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LIMITS OF HETEROCLINC ORBITS IN A
COMPETITIVE MODEL WITH GENETIC VARIATION

JAMES F. SELGRADE

ABSTRACT. A three-dimensional system of autonomous
ordinary differential equations which models the competi-
tion between two populations with genetic variation in one
population is studied. The competitive interaction is of
Lotka/Volterra type. On one allele frequency fixation plane
the dynamical behavior is that of stable coexistence and, on
the other, mutual exclusion. There are heteroclinic orbits con-
necting the two fixation planes, and the equilibria which these
orbits approach vary depending on the crowding parameter of
the genetically invariant population. For a critical value of
this parameter, there is a line of polymorphic equilibria. It
is shown that portions of this line along with another hetero-
clinic orbit form the topological limit of the orbits connecting
the fixation planes as the parameter approaches its critical
value. Hence, this provides a better understanding of the
heteroclinic bifurcation occurring at the critical value of the
parameter.

1. Introduction. Competition between two populations may
be modeled by the two-dimensional system of ordinary differential
equations,

(1)
Ṁ = μ(M, N)M

Ṅ = η(M, N)N,

where M, N ≥ 0 are the population sizes (or densities) and μ, η are C1

functions with ∂μ/∂N < 0 and ∂η/∂M < 0. The functions μ and η
are per capita growth rates for the M and N populations, respectively.
We refer to μ and η as fitness functions. The competition is said to be
Lotka/Volterra if the fitnesses are linear functions of M and N , i.e.,

(2)
μ(M, N) = rM − αM − βN

η(M, N) = rN − δM − γN,
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where all parameters are positive. If (1) has an equilibrium in the
interior of the positive quadrant, there are two possible outcomes of
Lotka/Volterra competition: stable coexistence and mutual exclusion
(see Freedman [9] or Waltman [16]). These two outcomes are distin-
guished by the difference between the intraspecific competition (the
self-repression) and the interspecific competition, i.e.,

(3) αγ − βδ.

If (3) is positive then the interior equilibrium is globally, asymptotically
stable in the interior of the positive quadrant; thus, we have stable
coexistence. If (3) is negative, then the interior equilibrium is a
saddle point with stable manifold separating the regions of asymptotic
stability of the single species equilibria on the axes (mutual exclusion).

Changing the outcome of Lotka/Volterra competition from stable
coexistence to mutual exclusion involves a two parameter bifurcation,
e.g., both the slope and the intercept of an isocline must be changed.
However, if one population is allowed to vary genetically, both outcomes
may occur in the same dynamical system (see Selgrade and Namkoong
[15]). Henceforth, we assume that the M population is diploid with two
alleles, A and a, at one locus. Thus, the M population is divided into
three subpopulations distinguished by the genotypes AA, Aa, and aa;
and each genotype has a fitness function denoted by μij , for i, j = A, a.
The frequency of the allele A is denoted by the variable p. Hence, the
frequency of the allele a is given by 1 − p. In general, the genotype
fitnesses are functions of the population densities, M and N , and of
the allele frequency p. The allele fitnesses, μA and μa, are defined by
μA = pμAA + (1 − p)μAa and μa = pμAa + (1 − p)μaa; and the mean
fitness μ for the M population is defined by μ = pμA + (1− p)μa

. The
fitness for the N population may depend on p as well as M and N .
Assuming random mating and slow selection in the M population, the
following three-dimensional system of autonomous ordinary differential
equations models the interacting populations (see Crow and Kimura [6]
or Ginzburg [11]):

(4)

ṗ = p(1 − p)(μA − μa)

Ṁ = μM

Ṅ = ηN.
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Solutions to (4) of biological interest lie in the three-dimensional region

S ≡ {(p, M, N) : 0 ≤ p ≤ 1, M ≥ 0, N ≥ 0}.

If p equals 1 or 0, then one allele is absent from the M population; and
on these invariant planes of allele fixation, (4) reduces to (1).

In order to simplify (4) somewhat, we assume that the gene action
in the M species exhibits no dominance, i.e., neither allele in the
heterozygote dominates in its phenotypic expression. Hence, we assume
that the heterozygote fitness is the average of the homozygote fitnesses:

(A1) μAa = (μAA + μaa)/2.

Using (A1), the allele and mean fitnesses simplify to

(5) μA − μa = (μAA − μaa)/2 and μ = pμAA + (1 − p)μaa.

For Lotka/Volterra competition, we assume the following linear fitness
functions:

(A2)
μAA = 1 − αAAM − βAAN

μaa = 1 − αaaM − βaaN

η = 1 − δM − γN,

where all parameters are positive. In (A2), we have taken the intrinsic
growth rates for all populations to be equal, and then, by time-scaling,
we have assumed that value to be 1. As in [13] and [15], to obtain
stable coexistence between the AA genotype and the N -population
(i.e., on the fixation plane {p = 1}) and mutual exclusion between the
aa genotype and the N population (i.e., on {p = 0}), we assume

(A3) αaa < δ < αAA and βAA < γ < βaa.

Assuming (A1), (A2), and (A3) in (4) and using (5), we derive the
following system of equations which depends on six parameters:

(6)

ṗ = p(1 − p)[(αaa − αAA)M + (βaa − βAA)N ]/2

Ṁ = p[1 − αAAM − βAAN ]M + (1 − p)[1 − αaaM − βaaN ]M

Ṅ = [1 − δM − γN ]N.
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The right-hand side of (6) is called the vector field and is denoted by
the vector function F (p, M, N).

In [15], a quadratic combination K of the competition parameters
in (6) is defined (see equation (8) in Section 2), the sign of which
determines the dynamical behavior of the solutions to (6). Munoz
and Selgrade [13] show that each solution converges to an equilibrium
solution regardless of the value of K. If K is positive, the equilibrium
C1 on the plane {p = 1} and the M -species equilibrium M0 on the plane
{p = 0} are locally, asymptotically stable with respect to the three-
dimensional flow of (6), see Figure 1(a). Also, there is a heteroclinic
orbit connecting the equilibrium M1 in {p = 1} to the equilibrium C0 in
{p = 0}. If K is negative, the equilibrium M0 is globally, asymptotically
stable with respect to the interior of S, and there is a heteroclinic orbit
connecting C1 to M0, see Figure 1(c). If K is zero, there is a line
of degenerate equilibria connecting C1 to C0 which contains a special
equilibrium denoted by Cp∗ , and there are two heteroclinic orbits, one
from M1 to Cp∗ and the other from Cp∗ to M0, see Figure 1(b).

In this paper, we intend to explain how the transition in the hetero-
clinic orbits occurs as K passes through 0. Roughly speaking, we show
that the heteroclinic orbits from C1 to M0, when K < 0, approach the
union of the equilibria from C1 to Cp∗ and the heteroclinic orbit from
Cp∗ to M0 at K = 0. Similarly, the heteroclinic orbits from M1 to C0,
when K > 0, approach the union of the equilibria from Cp∗ to C0 and
the heteroclinic orbit from M1 to Cp∗ at K = 0. Hence, the heteroclinic
orbits “jump” from connecting C1 and M0 to connecting M1 and C0

by passing through these unions of orbits when K = 0. Our arguments
use global topological results and a local analysis of the perturbation
at K = 0.

2. Background results needed to obtain Figure 1. There are
several equilibria of (6) on the boundary of S with stability charac-
teristics determined by (A3). The p-axis consists of equilibria which
are unstable into the interior of S. M0 = (0, 1/αaa, 0) is locally sta-
ble, and M1 = (1, 1/αAA, 0) is a saddle point with one-dimensional
stable manifold parallel to the M -axis and two-dimensional unstable
manifold intersecting the interior of S. N0 = (0, 0, 1/γ) is a sad-
dle with two-dimensional stable manifold in the MN -plane and one-
dimensional unstable manifold in the pN -plane, and N1 = (1, 0, 1/γ)
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FIGURE 1(a). K > 0 (γ < γ0) , M0 and C1 stable.
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FIGURE 1(b). K = 0 (γ = γ0).
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FIGURE 1(c). K < 0 (γ > γ0) , M0 stable.

has a two-dimensional stable manifold in the pN -plane and a one-
dimensional unstable manifold in {p = 1}. Each fixation plane con-
tains an equilibrium in its interior, C0 = (0, (γ−βaa)/σa, (αaa−δ)/σa)
and C1 = (1, (γ − βAA)/σA, (αAA − δ)/σA), where σi ≡ αiiγ − βiiδ for
i = A, a. C0 is a saddle in {p = 0} and C1 is stable in {p = 1}; but
the eigenvalues of both equilibria corresponding to eigenvectors in the
p-direction have the same sign, and this sign varies with the parameters
of (A2). If K < 0 (see equation (8)), then C0 and C1 are unstable in the
p-direction, and if K > 0, then C0 and C1 are stable in the p-direction.

An equilibrium for (6), interior to S, is a solution to the following
system of three linear equations in the two unknowns M and N :

(7) μAA = 0, μaa = 0, and η = 0.

Generically, (7) has no solution and, hence, (6) has no interior equilib-
rium (see Figure 1(a) and 1(c)). But there is a consistency condition
which guarantees solutions to (7), i.e., (7) has solutions if the constant
K is zero, where

(8) K ≡ αAAβaa − αaaβAA + αaaγ − βaaδ + βAAδ − αAAγ.
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Geometrically, K is the scalar triple product of vectors associated with
the linear map in (7). If K = 0, then (6) has a line of equilibria given
by

L ≡ {(p, M, N) : 0 ≤ p ≤ 1, M = (βaa−βAA)/σ, N = (αAA−αaa)/σ},

where σ ≡ αAAβaa − αaaβAA. Since L is parameterized by p, we let
Cp denote the equilibrium on L given by p. K is a measurement of the
total competition in the ecological system. Note that

K = σ + σa − σA.

From (A3), we see that σa is negative, which asserts that the inter-
specific competition between the aa genotype and the N population
is greater than the self-repression. Note that σa corresponds to the
value in (3); and, hence, σa < 0 implies mutual exclusion on the plane
{p = 0}. Also, σA is positive, which asserts that the self-repression
is greater than the interspecific competition between the AA genotype
and the N population and guarantees stable coexistence on {p = 1}.
Hence, the term in (8) which determines the sign of K is the first term,
αAAβaa, which is the product of the self-repression on the AA genotype
and the interspecific competition on the aa genotype.

Munoz and Selgrade [13] show that the sign of K determines the
dynamical behavior of (6). The invariance properties of the plane where
ṗ equals zero in the interior of S are particularly useful in their analysis.
Define this plane by

H ≡ {(p, M, N) : (αaa−αAA)M+(βaa−βAA)N =0} = {μAA−μaa = 0}.

H separates the interior of S and contains the p-axis; ṗ equals zero in
the interior of S precisely along H; is negative below H; and is positive
above H. Studying the vector field F of (6) along H shows that F
points upward along H if K > 0, that F points downward along H if
K < 0, and that F is tangent to H if K = 0. Hence, after at most one
change in direction, the p-component of each solution in the interior
of S becomes monotone and converges to a constant. Then, using the
Butler/McGehee Lemma (see Appendix 1 in Freedman and Waltman
[10]), it follows that
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THEOREM 2.1 (MUNOZ/SELGRADE). Assume (A1), (A2), and (A3).
Then each solution to (6) converges to an equilibrium as t → ∞, i.e.,
for each x ∈ S, ω(x) is one point.

The existence of the heteroclinic orbits in Figures 1(a) and 1(c)
follows from Theorem 2.1 and a “shooting” argument.

Center manifold theory is needed to obtain Figure 1(b) for K =
0. Each equilibrium of L has a zero eigenvalue with corresponding
eigenvector parallel to the p-axis. For p near 1, Cp has two negative
eigenvalues, and, for p near 0, Cp has one negative and one positive
eigenvalue. If we define

p∗ ≡ (αaa − δ)/(αaa − αAA),

then Cp∗ has two zero eigenvalues and one negative eigenvalue. Every
equilibrium on L has one eigenvalue equal to −1. In fact, the invariant
plane H consists of points of L and stable manifolds (which are lines) of
these points corresponding to the eigenvalue −1. For p �= p∗, the center
manifold of Cp is a subset of L. Munoz and Selgrade [13] show that, for
p > p∗, the orbit structure near Cp is that of a cylinder foliated by the
strong stable manifolds of points of L. For p < p∗, the orbit structure
near Cp is that of a cylinder foliated by two-dimensional disks on which
there is saddle behavior. This result is summarized by

LEMMA 2.2. Assume (A1), (A2), and (A3) and that K = 0. Let
p0 �= p∗. There is an open segment L′ ⊂ L\Cp∗ containing Cp0 , a
two-dimensional disk D, and a neighborhood B of Cp0 which is C1

diffeomorphic to L′ × D. If p0 > p∗, then the positive orbit of each
point in B remains in B and is asymptotic to some Cp ∈ L′ as t → ∞.
If p0 < p∗, then the positive orbit of x ∈ B is asymptotic to some
Cp ∈ L′ if and only if x ∈ H ∩ B.

In order to understand orbit behavior near Cp∗ , Munoz and Selgrade
[13] analyze the flow on the center manifold using an approach dis-
cussed in Carr [1]. The following quadratic approximation is obtained:

(9)
u̇1 = (1 + a1u1 + O(‖u‖2))u2

u̇2 = (a2u1 + O(‖u‖2))u2,
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where (u1, u2) are the variables on the center manifold of Cp∗ , which is
the origin in the (u1, u2)-system. It is important that a2 < 0 and that
the u1 variable is just a translation of the p variable. The flow for (9)
near the origin is given in Figure 2.

Hence, Munoz and Selgrade [13] conclude:

LEMMA 2.3. Assume (A1), (A2) and (A3) and that K = 0. Then each
center manifold of Cp∗ contains a unique orbit A+ which is asymptotic
to Cp∗ as t → ∞ and a unique orbit A− which is asymptotic to Cp∗ as
t → −∞. In addition, the p-components of A+ and A− are decreasing
functions of t.

Although the center manifold of Cp∗ may not be unique, a recent
result of Chow and Lin (see Appendix A in [3]) implies that each orbit
negative asymptotic to Cp∗ ultimately belongs to every center unstable
manifold. Thus, since Cp∗ has no strong unstable manifold and Lemma
2.3 implies that each center manifold contains a unique orbit negatively
asymptotic to Cp∗ , there is only one orbit in S negatively asymptotic
to Cp∗ , i.e., A− is unique in S. On the other hand, A+ may not be
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unique in S because Cp∗ has a three-dimensional center stable manifold
and so the A+’s in each center manifold need not coincide.

Using Lemmas 2.2 and 2.3 and the previous uniqueness remark, we
have the following:

THEOREM 2.4 (MUNOZ/SELGRADE ). Assume (A1), (A2), and (A3)
and K = 0. There exist heteroclinic orbits from M1 to Cp∗ and a
unique orbit, A−, from Cp∗ to M0.

3. Limits of heteroclinic orbits. For all results in the next two
sections, we tacitly assume (A1), (A2), and (A3).

A large change in the vector field F may not be reflected by a changed
in K, so we may not use K as a bifurcation parameter in studying
limits of heteroclinic orbits as a parameter varies. Henceforth, we
fix all parameters except γ, which measures the self-repression in the
genetically invariant population N ; and we consider the family of vector
fields Fγ which vary Cr with γ for any r ≥ 0. From (8) it is clear
that K is a decreasing, linear function of γ. Let γ0 be the value of γ
between βAA and βaa where K = 0. For γ < γ0, K > 0 and there
are heteroclinic orbits from M1 to C0. For γ > γ0, K < 0 and there
is a unique heteroclinic orbit from C1 to M0 for each γ. We suggest
that, as γ decreases to γ0, the family of heteroclinic orbits from C1 to
M0 approaches the union of the line segment of equilibria from C1 to
Cp∗ and the unique orbit A− from Cp∗ to M0. Also, as γ increases to
γ0, any one-parameter family of orbits from M1 to C0 approaches the
union of the line segment of equilibria from Cp∗ to C0 and one of the
orbits from M1 to Cp∗ .

For each γ, γ0 < γ < βaa, let O(γ) denote the unique heteroclinic
orbit from C1 to M0. For βAA < γ < γ0, let O′(γ) denote one of the
heteroclinic orbits from M1 to C0. The “ ′ ” notation is used to indicate
a choice has been made; and “ ′ ” will be omitted when the meaning
is clear from the context. When γ > γ0, C1 is below H and orbits
starting below H stay below H. When γ < γ0, C0 is below H and an
orbit ending below H must have always been below H. Hence, O(γ)
has a decreasing p-component. Let Pc be the vertical plane determined
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by fixing p equal to c, 0 ≤ c ≤ 1, i.e.,

Pc ≡ {(p, M, N) ∈ S : p = c}.

Then O(γ) meets Pc exactly once. So we define this point of intersec-
tion as

Oc(γ) ≡ O(γ) ∩ Pc.

Note that Oc(γ) always lies below H.

In order to study limγ→γ0 Op(γ) for 0 < p < 1, we need several
geometric results about the vector field Fγ . There is an attracting,
positively invariant, compact set A for Fγ for all γ, βAA < γ < βaa. A
is the region between two planes one where η is a positive constant
and the other where η is a negative constant. These planes are chosen
so that one is just below (i.e., closer to the origin) the region between
the planes {μAA = 0} and {μaa = 0}, and the other is just above
this region. Since the surface {μ = 0} lies between {μAA = 0} and
{μaa = 0}, Fγ points into A on its boundary. Also, it is easy to see
that all solutions to (6), except the p-axis, ultimately enter A.

For notational convenience, let x = (p, M, N) ∈ S. Also, we treat
the parameter γ as an additional variable, i.e., consider the four-
dimensional system of equations:

(10)
ẋ = Fγ(x)
γ̇ = 0.

The x-component of the flow of (10) is denoted by φ(x, γ, t), i.e.,
φ(x, γ, t) is the flow of Fγ(x). Clearly, the vector field of (10) is Cr

on A for any r ≥ 0, and so the flow φ depends smoothly on x and γ.

Many of our subsequent lemmas are stated for sequences γn → γ0 as
n → ∞.

LEMMA 3.1. Fix p0 ∈ (0, 1). Suppose z ∈ H and limγn→γ0 Op0(γn) =
z. Then z = Cp0 .

PROOF. If z �= Cp0 , then, for γ = γ0, the negative-time orbit of
z leaves the attractor A and never returns. By continuity of φ, this
is also true for the negative-time orbit of Op0(γn) for γn close to γ0.
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This contradicts the fact that O(γn) is negatively asymptotic to C1 if
γn > γ0 or to M1 if γn < γ0.

LEMMA 3.2. Fix p0 ∈ (0, 1). Suppose z /∈ H and limγn→γ0 Op0(γn) =
z. Take T > 0. Then, for each t ∈ [−T, T ], there is a pt ∈ (0, 1) so
that φ(z, γ0, t) ∈ Ppt

and limγn→γ0 Opt
(γn) = φ(z, γ0, t).

PROOF. We prove this result for positive t and a similar argument
works for negative t.

Since z is below H, the p-component of the orbit of z is decreasing.
Let pt be the value of p so that φ(z, γ0, t) ∈ Ppt

. Take ε > 0. Construct
a tubular neighborhood of radius ε around the orbit of z extending
beyond Ppt

so that orbits in this neighborhood cross through Ppt
. Then

take a neighborhood B of (z, γ0) so that the x-component of solutions
to (10) starting in B stay in the tubular neighborhood until they pass
through Ppt

. But, for γn close to γ0, (Op0(γn), γn) belongs to B, and,
hence, Opt

(γn) is within ε of φ(z, γ0, t). Since ε is arbitrary, we have
the result.

The next result about α- and ω-limit sets, when γ = γ0, follows from
Theorem 2.1 and Lemma 2.2.

LEMMA 3.3. Suppose γ = γ0 and z lies below H in the interior of S.
Then α(z) = M1, α(z) = Cp for some p ≤ p∗, or α(z) ∩ A = φ. Also,
ω(z) = M0 or ω(z) = Cp for some p ≥ p∗.

Next we show which of the points in Lemma 3.3 may be α- and ω-limit
sets for points which are limits of the heteroclinic orbits.

LEMMA 3.4. Suppose z /∈ H and z = limγn↘γ0 Op0(γn) for some
p0 ∈ (0, 1). Then α(z) = Cp for some p ≤ p∗.

PROOF. We need to eliminate the possibility of α(z) = M1 or of
α(z) ∩ A = φ. If the negative-time orbit of z leaves A, then so
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does O(γn) for γn near γ0, but this contradicts the fact that O(γn)
is negatively asymptotic to C1 for γn > γ0. Hence, α(z) ⊂ A.

Assume α(z) = M1 = (1, 1/αAA, 0). For all γ, M1 is a hyperbolic
equilibrium with a one-dimensional stable manifold parallel to the M -
axis in {p = 1} and a two-dimensional unstable manifold Mu meeting
the interior of S. We need to control the long-term behavior of negative-
time orbits passing near M1 for γ near γ0. For this, we construct an
isolating block [ 2, 4, 5, 12] relative to the set S for M1. Normally, an
isolating block for a flow is not a block for all nearby flows; however, the
block B we use will work for flows Fγ if γ is close to γ0. B is a five-sided
wedge, see Figure 3, with vertical front face in {p = 1}, with bottom
in the plane {N = 0}, with triangular vertical sides perpendicular to
{N = 0}, and with rectangular top slanted from {p = 1} to {N = 0}.
The triangular sides are the entrance set (where orbits enter B), the
top is the exit set, and the line segments common to the top and the
triangular sides are the tangency set, see Figure 3(b). To construct B
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this way, notice that {μ = 0} and Mu are both transverse to {N = 0}
and to {p = 1}. Thus the top can be chosen transverse to {μ = 0}
and to Mu so that {μ = 0} and Mu intersect the top in its interior,
see Figure 3(a). The choice of top essentially determines B. Since the
triangles are on opposite sides of {μ = 0}, Fγ points to the left on the
right triangle and to the right on the left triangle. Hence, the triangles
are entrance sets. By taking γ close to γ0 and by shrinking B (i.e.,
choosing M closer to 1/αAA and N closer to 0), we get that Fγ points
out on the top of B. The crucial property which we need for B is that
the negative-time orbits of points on the triangular sides leave A. This
is obtained by shrinking B again so that the triangles are close to the
stable manifold of M1 which leaves A in negative time.

Recall that α(z) = M1, and so z ∈ Mu. By continuity, there is
a neighborhood of (z, γ0) which has negative-time φ orbits entering
B. In particular, O(γn) enters B for γn near γ0. But negative-time
orbits in B are negatively asymptotic to M1 or leave B through the
triangular sides and, hence, leave A in negative time. This contradicts
the fact that O(γn) is negatively asymptotic to C1. The conclusion of
this lemma now follows from Lemma 3.3.

LEMMA 3.5. Suppose z /∈ H and z = limγn↗γ0 O′
p0

(γn) for some
p0 ∈ (0, 1). Then ω(z) = Cp for some p ≥ p∗.
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PROOF. Assume ω(z) = M0. M0 is locally, asymptotically stable for
all γ, so, for γ near γ0, there is an attracting neighborhood U of M0.
Hence, there is a neighborhood of (z, γ0) with orbits entering U ; for γn

near γ0, O′(γn) enters U and is asymptotic to M0. This contradicts
the fact that O′(γn) is asymptotic to C0 for γn < γ0. The result now
follows from Lemma 3.3.

Using the previous two lemmas, we show that portions of the hetero-
clinic orbits converge to subsegments of the line of equilibria.

THEOREM 3.6. For each p0 ≥ p∗, limγ↘γ0 Op0(γ) = Cp0 . For each
p0 ≤ p∗, limγ↗γ0 O′

p0
(γ) = Cp0 .

PROOF. To establish the first limit, we show that the assertion is
true for every sequence γn ↘ γ0. Assume there is a z �= Cp0 so that
limγn↘γ0 Op0(γn) = z. By Lemma 3.1, z /∈ H so the p-component of
the orbit of z is decreasing. Lemma 3.4 implies that α(z) = Cp for
some p ≤ p∗, but this is impossible since the negative-time orbit of z
lies in the region where p > p∗.

To prove the second assertion, take a sequence γn ↗ γ0 and assume
that limγn↗γ0 O′

p0
(γn) = z �= Cp0 . Lemma 3.5 gives that ω(z) = Cp

for some p ≥ p∗. But the positive orbit of z lies in the region where
p < p∗. Hence, we have a contradiction.

LEMMA 3.7. If p0 < p∗ and limγn↘γ0 Op0(γn) = Cp0 , then
limγn↘γ0 Op(γn) = Cp for all p ≥ p0. Also, if p0 > p∗ and
limγn↗γ0 O′

p0
(γn) = Cp0 , then limγn↗γ0 O′

p(γn) = Cp for all p ≤ p0.

PROOF. To prove the first assertion, we need to consider only p ∈
(p0, p

∗) because of Theorem 3.6. Assume there is a z ∈ Pp with z �= Cp

so that z = limγn↘γ0 Op(γn). From Lemmas 3.1 and 3.3, ω(z) = M0.
Let T > 0 be the time so that φ(z, γ0, T ) ∈ Pp0 . Lemma 3.2 implies
that limγn↘γ0 Op0(γn) = φ(z, γ0, T ), which is a contradiction.

For the second assertion, we consider p ∈ (p∗, p0) and assume there
is a z ∈ Pp with z �= Cp so that limγn↗γ0 O′

p(γn) = z. It follows that
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α(z) = M1, and, hence, there is a T > 0 so that φ(z, γ0,−T ) ∈ Pp0 .
Applying Lemma 3.2 again, we reach a contradiction.

Theorem 3.6 and Lemma 3.7 show that, for γ ↘ γ0, the heteroclinic
orbits O(γ) approach the subsegment of equilibria of L from p = 1
to p = p0 for some p0 ≤ p∗. Lemma 3.2 and Lemma 3.4 can be
used to show that the rest of O(γ) approach the unstable manifold of
Cp0 . In the next section we use perturbation analysis of the dynamical
behavior of Fγ near Cp∗ to conclude that p0 = p∗. Hence, the rest of
O(γ) approaches A− as γ ↘ γ0.

4. Perturbation analysis. In order to complete the analysis
of the limiting behavior of O(γ), we need to study carefully these
heteroclinic orbits as they pass near Cp∗ . Our approach is to consider
(6) a perturbation problem for γ close to γ0. The behavior of Fγ0 on
the center manifold of Cp∗ is reminiscent of the degenerate behavior
in two-dimensional singularly perturbed systems, e.g., see Eckhaus [7]
and Schecter [14]. Intuitively, the orbits O(γ) remain close to the
center manifold because of the strong contraction along the line L of
equilibria transverse to the center manifold, see Fenichel [8]. L is the
“slow manifold,” and, for γ ≥ γ0 and γ ∼ γ0, an orbit O(γ) leaves
C1 and remains close to L as a consequence of Theorem 3.6. As O(γ)
passes Cp∗ ,O(γ) moves away from L along A−. To see this, we need a
coordinate change in a neighborhood of Cp∗ for γ ∼ γ0 which illustrates
how the flow curves slide off the slow manifold at Cp∗ . Here we argue
for γ > γ0; however, a similar argument may be given for γ < γ0

by reversing the time as discussed at the end of this section. The
difficulty with γ < γ0 is the nonuniqueness of A+. We introduce a
small parameter ε in (6) by defining ε ≡ γ − γ0. A translation, a
linear transformation, and then a nonlinear map are performed on the
variables in (6) in order to render the system in a more workable form.
To simplify the expressions, we use the following notation:

α ≡ αaa − αAA < 0, σ ≡ αAAβaa − αaaβAA > 0,

β ≡ βaa − βAA > 0, τ ≡ (αAA − δ)(δ − αaa) > 0,

σi ≡ αiiγ0 − βiiδ for i = A, a.



HETEROCLINIC ORBITS 1149

In the (p, M, N) coordinates, Cp∗ = ((αaa − δ)/α, β/σ,−α/σ). Notice
that Cp∗ does not depend on ε. Recall that x denotes a point in
(p, M, N)-space. Let T1 translate Cp∗ to the origin in y-space, i.e.,
y = T1(x). The linear transformation T2 maps the two-dimensional
center subspace at Cp∗ to the {z3 = 0} plane in the z-space. So
z = T2(y), where

T2 =

⎛
⎝

1 0 0
0 στ (δ − αaa)/(2α2σa) στ (γ0 − βaa)/(2α2σa)
0 −δ/σa −γ0/σa

⎞
⎠ .

In the z-coordinate system, (6) becomes
(11)

ż1 = z2 − α(αaa + αAA − 2δ)z1z2/τ − α2z2
1z2/τ

ż2 = ε(βaa − γ0)[τ/(2σ) − τ (δ − αaa)z3/α − 2δαz2

+ 2δ(δ − αaa)z2z3 + 2δ2α2z2
2/(στ )

+ στ (δ − αaa)2z2
3/(2α2)]/σa

+ β(δ − αaa)z1z2/σa + σaz2z3

− 2γ0α
2(δ − αaa)z1z

2
2/(τσa) + σ(δ − αaa)(βaa − γ0)z1z2z3/σa

ż3 = εγ0[α2 − 4δα3z2/τ − 2ασ(δ − αaa)z3

+ 4δσα2(δ − αaa)z2z3/τ + 4δ2α4z2
2/τ2

+ σ2(δ − αaa)2z2
3 ]/(σ2σa)

− z3 − 2βδα2z1z2/(τσσa) + σaz2
3

+ 4δγ0α
4z1z

2
2/(τ2σσa) − 2δα2(βaa − γ0)z1z2z3/(τσa).

If ε = 0, (11) corresponds to equation (9) in [13] and, hence,
describes the behavior of solutions to (6) when K = 0. The composite
transformation T2 ◦ T1 maps L to the z1-axis and maps the plane H
to the plane {z2 = 0} with the region below H mapped to the region
where z2 < 0. The center manifold of the origin is a surface tangent to
the plane {z3 = 0}. The flow on this manifold may be obtained from
the first two equations in (11) by setting ε = 0 and by using the fact
that, on this manifold, z3 has a quadratic approximation in terms of z1

and z2 (see [13]). Grouping the higher order terms gives (9), where

a2 ≡ β(δ − αaa)/σa < 0.

From Figure 2, notice that the orbits near zero form curves which are
given approximately by parabolas. The last transformation T3 is chosen
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FIGURE 4.

so that these curves are approximately horizontal lines, and the line of
equilibria is a parabola, see Figure 4. Define w = T3(z) by

T3(z1, z2, z3) = (z1, z2 − a2z
2
1/2, z3).

T3 maps the z1-axis to the parabola {(w1, w2, w3) : w2 = −a2w
2
1/2, w3 =

0} and maps the plane {z2 = 0} to the parabolic cylinder C ≡
{(w1, w2, w3) : w2 = −a2w

2
1/2}, see Figure 4.

Hence, T ≡ T3 ◦ T2 ◦ T1 is a change of variables for (6) yielding the
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system
(12)
ẇ1 = (w2 + a1w

2
1/2)[1 − α(αaa + αAA − 2δ)w1/τ − α2w2

1/τ ]

ẇ2 = ετ (βaa − γ0)/(2σσa) − ετ (βaa − γ0)(δ − αaa)w3/(ασa)
+ εστ (δ − αaa)2(βaa − γ0)w2

3/(2α2σa)
+ (w2 + a2w

2
1/2)[−2εδα(βaa − γ0)/σa

+ 2εδ(βaa − γ0)(δ − αaa)w3/σa

+ 2εδ2α2(βaa − γ0)(w2 + a2w
2
1/2)/(τσσa)

+ σaw3

− 2γ0α
2(δ − αaa)w1(w2 + a2w

2
1/2)/(τσa)

+ σ(δ − αaa)(βaa − γ0)w1w3/σa

+ a2α(αaa + αAA − 2δ)w2
1/τ + a2α

2w3
1/τ ]

ẇ3 = εγ0α
2/(σ2σa) − w3 + σaw2

3 − 2εγ0α(δ − αaa)w3/(σσa)
+ εγ0(δ − αaa)2w2

3/σa

+ (w2 + a2w
2
1/2)[−4εγ0δα

3/σ − 2βδα2w1

+ 4εγ0δα
2(δ − αaa)w3

+ 4εγ0δ
2α4(w2 + a2w

2
1/2)/(τσ)

+ 4δγ0α
4w1(w2 + a2w

2
1/2)/τ − 2δσα2(βaa − γ0)w1w3]/(τσσa).

Since w = T (x), the vector field of (12) is given by TFεT
−1, where Fε

is the vector field of (6). T maps H to C, and, since Fε points down on
H when ε > 0, TFεT

−1 points to the left on C. Also, the w1 variable
is a translation of the p variable. The image of the heteroclinic orbits
O(ε) under T are orbits staying close to T (L) just to the left of C with
w1-coordinate decreasing to zero. The orbits T (O(ε)) meet the plane
{w1 = 0} at points with negative w2-coordinates. These intersection
points converge to the origin as ε ↘ 0 by Theorem 3.6.

Now we show that the orbits T (O(ε)) may not approach any equilib-
rium on the back side of C, i.e., with negative w1-coordinate. We do
this by exhibiting a small region on a plane with w2 equal to a constant
near T (L) on which the w2-component of TFεT

−1 is negative. Intu-
itively, T (O(ε)) is being pushed away from T (L) on the back side of C
because these equilibria have unstable manifolds.
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LEMMA 4.1. Assume αaa + αAA ≥ 2δ. If p̄ < p∗ and γn ↘ γ0, then
limγn↘γ0 Op̄(γn) �= Cp̄.

PROOF. Suppose limγn↘γ0 Op̄(γn) = Cp̄. Lemma 3.7 implies that
limγn↘γ0 O(γn) = Cp for all p ≥ p̄. Let (w̄1,−a2w̄

2
1/2, 0) = T (Cp̄).

Consider the equilibrium on T (L) closer to the origin than T (Cp̄), given
by (ŵ1,−a2ŵ

2
1/2, 0) = T (Cp̂) for some ŵ1 ∈ (w̄1, 0) and some p̂ > p̄.

Since limγn↘γ0 T (Op̂(γn)) = T (Cp̂), the points T (Op̂(γn)) approach
T (Cp̂) to the left of the cylinder C and near the plane {w3 = 0}.
The orbits T (O(γn)) stay close to {w3 = 0} because of the strong
contraction normal to {w3 = 0}. In order to limit on T (Cp̄) as γn ↘ γ0

(i.e., ε ↘ 0), the orbits T (O(γn)) must cross through {w2 = −a2ŵ
2
1/2}

in the positive w2-direction between {w1 = ŵ1} and {w1 = w̄1}. But
we show that TFεT

−1 points in the negative w2-direction for (w1, w3)
near (w̄1, 0), i.e, for ŵ1 near w̄1, and for all ε small.

To see this, rewrite the w2-component of TFεT
−1 on {w3 = −a2ŵ

2
1/2}

where the ε terms are grouped together:

(13) ẇ2 = εh(w1, w3) + g(w1, w3).

From (12) note that

h(w1, 0) =τ (βaa − γ0)/(2σσa) − δα(βaa − γ0)(w2
1 − ŵ2

1)a2/σa

+ δ2α2(βaa − γ0)(w2
1 − ŵ2

1)
2a2

2/(2τσσa),

where the first term is a negative constant, the third term is not positive
since (w2

1 − ŵ2
1) ≥ 0 for w1 ∈ [w̄1, ŵ1], and the second term is made

small by taking ŵ1 near w̄1. Hence, for ŵ1 ∼ w̄1 and w3 ∼ 0, h(w1, w3)
is bounded above by a negative constant for all w1 ∈ [w̄1, ŵ1]. Also,
g(w1, w3) ≤ 0 for all w1 ∈ [w̄1, ŵ1] if w3 ∼ 0 and ŵ1 ∼ w̄1. This can be
seen from the formula

g(w1, w3) = a2(w2
1 − ŵ2

1)[σaw3 + σ(δ − αaa)(βaa − γ0)w1w3/σa

+ a2α
2w3

1/τ

− γ0α
2(δ − αaa)w1(w2

1 − ŵ2
1)a2/(τσa)

+ a2α(αaa + αAA − 2δ)w2
1/τ ]/2,

where the sum inside the bracket is positive for w3 ∼ 0 because of the
third term and the assumption that αaa + αAA ≥ 2δ, and the term
outside the bracket is not positive. This completes the proof.
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FIGURE 5(a). γ ↘ γ0 (K < 0).

THEOREM 4.2. Assume αaa + αAA ≥ 2δ. Then limγ↘γ0 Op(γ) = Cp

for all p ≥ p∗ and limγ↘γ0 Op(γ) = A− ∩ Pp for all p < p∗.

PROOF. Fix p < p∗ and assume there is a γn ↘ γ0 so that
limγn↘γ0 Op(γn) = z �= A− ∩ Pp. Lemma 3.4 and the uniqueness
of A− imply that α(z) = Cp0 for some p0 < p∗. Using Lemma 3.2,
we see that limγn↘γ0 Op0(γn) = Cp0 . But this contradicts Lemma 4.1.
With Theorem 3.6, the result is proved.

Theorem 4.2 gives a complete description of the limit of the hetero-
clinic orbits for γ > γ0, see Figure 5(a). For γ < γ0 and a family of
orbits O′(γ), a similar argument may be used to obtain a result like
Lemma 4.1 by reversing the time and analyzing the flow near the front
face of the cylinder C, see Figure 4. But, because of the nonunique-
ness of A+, for γn ↗ γ0, we get that O′(γn) converges to some A+

which may depend on γn, see Figure 5(b). Also, although the con-
dition αaa + αAA ≥ 2δ is used in our proof, we do not believe it is
necessary for the result.
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FIGURE 5(b). γ ↗ γ0 (K > 0).
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