

—2/ / (&,u)b(a,u)B(s(a,u),t — a)g(s(d,u))

g(w)
(21) a(a, s(a,uw))p(a, s( u),t — a) dadu
9(s(a, u))
= 2/ / (Z,u)B a)W
- f(a, s(a,w))pu(a, s(a,u),t — a) da du,
>0, >0
Set & = s(a,z),t =p — a; (19) and (21) imply
(22)
¥(a,2) = eV B(@ 02—%$34a4aMWWsWxxp—w
e Y 1 (X0)
-7 / / »? ) g(u)
- f(a, s(a,u))u(a, s(a,u),p — a— a)dadu
 9(s(a, 2))

9(z) a(s(a,z))u(a, s(a,z),p — a),

0<a<p, z2>0.

Set z = s(a,u),t = p —a — a so that S(p —¢,2) = S(a+ a,s(a,u)) =
S(a,u) and (20) and (22) imply (15).

Next, N(a,z,0) = ¢(a,z), and (9) implies

9(s(a,z))

(23) t¢(a,z) = B(s(a,z),—a) @)

a(a, s(a, z))p(a, s(a, z), —a),

a>0, z>0.
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Set z = s(a,z),t = —a so that S(a+p,z) = S(a+ p,s(a,z)) = S(p, )
and (20) and (23) imply
(24)

¥(a,z) = e y(a+p, S(p, x))g(S(p, z))a(a, s(a, z))p(a, s(a, z), —a)
’ a(a+p,s(a,z))p(a+p,s(a, z), —a)g(z) ’

a>0, z>0,

which implies (16).

Similar calculations show that (15) and (16) imply N(a,z,p) =
e’Py(a, ). 0

4. Periodic chemotherapy regimens and resonance. A number
of researchers have treated mathematical modelling of chemotherapy,
including Aroesty et al. [6], Aroesty et al. [7], Bertuzzi et al. [10],
Chuang and Lloyd [11], Dibrov et al. [12], Dibrov et al. [13], Eisen
[16], Lincoln et al. [26], Nicolini et al. [29], Rigney [30], Rubinow
and Lebowitz [33], Swan [36, 37|, Tannock [38], Wille and Scott [51],
Zietz [52], and Zietz and Nicolini [53]. The objective of these studies is
to exploit the differences between normal and tumor cell populations.
One difference that occurs frequently is that tumor cells have longer
mean cycle times. For periodic treatment protocols the exponential
growth constant A (as in (12)) determines the asymptotic behavior of
solutions of both normal and malignant models. Since both normal
and malignant cells are destroyed by the cytotoxic agent, the goal is
to optimize the period of treatment in terms of highest normal cell
population growth and lowest malignant cell population growth.

Numerical studies of periodic chemotherapy treatment have been car-
ried out by Dibrov et al. [13] for certain age-structured cell population
models. The results in Dibrov et al. [13] are designed with parameters
corresponding to leukemia chemotherapy. In Dibrov et al. [13] the nu-
merical studies revealed the resonance phenomenon that has important
implications for periodic treatment scheduling. The cytotoxic agent is
assumed to act in a specific phase of the cell cycle for both popula-
tions (usually the S-phase). Leukemic cells typically have much longer
mean cycle times than normal cells (hemopoietic stem cells). The stud-
ies in Dibrov et al. [13] demonstrate that, because of resonance, the
optimal period of treatment is approximately equal to the mean cycle
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length of normal cells (usually somewhat less, since the typical gamma
distribution of dividing cells is left-skewed about the mean).

The explanation of this resonance phenomenon is discussed in Dibrov
et al. [13]. The intuitive idea is that, with the first application of the
periodic treatment, there is a loss of both normal and tumor cells by the
phase-specific cytotoxic agent. If the period of treatment is close to the
mean cycle length of normal cells, then fewer normal cells are destroyed
with successive applications than would otherwise be destroyed for
some other choice of the period. The reason is that the population
of normal cells in the sensitive phase becomes emptier with successive
applications when the period of application approximates normal cell
mean cycle length. For the tumor cell population this preferential effect
does not occur since its mean cycle length is much larger. An analogy
due to Rotenberg [31] is very useful in understanding this resonance
phenomenon. Imagine a circular turntable with grains of sand spread
on it. The turntable revolves with fixed period p. The grains of sand
correspond to normal cells and a single revolution corresponds to the
mean cycle time of normal cells. As the turntable revolves, an arm
periodically reaches down and removes some grains of sand through a
sector of the turntable. This removal corresponds to the loss of cells
due to a phase-specific treatment. After the first removal there is an
empty slice on the turntable. If the arm falls with the same period
p, then it will fall back on the already empty sector with successive
applications. This choice of the period minimizes the loss of normal
cells. Now imagine a second turntable corresponding to the population
of tumor cells revolving with a different period p’. If the arm falls upon
it with period p, then the preferential effect does not occur and the
tumor cells suffer a greater loss.

In the examples below, this resonance phenomenon is illustrated
for age-size structured models of cell population dynamics. In these
examples it is assumed that the growth function is g(z) = 1 (linear
growth), the division function is k(y,z) = §(y — z/2) (symmetric
division), and the transit function f(a,y) is
@) fan={% s o=

c(a—1(y)) exp(—c(a — 7(y))), if7(y) <a.

This choice of the transit function yields a so-called transition proba-
bility model. The cell cycle is divided into an A-phase and a B-phase.
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Each cell passes through on A-phase of variable duration governed by
a transition probability for two random events that occur in any or-
der with probability ¢ per unit time (the choice of two events is made
for simplicity). Each cell must also pass through a B-phase of fixed
duration 7(y) dependent upon its birth size y. The resulting transit
function f(a,y) is a displaced gamma distribution, which gives a typical
experimentally observed distribution of cell cycle lengths.

The per capita loss rate d(a,xz,t) of cells of age a and size x at time
t is 0 for ¢t < 0, is defined periodically in ¢ with period p for ¢ > 0 and,
for0 <t <p,is

0, if0<t<p
(26) d(a,z,t) =< 1, ifp* <t<panda>a and x > 1,
0, ifp* <t<panda<ajorz<ax.

This loss function corresponds to a periodic on-off destruction of cells.
The parameter p* controls the intensity of the treatment. The param-
eters a; and z; control the phase sensitive to the cytotoxic agent.

In the examples below, the growth constants Ay and Az (as in (12))
are computed for the normal and tumor cell populations, respectively,
as a function of the period p. For each period p, the value of the
intensity parameter p* = p*(p) is determined so that Ay = 0. The
corresponding value of Ar is then computed for this value of p*. For
these examples At is graphed as a function of p for the particular choices
of the transit functions f and the loss functions d.

EXAMPLE 1. In this example there is no size dependence. The transit
function fn(a) for normal cells is as in (25) with ¢ = .5 and 7(y) = 4.0,
and the transit function fr(a) for tumor cells is as (25) with ¢ = .16667
and 7(y) = 12.0. These gamma probability distribution functions for
the normal and tumor cell populations (without the loss function) yield
mean cell cycle length My = 8 hours and M7 = 24 hours, respectively.
The coefficient of cell cycle length variation is Vy = Vp = .35355 for
both. In the absence of cell loss, the intrinsic growth constants (as in
(11)) for the normal and tumor cell populations are Ay = .0903 and
Ar = .0301, respectively (see Webb [48]). The loss function dy(a,t)
for normal cells is as in (26) with a; = 4.0, 1 = 0, and the loss function
dr(a,t) for tumor cells is as in (26) with a; = 12.0, z; = 0. For these
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loss functions, u(a,t) is given for a > 0, —co <t <p,and 0 < a+t <p
by

—1(a=a1) if p* <ay +tanda; <a,
—1'(a—p*+t), if a; +t Sp* <a+t,

if p* <a+tanda<ay,
ifa+t<p*.

ula,t) =

= o= 0 ®

Figure 1 shows the curve Ay as a function of period p. The optimal
period of treatment is p = 6 hours. Figure 2 shows the intensity
(p — p*)/p (where p* = p*(p) such that Ay = 0) as a function of the
period p. Figures 3 and 4 show the age-distribution of dividing cells in
the exponential steady state for the normal and tumor cell populations
with no cell loss (as in (11)).

EXAMPLE 2. In this example the transit functions fy(a,y) and
fr(a,y) do depend on size. For normal cells, fy(a,y) is as in (25) with
¢ =.5and 7(y) = 4+.1y, and, for tumor cells, fr(a,y)is asin (25) with
¢ =.166667 and 7(y) = 12+ .2y. The intrinsic growth constants (as in
(11)) in the absence of cell loss are Ay = .0812 and Ay = .0240 for the
normal and tumor cell populations, respectively. The loss functions for
this example are the same as in Example 1. Figure 5 shows the graph
of A\ when the loss function has period p and intensity parameter p*.
Figure 6 shows the intensity (p — p*)/p (where p* = p*(p) such that
Ay = 0) as a function of p. Figures 7 and 8 show the age-distribution of
dividing cells in the ezponential steady state (as in (11)) for the normal
and tumor cell populations, respectively, with no cell loss. The optimal
period of treatment occurs at p = 7.0 hours.

EXAMPLE 3. In this example the transit functions fy(a) and fr(a)
are the same as in Example 1. The loss functions dy(z,t) and dr(z,t)
as in (26)) have a; = 0, z; = 8.0 for normal cells and a; = 0 and
x1 = 16.0 for tumor cells. For these loss functions, u(a,y,t) is given
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FIGURE 1. Intrinsic growth constant of tumor cell population.

FIGURE 2. Intensity of chemotherapy treatment.
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FIGURE 3. Age distribution of dividing cells —normal cell population.

FIGURE 4. Age distribution of dividing cells —tumor cell population.



1208 G. F. WEBB

FIGURE 5. Intrinsic growth constant of tumor cell population.

FIGURE 6. Intensity of chemotherapy treatment.
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FIGURE 7. Age distribution of dividing cells —normal cell population.

FIGURE 8. Age distribution of dividing cells —tumor cell population.
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fora>0,y>0, —co<t<p,and 0<a+t<pby

1, ifa+t<p”,

1, ifp* <a+tand a+y < zq,

e~ tle—zity) if p* < g4 tand p* —x, +y <t and
z1<a+yandy <z,

/J‘(afay)t) = 671.(a7p*+t), lfp* S a+t and t S p* —z1 + y and

) < T,
e Pt if p* < g+tand t < p* and z; <y,
e~la if p* <tand z; <y.

Figure 9 shows Ay as a function of p and Figure 10 shows (p —p*)/p as
a function of p. The age-distribution of dividing cells in the exponential
steady state for the normal cell population with no cell loss is the same
as in Example 1. The optimal period of treatment is p = 6 hours, as
in Example 1.

EXAMPLE 4. In this example the transit functions fy(a,y) and
fr(a,y) are the same as in Example 2. The loss functions dy(z,t)
and dr(z,t) are the same as in Example 3. Figure 11 shows Ar as a
function of p and Figure 12 shows (p — p*)/p as a function of p. The
age-distribution of dividing cells in the exponential steady state for the
normal cell population with no cell loss is the same as in Example 2.
The optimal period of treatment is p = 6.5 hours, as in Example 2.

The computation of the growth constants Ay and Ar in these ex-
amples involves the discretization of the integral equation eigenvalue
problem (15) and (17). In this case (linear growth and symmetric divi-
sion) (15) and (16) reduce to

(27)
2(z—a)
1/1(a,x)=4/ Y(a+a,2x —a)q(a,z,a)da, 0<a<pa<uz,
0
(28)  ¢la+pz)=e ¥P(a,z —p)r(a,z), 0<a<z-—p,
where

q(a,z,a)

f(a,2z —2a —a)u(a, 2z —2a —d,p—a—a)a(a,z —a)u(a,z—a,p —a)

ala+a,2x —2a —a)u(a+ a,2x —2a —a,p —a —a)
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FIGURE 9. Intrinsic growth constant of tumor cell population.

FIGURE 10. Intensity of chemotherapy treatment.
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FIGURE 11. Intrinsic growth constant of tumor cell population.

FIGURE 12. Intensity of chemotherapy treatment.
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a(a+p,x—a—p)u(a—i—p,x—a—p,—a)
ala,z —a—p)u(a,z —a—p,—a)

r(a,z) =

The discretized problem becomes a large matrix eigenvalue problem.
The matrices are sparse, but have no regular form (because of the
unusual interdependence of size x and age a in (27) and (28)). The
programs for these computations were run on the CRAY X/MP-48 at
the National Center for Supercomputing Applications at the University
of Illinois.
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